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Abstract—Support vector machines (SVMs) have been 

promising methods for classification and regression analysis 

because of their solid mathematical foundations which convey 

several salient properties that other methods hardly provide. 

However the performance of SVMs is very sensitive to how the 

kernel function is selected, the challenge is to choose the kernel 

function for accurate data classification. In this paper, we 

introduce a set of new kernel functions derived from the 

generalized Laguerre polynomials. The proposed kernels could 

improve the classification accuracy of SVMs for both linear and 

nonlinear data sets. The proposed kernel functions satisfy 

Mercer’s condition and orthogonally properties which are 

important and useful in some applications when the support 

vector number is needed as in feature selection. The performance 

of the generalized Laguerre kernels is evaluated in comparison 

with the existing kernels. It was found that the choice of the 

kernel function, and the values of the parameters for that kernel 

are critical for a given amount of data. The proposed kernels give 

good classification accuracy in nearly all the data sets, especially 
those of high dimensions. 

Keywords—Laguerre polynomials; kernel functions; functional 
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I. INTRODUCTION 

Improving efficacy of classifiers have been an extensive 
research area in machine learning over the past two decades, 
which led to state-of-the-art classifiers like support vector 
machines, neural networks and many more. Support vector 
machine (SVM) is a robust classification tool, effectively over 
comes many traditional classification problems like local 
optimum and curse of dimensionality[1].Support vector 
machines (SVMs) algorithm [2-3] has been shown to be one of 
the most effective machine learning algorithms. It gives very 
good results in terms of accuracy when the data are linearly or 
non-linearly separable. When the data are linearly separable, 
the SVMs result is a separating hyperplane, which maximizes 
the margin of separation between classes, measured along a 
line perpendicular to the hyperplane. If data are not linearly 
separable, the algorithm works by mapping the data to a 
higher dimensional feature space (where the data becomes 
separable) using an appropriate kernel function and a 
maximum margin separating hyperplane is found in this space. 
Thus the weight vector that defines the maximal margin 
hyperplane is a sufficient statistic for the SVMs algorithm (it 
contains all the information needed for constructing the 
separating hyperplane). Since this weight vector can be 

expressed as a weighted sum of a subset of training instances, 
called support vectors, it follows that the support vectors and 
the associated weights also constitute sufficient statistics for 
learning SVMs from centralized data.  

One issue for improving the accuracy of SVMs is finding 
an appropriate kernel for the given data to improve the 
accuracy of SVMs. Most research relies on a priori knowledge 
to select the correct kernel, and then tweaks the kernel 
parameters via machine learning or trial-and-error. While there 
exist rules-of-thumb for choosing appropriate kernel functions 
and parameters, this limits the usefulness of SVMs to expert 
users, especially since different functions and parameters can 
have widely varying performance. Williamson et al.[4] 
published a method for the use of entropy numbers in 
choosing an appropriate kernel function. It was an attempt to 
explain kernel function choice by more analytical means rather 
than previous ad-hoc or empirical methods. The entropy 
numbers associated with mapping operators for Mercer 
kernels is discussed. In [5], it was stated that previous work on 
invariance transformations was mostly appropriate only for 
linear SVM classifiers. For non-linear SVM classifiers, an 
analytical method of utilizing kernel principal component 
analysis (PCA) map for incorporating invariance 
transformations was presented in[6]. 

Tsang et al.[7] discussed a way to take advantage of the 
approximations inherent in kernel classifiers, by using the 
Minimum Enclosing Ball algorithm as an alternative means of 
speeding up training. Training time had previously been 
reduced mostly by modifying the training set in some way. 
Their final classifiers, which they called the Core Vector 
Machine, converged in linear time with space requirements 
independent of the number of data points. Zanaty and 
Aljahdali [8] investigated the performance of different kernels 
when they are applied to different data sets. Zanaty et al. [9-
10] combined GF and RBF functions in one kernel called 
“universal kernel” to take advantage of their respective 
strengths. The universal kernels constructed the most 
established kernels such as radial bases, gauss, and polynomial 
functions by optimizing the parameters using the training data. 
SedatOzer et al., [11]  introduced a set of new kernel functions 
derived from the generalized Chebyshev polynomials, where 
the generalized Chebyshev kernel approaches the minimum 
support vector number and maximum classification 
performance. Zhi-Bin Pan et al. [12] introduced support vector 
machine based on orthogonal Legendre polynomials, to reduce 
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the redundancy in feature space due to the orthogonality of 
Legendre polynomials, which may enable the SVM to 
construct the separating hyperplane with less support vectors. 
These kernels satisfy Mercer’s condition and converge faster 
than the existing kernels. 

Completely achieving a SVM with high accuracy 
classification therefore, requires specifying high quality kernel 
function. In this paper, a new set of Laguerre functions is 
introduced that could improve the classification accuracy of 
SVMs. A class of Laguerre kernel functions on the basis of the 
properties of the common kernels is proposed, which can find 
numerous applications in practice. The proposed set of kernel 
functions provides competitive performance when compared 
to all other common kernel functions on average for the 
simulation datasets. The results indicate that they can be used 
as a good alternative to other common kernel functions for 
SVM classification in order to obtain better accuracy.  

The rest of this paper is organized as follows: In section 2, 
SVM classifiers are discussed. The kernel functions are 
discussed in section 3. The generalized Legendre kernels are 
discussed in section 4. Section 5 presents the functional 
analysis of the proposed Laguerre kernels. Experimental and 
comparative results are given in section 6. Finally, section 7 
shows the conclusion. 

II. SVM CLASSIFIER 

SVMs [14] are a relatively new approach for creating 
classifiers that have become increasingly popular in the 
machine learning community. They present several advantages 
over other methods like neural networks in areas like training 
speed, convergence, complexity control of the classifier, as 
well as a stronger mathematical background based on 
optimization and statistical learning theory. In the novel 
learning paradigm embodied in support vector machines 
“learning” (selection, identification, estimation, training or 
tuning), the parameters are not predefined and their number 
depends on the training data used [14-15]. The support vector 
machines combine two main ideas. The first one is concept of 
an optimum linear margin classifier, which constructs a 
separating hyperplane that maximizes distances to the training 
point. The second one is concept of a kernel. In its simplest 
form, the kernel is a function which calculates the dot product 
of two training vectors. Kernels calculate this dot product in 
feature space, often without explicitly calculating the feature 
vectors, operating directly on the input vectors instead. When 
we use feature transformation, which reformulates input vector 
into new features, the dot product is calculated in feature 
space, even if the new feature space has higher dimensionality. 
So the linear classifier is unaffected. Margin maximization 
provides a useful trade off with classification accuracy, 
whichcan easily lead to overfitting of the training data. 
Consider aninput space X with input vectors x, a target space Y 
= {1,-1} and a training setTr= {(x1, y 1 ) , ...,(xN, yN)} with xi∈ X 
and yi∈ Y. In SVM classification, separation of the two classes 
Y = {1,-1} is done by means of the maximum margin 
hyperplane, i.e. the hyperplane that maximizes the distance to 
the closest data points and guarantees the best generalization 
on new, unseen examples. Let us consider two hyperplanes:  

)1(1,  ii yifbxw                                        (1) 

)1(1,  ii yifbxw
                      (2) 

The distance from the hyperplane to a point xi can be 
written: 
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Consequently the margin between two hyperplanes can be 
written as: 
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To maximize this margin we have to minimize ||w||. This 
comes down to solving a quadratic optimization problem with 
linear constraints. Notice however that we assumed that the 
data in Tr are perfectly linear separable. In practice however 
this will often not be the case.  

Therefore we employ the so called soft-margin method in 
contrast to the hard-margin method. Omitting further details 
we can rewrite the soft-margin optimization problem by 
stating the hyperplane in its dual form, i.e. find the Lagrange 

multipliers αi ≥ 0 (i = 1,...,N) that :Maximize  
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Considering the dual problem above, we can now write the 
maximum margin hyperplane as a linear combination of 
support vectors. By definition,  the vectors xi corresponding 
with non-zero αi are called the support vectors and this set 
consists of those data points that lie closest to the hyperplane 
and thus are the most difficult to classify. In order to classify a 
new point xnew, one has to determine the sign of 

 
SVix

newiii bxxy ,

                                                    (4) 

If this sign is positive xnew belongs to class 1, if negative to 
class -1, if zero xnew lies on the decision boundary. Note that 
we have restricted the summation to the set of support vectors 
because the other αiare zero anyway. 

III. KERNEL FUNCTIONS 

Support vector machine is one of kernel-based learning 
algorithms that consist of a learning algorithm and the kernel 
function [16, 17]. The kernel function creates the hypothesis 
space where the learning process searches for. The kernel can 
be considered as a similarity measure between two inputs 
which corresponds to their inner product in some feature space 
into which the original inputs are mapped. This is very useful, 
for instance, when the concept to be learned depends 
nonlinearly on the data, but the learning algorithm is able to 
learn only linear dependencies.  
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Since support vector machines are linear classifiers, it is 
necessary to map the input vectors with a nonlinear mapping 
in order to learn non-linear relations. The resulting vectors are 
usually called features. Formally, let k denote the input space, 
which can be any set, and F  denote the feature vector space. 
For any mapping: 

Fk :  

The inner product of the mapped inputs is called a kernel 
function: 

 )(),(),( zxzxk   

A necessary condition for this is that  zxk ,  is symmetric 

and finitely positive semi definite [18-19]. There are many 

different types of kernels that can be found in the literature 

[18-19].  

IV. PROPOSED KERNELS 

A critical step in support vector machine classification is 

choosing a suitable kernel of SVMs for a particular 

application, i.e. various applications need different kernels to 

get reliable classification results. It is well known that the two 

typical kernel functions often used in SVMs are the radial 

basis function kernel and polynomial kernel. More recent 
kernels are presented in [9-12,20-23] to handle high dimension 

data sets and are computationally efficient when handling non-

separable data with multi attributes. However, it is difficult to 

find kernels that are able to achieve high classification 

accuracy for a diversity of data sets. In order to construct 

kernel functions from existing ones or by using some other 

simpler kernel functions as building blocks, the closure 

properties of kernel functions are essential [16-18].  

For given non-separable data, in order to be linearly 
separable, a suitable kernel has to be chosen. Classical kernels, 

such as Gauss RBF and POLY functions, can be used to 

transfer non-separable data to separable, but their performance 

in terms of accuracy is dependent on the given data sets. The 

following POLY function performs well [20] with nearly all 

data sets, except high dimension ones: 

   dT zxzxk 1,   

whered is the polynomial degree. 

The same performance [20] is obtained with the Gauss 
RBF of the following form: 

   2
exp, zxzxk    

where   is appositive parameter controlling the radius. 

Zanaty et al in [9] presented the polynomial Radial basis 
function (RBPF) as: 

 dVPRBF /))exp(1(   

Where dpVzx *,   

wherep is a parameter. Zanaty et al in [10] presented 
Support vector machines (SVMs) with universal kernels, 

called Gaussian radial basis polynomials function (GRPF) 
given by: 
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the Gaussian, polynomial and universal kernels,respectively.

 and are the scaling parameters for the polynomial kernel 

and determines the width of the Gaussian kernel respectively. 
Kernel functions should be applied onto input vectors directly 
instead of applying them onto eachelement and combining the 
results by a product, since the kernel functions are supposed to 
provide a measure of the correlation of two input vectors in a 
higher dimensional space.  

A. Laguerre polynomials 

The Laguerre polynomials are defined by the equation: 
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The exponential function can be expanded to give: 
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Recall the binomial expansion: 
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using the notation: 
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Equation (6) may therefore be written as 
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Equating powers of
nt , we get: 
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The summation is taken from nrtor  0 , in view of the 

factor )!( rn   in the denominator.  Note that: 
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Equation (5) then gives 
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Note that the series in Equation (14) terminates 

after n terms, i.e. )(xLn   is a polynomial of degree n (see 

Fig.(1)). 

 
Fig. 1. The Laguerre function for the first five polynomials. 

B.1Rodrigues’ Formula for the Laguerre polynomial 
Using Equation (11), Equation (11) may be written as 
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Recall the Leibniz formula for the  derivative of a 
product: 
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Equation (13) may therefore be written as
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Laguerre polynomials of low order can be evaluated by 

using the Rodrigues’ formula (21) : 
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B. Recurrence Relations 

We write the defining equation (5) in the form 
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Differentiating both sides with respect to t, we get 
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Multiplying through by )1( t , we get 
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and equating coefficients of nt , we obtain 
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and hence the recurrence relation 
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If, on the other hand, we differentiate Equation (23) with 
respect to x, we get 
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Equating coefficients of  nt yields the identity 
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and hence the recurrence relation 
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C. Orthogonality of the Laguerre Polynomials 

Laguerre’s differential equation can be cast into self-

adjoint form by first writing it as 
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and multiplying throughout by the “integrating factor” 
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where we have included the subscript n in order to 

associate the solution n
y with the 

eigenvalue n.  Replacing n by m, we have: 
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We now adopt the standard procedure: multiply 

Equation (39) by m
y  and Equation (40) by n

y , and 

subtract.  This gives: 
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Integrating both sides from to0  , and using the rule for the 

derivative of a product, we get 
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It follows that if nm   the integral on the Left must be zero, 
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We have shown that the Laguerre polynomial )(xLn  is a  

solution of Laguerre’s equation.  We may therefore 

substitute )()( xLxy nn   in Equation (37), to give: 
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The case nm   can be examined by noting that: 
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Thus we have: 
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The Right Hand Side may be evaluated by integrating by 
parts n times.  The procedure is as follows: 
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The first term on the Right Hand Side vanishes at both 
limits, so we obtain: 
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A continuation of this process leads ultimately to the 
result: 
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Recall that
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Thus the only term in the summation (45) which survives 

is the nr   term; hence we obtain: 
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So we finally obtain: 
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This result may be combined with the orthogonality 
relation (38) to give: 
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The weight function xe  may be removed by defining a 
new function: 
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Equation (57) may then be written as: 
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Functions which satisfy the relation (54) are said to 

be normalized, and we say that the )(xn  form 

an orthonormal set of functions. 

V. GENERALIZED LAGUERRE KERNELS 

Here, we propose a generalized way of expressing the 
kernel function to clarify the ambiguity on how to implement 
Laguerre kernels. To the best of our knowledge, there was no 
previous work defining the Laguerrepolynomials for vector 
inputs recursively. Therefore for vector inputs, we define the 
generalized Laguerre polynomials as: 

 

 

 

 

 

 

 

 
 

Therefore, the generalized Laguerre, )(),( zLandxL jj , yield  

rowvectors, otherwise, it yields a scalar value. Thus by using 
generalized Laguerre polynomials, we define 

generalized nthorder Laguerre kernel as 
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Where x and z are m-dimensional vectors.  

TABLE I.  LIST OF THE GENERATED LAGUERRE KERNEL FUNCTIONS UP 

TO 4TH ORDER. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Functional analysis 

Before presenting reproducing kernel (i.e., Mercerkernel), 
Mercer’s theoremof functional analysis is presented here as 
described in [24]that gives conditions under which wecan 

construct the mapping  from the eigenfunctiondecomposition 

of k .According to Mercer’s work [24],it is known that if k is 
the symmetrical and continuous kernel of an integraloperator

22: LLOk  , such that:  
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such that k  acts as the given dot product, i.e., 
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Theorem 1.A nonnegative linear combination of Mercer 
kernels is also a Mercer kernel. 
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



M

i

ii zxKazxK
1

),,(),(  

where 0ia is a nonnegative constant. According 

toMercer’s theorem, we have 
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By taking the sum of the positive combination of 
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Therefore, one reaches 
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in (57) as the convex combination of the positivedefinite 

kernels ),( zxK i . This kind of kernel can findnumerous 

applications in practice. 

Theorem 2.The product of Mercer kernels is also a Mercer 
kernel. 

The proofis similar to that of the precedingtheorem.  

Theorem 3.To be a valid SVM kernel, a kernel should 

satisfy the Mercer Conditions [26-27].  If the kernel does not 

satisfy the Mercer Conditions, SVM may not find the 
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optimal parameters, but rather it may find suboptimal 

parameters. Also if the Mercer conditions are not satisfied, 

then the Hessian matrix for the optimization part may not be 

positive definite.Therefore we examine if the generalized 

Leguerre kernel satisfies the Mercer conditions: 

Mercer Theorem: To be a valid SVM kernel, for any 

finite function )(xg , the following integration should always 

be non-negative for the given kernel function ),( zxk [1]: 

  0  dxdzz)g(x)g(z)K(x,
                                                         (58)
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Consider that )(xg is a function where g: ,RRm 

then we can evaluate and verify the Mercer condition for 

),( zxk  as follows by assuming each element is 

independent from others: 

 

 

 

 

Therefore, the kernel ),( zxk  is a valid kernel. 

VI. EXPERIMENTAL RESULTS 
The classification experiments are conducted on different 

data like Cloud, Liver, Seed, Forest Fire and Yeast 
dataavailable at http://archive.ics.uci.edu/ml/datasets.html. 
These data sets have been given to the algorithm with different 
sizes (classes and attributes). Table II shows the classification 
accuracy for five different data sets using Laguerre kernel of 
order from 2 to 5 implementations. As shown in Figure 2, it is 
clear that when the order of polynomials increases, the 
accuracy increases for all data sets. 

Fig. 2. Laguerre Kernels-Based SVM Classification Accuracy 

A. Comparative results 

The performance of the proposed kernel with SVMs, in 
terms of classification accuracy, is evaluated by application to 
a variety of data sets available at: 

http://www.cs.toronto.edu.delve/data/image-set/desc.html. 
Firstly, we used LIBSVM with different kernels(linear, 
polynomial, radial basis function [8]). The parameters used 

include two parameters for the RBF kernel parameter γ=0.5 

and  =0.5, d=1 for linear and d=5 for polynomial kernels. 
Table II lists the main characteristics of the seven datasets 
used in the experiments. In order to evaluate the performance 
of the support vector machine with different kernels, we 
carried out some experiments with different data sets from 
machine learning benchmarks domains [28].  

The data has even different classes of image. They contain 
210 data for training and another 2100 data for testing, Each 
vector has 18 elements with different minimum and maximum 
values. For the training, we have 30 data for the class(+1) 
and180 data for the class (-1) and similarly for testing. As can 
be seen from Table II, the generalized Laguerre  kernel results 
show better generalization ability than the existing Gaussian, 
Polynomial (POLY) and Chebyshev [12] kernels. 

TABLE II.  CLASSIFICATION ACCURACY OF DIFFERENT DATA SETS USING LAGUERRE KERNELFUNCTION
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For example, in Table II, the 5th order generalized 
Laguerre kernel results in classification accuracy of more than 
96% for all test data sets, while the existing kernels achieve 
less than 96% for most test data sets. More specific, 
comparing the results of Tables III, the 5thorder generalized 
Laguerrekernel always gives good results and may be the best 
at all, as shown in Figure 3. 

TABLE III.  RESULTS ON IMAGE SEGMENTATION DATA WITH 

VARIOUSKERNELFUNCTIONS. 

 

 

 

 
 

Fig. 3. SVM Classification Accuracy with differentKernels 

VII. CONCLUSION  

In this paper, SVMs have been improved to solve the 
classification problems by mapping the training data into a 
feature space by the aid of Laguerre kernel functions and then 
separating the data using a large margin hyperplane.  A class 
of Laguerre kernel functions on the basis of the properties of 
the common kernels is proposed, which can find numerous 
applications in practice.  

Experimental results illustrate the validity and 
effectiveness of the proposed kernel. The experimental results 

show that the proposed kernel function results in the best 
accuracy in nearly all the data sets especially in the data set 
with large number of attributes. The obtained results are 
encouraging and suggest that the proposed method is worth 
further consideration. 
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