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Abstract—Oblivious routing algorithms use only locally avail-

able information at network nodes to forward traffic, and as 

such, a plausible choice for distributed implementations.  It is a 

natural desire to quantify the performance penalty we pay for 

this distributedness.  Recently, Räcke has shown that for general 
undirected graphs the competitive ratio is only         , that is, 

the maximum congestion caused by the   oblivious algorithm is 

within a logarithmic factor of the best possible congestion.  And 

while the performance penalty is larger for directed networks 

(Azar gives a       lower bound), experiments on many real-

world topologies show that it usually remains under 2.  These 

competitive measures, however, are of worst-case type, and there-
fore do not always give adequate characterization.  

The more different combinations of demands a routing algo-

rithm can accommodate in the network without congestion, the 

better.  Driven by this observation, in this paper we introduce a 

new competitive measure, the volumetric competitive ratio, as the 

measure of all admissible demands compared to the measure of 

demands routed without congestion.  The main result of the pa-

per is a general lower bound on the volumetric ratio; and we also 
show a directed graph with      competitive ratio that exhibits 

     volumetric ratio.  

  Our numerical evaluations show that the competitivity of   

oblivious routing in terms of the new measure quickly vanishes 
even in relatively small common-place topologies.  

Keywords—competitive ratio; oblivious routing;    norm;    

norm; throughput polytope; feasible region; probability of conges-

tion; hyper--spherical coordinates 

I. INTRODUCTION 

Routing algorithms are used to drive the process of for-
warding traffic from source nodes to remote destination nodes 
through a network.  Often, network links are of limited capacity 
and it is also the task of the routing algorithm to ensure that no 
network link gets seriously overloaded with excess traffic.  
Minimizing congestion, however, may require the global 
knowledge of the actual traffic demand pattern the users pose 
to the network, which is very difficult to ensure in a distributed 
setting.  The class of non-adaptive routing algorithms with the 
property that only knowledge that is locally available at net-
work nodes is used when making forwarding decisions is called 
oblivious routing algorithms.  In fact, in oblivious routing a set 
of paths and corresponding splitting ratios are precomputed off-
line, which are then applied in the on-line phase statically to the 
incoming traffic at network nodes.  This scheme is easy to 

implement in a distributed fashion, both in virtual-circuit-based 
as well as in a packet routed environment. 

The performance of an oblivious routing algorithm is usual-
ly described in terms of the maximum congestion it produces, 
compared to the congestion produced by an optimal routing 
algorithm [1].  The maximization is taken over all possible 
demand combinations.  Surprisingly, this competitive ratio (or 
oblivious performance ratio [2]) in undirected networks is only 
logarithmic [1], [3], [4], and even though no such appealing 
characterization exists for directed networks, experiment sug-
gests that it rarely surpasses 2 [5].  This makes oblivious rout-
ing an attractive choice for implementing distributed routing 
algorithms. 

Being a worst-case measure, the competitive ratio, howev-
er, might not always give adequate statistical representation of 
the performance penalty of distributed routing, as compared to 
optimal routing. In this paper, we study the competitive ratio 
arising as the extent to which an oblivious routing algorithm 
can route without congestion demands that otherwise could be 
routed in the network by a properly chosen, possibly central-
ized optimal routing algorithm. 

This work is connected to the scientific program of the 
”Development of quality-oriented and cooperative R+D+I 
strategy and functional model at BME” project. This project is 
supported by the New Hungary Development     Plan (Project 
ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). 

Consider the following formal definition.  Given a capaci-
tated graph   and an arbitrary routing algorithm, let the feasi-
ble region   be the set of demands that can be routed by the 
algorithm without congestion in  .  Let the throughput 
polytope   of   be the set of demands that can be routed with-
out congestion at all (i.e., the feasible region of an optimal 
algorithm).  Then, the quantity of all demands routable in the 
network is the volume     , the quantity of demands routed by 
the routing algorithm without congestion is     , and their, 

ratio, the so called volumetric competitive ratio    
    

    
 

represents the fraction of routable demands the algorithm can 
handle successfully.  Easily,     , and the smaller    the 

better. Sometimes, we use the measure        
    

    
 as it 

has appealing statistical interpretation: provided that demands 
arrive from the set of routable demands T according to a uni-
form distribution, what is the chance that we encounter conges-
tion at some link in the network.  In other words,      quanti-
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fies the frequency that an operator can expect to find his net-
work in a congested state, in the case when absolutely no in-
formation on traffic demands is available a priori. Thus, 

       
 

  
 is called the probability of congestion (POC). 

In this paper, we study the competitivity of oblivious rout-
ing in terms of the new performance measures.  

A. Related Work 

Oblivious routing on hypercubes was first studied by Val-
iant and Brebner [6]. They give a randomized oblivious routing 
scheme with         competitive ratio. The first oblivious 
routing algorithm for generic undirected graphs is due to Räcke 
[1], with the remarkable property that the maximum congestion 
is within a          factor of the lowest possible congestion, 
attainable by an optimal algorithm (for such an optimal adap-
tive algorithm, see [7]).  This result was non-constructive, as 
the algorithm's off-line running time was exponential. The 
competitive ratio was subsequently improved by Harrelson, 
Hildrum and Rao in [3] to                . They also show 
a polynomial algorithm for constructing the hierarchical tree 
decomposition that underlies Räcke's oblivious routing scheme 
(see also [8]). Finally, it was also Räcke who was able to im-
prove the competitive ratio to         in [4]. This bound is 
asymptotically tight as there are very simple networks (e.g., 
two dimensional grids) on which no oblivious routing algo-
rithm exists with sub-logarithmic competitive ratio [9], [10]. 

For directed graphs, unfortunately, no logarithmic conges-

tion guarantee exists.  Azar et al. give a       lower bound in 

[2]. To cope with this intrinsic difficulty, Hajiaghayi et al. [11] 
present oblivious routing schemes that achieve          com-
petitive ratio provided that demands arrive randomly from a 
known demand distribution. Even though one might expect this 
assumption to improve the upper bound in undirected networks 

too, this is not the case: Hajiaghayi et al. give a   
    

       
  

lower bound in [12]. 

The first polynomial algorithm to obtain the best oblivious 
routing scheme for specific input graphs was introduced by 
Azar in [2]. A simpler, linear programming-based algorithm 
was given in [5]. Here, the task is to, given a directed or undi-
rected graph as input, compute the static routing that produces 
the smallest competitive ratio possible on this graph. This can 
(and usually is) better than logarithmic.  For instance, extensive 
numerical evaluations suggest that the competitive ratio in most 
real-world network topologies remains under 2 [5].  Unfortu-
nately, this approach is not suitable to obtain the generic upper 
bound Räcke could obtain with the use of hierarchical tree 
decompositions (whose approach, in turn, does not yield opti-
mal oblivious routing schemes for particular graphs). 

Demand for more descriptive performance measures for 
oblivious routing has increased lately [13] [14].  The motiva-
tion is not necessarily to quantify the performance of oblivious 
routing algorithms, but rather to drive the optimization algo-
rithms that compute them.  For instance, one would better con-
sider the average network load, or the sum-of-squares of the 
loads, as the performance measure, in contrast to the maximum 
load.  

Following on the work of Gupta [15], Engler and Räcke in 
[16] give a universal treatment, able to treat the above case and 
many more. They define a generic aggregation function that 
determines how loads at individual links are converted to a 
congestion measure for the network, and then show a        -
competitive oblivious routing algorithm when the aggregation 
function is an    norm. Their development is non-constructive, 
which was recently remedied by Bhaskara and Vijayaraghavan 
[17]. Note, however, that these performance measures are still 
of worst-case nature, meaning that it is the maximum of the 
congestion measure experienced over all possible demands that 
determines the outcome. 

It seems that Rétvári et al. were the first ones to systemati-
cally study the geometric properties of the feasible region D 
and the throughput polytope T [18], [19]. They showed that, 
under reasonable regularity conditions, both D and T are com-
pact, down-monotone, K-dimensional polyherda (K is the num-
ber of source-destination pairs).  They also showed that no 
polynomial-size description exists for T even in very small 
networks.  Thus, T is usually given implicitly, in the form of a 
linear program. 

For computing the volumetric ratio, we need to obtain the 
volume of D and T.  Unfortunately, except very low dimen-
sions or special polytopes with high degree of symmetry (e.g., 
simplices, hyper-cubes), this is a very hard task.  In particular, 
Elekes showed that one cannot construct a general polynomial-
time algorithm for calculating the volume of K-dimensional 
bodies [20].  Therefore, randomized algorithms were proposed 
to break down the complexity and approximate the volume 
with a prescribed absolute/relative error [21]-[23].  These algo-
rithms rely on Monte--Carlo integration and introduce random 
walks for sampling.  The complexity of the best known ran-
domized method is       linear program solver calls [24].  
Even though linear programs can be solved in polynomial time, 
this still can be prohibitive in large networks.  What is worse, 
random-walk-based sampling is another significant source of 
complexity [25], as a linear program needs to be solved at each 
step of the random walk, and we need thousands of random 
samples obtained in possibly thousands of steps. 

B. Our Results 

In this paper, we introduce a new competitive measure of 
non-worst-case type to better characterize the performance of 
distributed oblivious routing as compared to optimal central-
ized routing.  The measure, called the volumetric competitive 
ratio, quantifies the fraction of routable demands an algorithm 
can handle without congestion. 

In the first part, we give performance bounds on oblivious 
routing in terms of the new competitive measure.  For this, we 
develop a geometric model, using which for directed graphs we 
give a      worst-case lower bound on the volumetric ratio.  
This behavior is exhibited even in cases when the standard 
competitive ratio is     .  Then, we obtain an universal upper 
bound for the volumentric ratio. At the moment, it is not known 
whether these bounds are tight. 

In the second part of the paper, we conduct brief numerical 
evaluations on real-world topologies, which indicate that the 
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measures quickly exhibit the worst case behavior as K increas-
es. 

II. NOTATIONS AND DEFINITION 

Let         be a connected directed or undirected graph 
(      and      ), with positive edge capacities      
 , and K source-destination pairs             . A traffic 
matrix (or, simply, demand) is a column K-vector   
              , where    represents the request of the k-th 
source-destination pair. Let   be a routing algorithm which, 
given some demand  , generates a flow       (i.e., a routing) 
for each         on each edge    .  For our purposes, it 
is enough to know that the output of   is an aggregate flow on 
each edge e:                         . We denote 
the relative flow (or load)           produced by   on   by 
     . 

Gupta et al. introduce the notion of aggregation functions 
          to aggregate the loads of individual edges into a 
cost measure [15].  Engler and Räcke in [16] study the case 

when the aggregation function is an    norm       

         
 

    
 

 . Then, they give oblivious routing algorithms 

to minimize the competitive ratio    defined by this    norm: 

         
       

        
  

       

        

 
     

  

. (1) 

Here,      is an optimal routing algorithm that for each 
demand  assigns the flow      that minimizes the    norm 
        , and      is the flow produced for   by the oblivi-

ous routing algorithm that minimizes (1).  The second term in 
(1) comes from substituting     by the    norm (for a good 
overview on    and    norms, see [26]). Easily, different set-
tings of   yield different interesting algorithms. For     
specifically we get the well-known “congestion-minimizing” 
oblivious routing algorithms [1]-[4].  In this paper, we mean by 
“oblivious routing” this very case (i.e., when     ), but 
throughout the developments we shall often use different set-
tings for   .  Similarly, the term “competitive ratio” will mean 
(1) with choosing    , i.e.,   . 

Our task in this paper is to seek alternatives to the above 
competitive measure.  Our approach is mainly geometric, the 
main ingredients of which are as follows.  Given a routing 
algorithm  , let the feasible region   of   be the set of de-
mands   to which   orders a routing that does not violate edge 
capacities: 

                                       .  

The throughput polytope   of   is the set of all routable 
demands, i.e., the feasible region of     . Under the above 
assumptions, both   and   are K-dimensional, compact, con-
vex, down-monotone polytopes [18]. Therefore both sets are 
measurable in terms of the standard Lebesgue measure, that is, 
the K-dimensional volumes      and      exist and are non-
zero.  Note that we call a set   down-monotone, if     
           .  

We shall need some definitions from geometry to deal with 
polytope volumes. Let   denote a convex, compact down-
monotone polytope in   

  with    . Let    denote the gauge 
functional of  , i.e.,                    for all 
    

 .  Note that    is a spherical function, that is,    
               .  The reason why we invoke the gauge 
functional is that it is a natural geometric generalization of the 
competitive ratio                  . Using this nota-
tion, the volume of   is given by [23], [27] 

     
 

  
             
  
 ,   (2) 

where   is the measure function on   .  Converting the in-
tegration to hyper-spherical coordinates one can rewrite the 
above from integration on the entire positive orthant to integra-
tion on the surface of the unit   -ball   : 

     
 

 
             
  

 
 

 
   

          
  

,  (3) 

where                          denotes the dis-
tance of the boundary point of   from the origin in the direc-
tion defined by the point     .  For notational convenience, 
we shall often omit the dependence on   and simply write    
for       and    for      . 

III. THE VOLUMETRIC COMPETITIVE RATIO 

As mentioned previously, in this paper we want to charac-
terize the fraction of routable demands a routing algorithm can 
handle without congestion. Consider the following definition: 

Definition 1: Given a capacitated network   with   source-
destination pairs and a routing algorithm  , let   be the 
throughput polytope of   and let     be the feasible region of   
in  . Then, the volumetric competitive ratio of algorithm   is 
defined as  

      
    

    
 ,                    (4) 

and the Probability of Congestion (POC) is        
    

    
 

  
 

  
.  

The reason of why we also define the POC is that it has rel-
evant practical interpretation:      quantifies the chance that 
we find the network in a congested state, when traffic demands 
arrive from   according to a uniform distribution. 

In the next sections, we search global bounds on the above 
competitive measures.  First, we discuss directed graphs and 
then we turn to generic bounds on undirected networks. 

A. A Worst-case Upper Bound in Directed Graph 

First, we show that there exist directed graphs that exhibit 
     volumetric competitive ratio, even though the standard 
competitive ratio    is     . 

 Theorem 1: For any    , there is a directed graph of   

nodes with      and    
 

 
. 
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Proof: Consider the directed graph in Fig. 1 for any    , 

let all link capacities be 1, and let the source-destination pairs 
be                    . First, we construct the oblivious 
routing function w.r.t. to the    norm and calculate       as a 
function of  , then we obtain an approximation   on   .  

1. Competitive ratio: Construct the oblivious routing func-
tion as   follows.  The first source-destination pair has only a 
single path, thus   all its traffic is sent through this path.  The 
rest of the users           have two paths. Due to the 
symmetry of the network, it   is enough to consider a general 
user  . Let   denote the fraction   of traffic sent at    to the 
path passing through node    .  We   consider two critical 
classes of traffic matrices, as these will produce   the largest 

link load for oblivious routing. One is             , for 
which the maximum load      

    occurs on link    
1, +2.  Second, for some general         the demand 
                , where   there is a single non-zero ele-
ment in the  -th position, causes        maximum load on 
link        . To find      , we seek for   so that the max-
imum load is minimal. This occurs exactly when   

          
   , which yields       

  

   
  , for every 

finite  . 

  2. The volumetric ratio: We need the volume of   and  . 
Instead of calculating the volumes directly, we take lower and 
upper   approximations.  Let    and     be such that      and 
    .  By down-monotonity of  , the  -hypercube of size 1 
resides completely inside  .  

Moreover, we find     half-hypercubes in   as well, 
where the  -th half-hypercube,          , is obtained by 

placing a  -hypercube of size 1 at the point              (1 
is in the  -th position) and taking the intersection with the half-

space        . The volume of    is the sum of the volumes 

of the above polytopes:         
 

 
     . Second, we 

give an outer approximation    for   . Simply put,   is en-
closed by a hyper-rectangle, whose lower left corner is the 

origin and whose upper right corner is the point      

 

 
     

 

 
 
 

. Let this hyper-rectangle be    and so       

   
 

 
 
   

. 

  Putting all together, we get the desired    
    

    
 

     

     
 

  
 

 
     

   
 

 
 
    

 

 
 with the substitution      .            

B. A Worst-case Lower Bound for Undirected Graphs 

The result of the previous section is only valid for a class of 
special directed networks, in which obtaining good approxima-
tions on      and      is possible.  For general graphs, this 
approach is not viable. Therefore, we shall pursue a different 
approach below: we give a general lower bound on    in terms 
of   .  Consider the following theorem. 

Theorem 2:    
    

      
    

 

 , 

where         
            . 

First, consider the following technical Lemma. 

Lemma 1: Let     and    ,  
 

 
 
  

 belong to         

and let         . Then  

        

      
  
 

        
  

      
  

   
 

 
 
  

  
   

 . 

 Lemma 1 is the direct consequence of the Cauchy—
Schwarz—Bunyakovsky inequality [26], [28], [29].  

Proof of Theorem 1: Using (3) and the above Lemma, we 

get the following upper bound on 
 

  
. 

 

 

  
 
    

    
 
   

    
  

   
    

  

 
   

    
   

   
    

   

 
    

     
   

   
    

   

   
  
  
 
  

  
   

 
      

    
  

        
       

 
        

 

 

where the radius            .  The last equation comes 

from observing that the term 
  

  
 is the value the feasible region 

should be scaled to enclose all the points of the throughput 
polytope in the selected direction. Thus, 

  

  
 

       

       
 

 .   (6) 

Fig. 1. Directed graph (a) for illustrating the proof of Theorem 1, and the 

corresponding throughput polytope   and the feasible region   of the 

oblivious routing for     (b). For this case,        and       . 

(5) 
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 We rewrite (5) so that the outer norm is a    norm.  First, 
we use fact that                            

.  Second, 

choosing let  so that let         yields 

                             . Thus, we write (5) as:  

   
   

       

   
       

 
    

      
  

       
 

       
 
        

 

 

    

 

    

      
        

       
 

       
 
          

 

 

    

. 

Using Jensen's inequality [26] for the concave function 
 

   
 

yields: 

   
       

   
       

 
    

       
      

 

 
       

 
       

 

          

  

    

      
        

       

       
 

 
          

 

. 

Therefore 

Fig. 2. The competitive ratio    and the inverse of the approximated volumetric ratio    w.r.t. the number of source-destination pairs   for selected 
directed and undirected networks. 
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, 

which completes the proof. 

IV. NUMERICAL EVALUATIONS 

Finally, we seek the answer for the question whether the 
worst case bounds on the volumetric ratio presented in Section 
III indeed appear in real networks.  Therefore, we conducted 
some numerical evaluations using the volume approximation 
algorithm of the previous section.  We ran the evaluations on 
the ISP data maps from the Rocketfuel dataset [30]. We used 
the same method as in [5] to obtain approximate POP-level 
topologies: we collapsed the topologies so that nodes corre-
spond to cities, we eliminated leaf-nodes and we set link capac-
ities inversely proportional to the link weights.  In this paper, 
only results for the network AS3257 are shown, as we observed 
similar results for the rest of the networks as well. Another 
round of evaluations was conducted on the NSFNET Phase II 
topology [31].  From these topologies, we generated two series 
of increasingly more complex networks by adding gradually 
more source-destination pairs1. Recall that the number of 
source-destination pairs   determines the dimension of the 
underlying geometric space, and so it has profound impact on 
  .  In our experiments,   was increased from 2 to 30.  For 
each  , fifteen independent samples were generated picking 
the source and the destination nodes randomly according to a 
bimodal distribution and then    and    were evaluated for 
each scenario.  The parameters were chosen so that the result 
has larger than 10% relative error with less than 5% probabil-
ity. Fig. 2 depicts the results for both networks.  Note that we 

show 
 

  
 instead of    for better visualization. 

Our most important observation is that real networks indeed 
exhibit the worst-case behavior seen in Section III.  We ob-

serve that with the increase of  , 
 

  
 rapidly approaches 0. This 

suggests that already in networks with more than a couple of 
source-destination pairs it is only a very small fraction of all 
the routable demands the oblivious routing algorithm can han-
dle without congestion.  In terms of the probability of conges-

tion, which approaches 1 as 
 

  
 approaches 0, this basically 

means that a network adopting oblivious routing will spend 
most of its time in a congested state, provided that demands 
arrive uniformly from the set an optimal algorithm could route 
without any congestion at all.  And this is despite of the fact 
that     remains low (we see      in both networks for all 
 ). 

V. COCLUSION 

Oblivious routing is a promising candidate for minimum-
congestion routing in large networks.  This is thanks to that, on 
the one hand, it is a fundamentally distributed scheme and, on 
the other hand, it comes equipped with a hard performance 
guarantee, namely, the maximum congestion it causes is within 
a logarithmic factor of the best possible congestion.  This per-
formance characterization, however, is intrinsically of worst-
case nature.  

In this paper, we introduced an alternative competitive 
measure, the so called volumetric ratio, which measures the 
fraction of routable demands an oblivious routing algorithm 
can route without congestion.  We observed that already in 
very small directed networks (i.e., the ones in Section III-A), 

oblivious routing algorithms order infeasible routing to   
 

 
  

fraction of the, otherwise routable, demands.  We showed fur-
ther worst-case bounds valid for both directed and undirected 
graphs.  

A disadvantage of the new measure is that it is very diffi-
cult to numerically evaluate it.  In fact, negative results on 
exact polytope volume computation suggest that we cannot 
hope for a polynomial time algorithm to compute   .  

Finally, by numerical evaluations we showed that the 
worst-case behavior we identified clearly manifests itself in 
real networks. 

Easily, this paper is only a first step towards a more thor-
ough performance characterization of oblivious routing.  At the 
moment, it is unclear whether our bounds are tight, and we 
seriously lack proper upper bounds.  It seems though that, with 
some more work, the geometric model we introduced in this 
paper will be able to provide these results. 
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