
Middleware to integrate heterogeneous Learning
Management Systems and initial results

´

´

J.A. Hijar Miranda
Instituto Politecnico Nacional

SEPI-ESCOM
Mexico D.F.

´ ´
´

´

Daniel Vazquez Sanchez
Instituto Politecnico Nacional

SEPI-ESCOM
Mexico D.F.

´
´

´

Dario Emmanuel Vazquez Ceballos
Instituto Politecnico Nacional

SEPI-ESCOM
Mexico D.F.

´
´

´

Erika Hernandez Rubio
Instituto Politecnico Nacional

SEPI-ESCOM
Mexico D.F.

´

´

Amilcar Meneses Viveros
Departamento de Computacion

CINVESTAV-IPN
Mexico D.F.

´

´

Elena Fabiola Ruiz Ledezma
Instituto Politecnico Nacional

SEPI-ESCOM
Mexico D.F.

Abstract—The use of the Learning Management Systems
(LMS) has been increased. It is desirable to access multiple
learning objects that are managed by Learning Management
Systems. The diversity of LMS allow us to consider them as
heterogeneous systems; each ones with their own interface to
manage the provided functionality. These interfaces can be Web
services or calls to remote objects. The functionalities offered by
LMS depend on their user roles. A solution to integrate diverse
heterogeneous platforms is based on a middleware architecture.
In this paper, a middleware architecture is presented to inte-
grate different Learning Management Systems. Furthermore, an
implementation of the proposed middleware is presented. This
implementation integrates two different Learning Management
Systems, using Web services and XML-RPC protocols to access
student-role users capabilities. The result is a transparent layer
that provides access to LMS contents.

Keywords—Middleware; Learning Management Systems; Ap-
plication Program Interface

I. INTRODUCTION

The use of the Learning Management Systems (LMS) has
been increased in academic and business communities. These
systems are used as auxiliary tools for courses, workshops and
training[1] [2]. In [1], the authors refer to the LMS as an
emerging technology in education. Among the most popular
LMS it can be mentioned Moodle, Blackboard, Claroline,
Chamilo, Olat, Sakai, Dokeos, eCollege, Angel and KEWL.

There are diverse LMS, each ones with their particular
functionalities [3]. Each LMS define their own user roles.
Each role has its own set of features and access methods. The
most common user roles are administrator, student and teacher.
The administrator manages user accounts and courses, and set
permissions for use and gives access to resources of the LMS.
A student may enroll in courses; accessing the learning objects
associated with these courses. In addition, the student can
perform tasks like using forums, chat rooms, video conference
or solve exercises and exams. Teachers can update learning
objects (such as course materials, videos, etc), enroll students
in courses and apply evaluations.

The report [1], also indicates that mobile devices are being
adopted in education as means of access to online courses.
When trying to access the LMS from a tablet, there are several
issues. These issues include: poor usability user interfaces
to access unsuitable for tablet; the diversity of mechanisms
of interaction via internet; heterogeneity of the features of
the LMS, and the type of Application Programming Interface
(API) offered.

Some studies suggest using a repository of learning objects
that can be accessed by different LMS, such as [4] [5]. Other
authors suggest the use of ontologies for handling semantic
Web [6]. But the problem of access on mobile devices is not
solved. One solution is to use a middleware to integrate a
set of basic features of the LMS. This type of solution has
been successfully used to solve problems in heterogeneous
environments, such as travel agencies, where various services
are integrated such as: selling air tickets, car rental and hotel
reservations.

In this paper, a middleware architecture is presented to
integrate several LMS. This architecture contains components
and APIs. This middleware allows a client to connect to
various LMS through a software layer. Furthermore, an imple-
mentation of the middleware is presented. Web services and
protocols based on XML-RPC are used, so that the middleware
can interact with various LMS.

This paper is divided in five parts, the first section gives the
introductory remarks about LMS and middleware systems, the
second part shows the related work, the third part presents the
proposed middleware architecture, the fourth part presents a
prototype implementing the proposed architecture and the last
section discuss the results obtained, the conclusion and future
work.

II. INTRODUCTORY REMARKS

A. Learning Management Systems

A Learning Management System [7] can be defined as software
installed in a server used to manage, distribute and control

www.ijacsa.thesai.org
134 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 



distance learning activities of an organization. The main func-
tions of the LMS are: Manage users, resources, materials
and learning activities as well as manage access, reporting
and manage communication services as discussion forums and
video conferences to name a few.

It can be identified two types of LMS[8]: Open Source and
Private.

Private LMS are mainly used by companies to manage and
keep track of employees through staff training. Advantages
of these are: support greater amount of users and courses;
more information can be obtained from this platforms; new
functionalities and extra reports can be requested. The main
disadvantage is that these systems are very expensive. Ex-
amples of these platforms are: Blackboard, Desire2Learn,
Saba Learning, iLearning, Aulapp, Catedr@, eCollege, Fronter,
SidWeb, WebC and WebClass to name a few [3].

Open Source LMS are mainly used at school level to
reinforce the basic knowledge as well as keep track of the
students. The main advantages of these systems are theme
modification and customization of the platform. The main
disadvantage of these systems is that they do not have enough
documentation or support to make some modifications. Exam-
ples of these platforms are: Moodle, Sakai, Chamilo, Docebo,
ILIAS, ATutor, Claroline, DaVinci LMS and SWAD to name
a few [3].

B. Middleware

A middleware is a distributed programming layer that provides
programming abstraction as well as masking of underlying
layers such as networks, operating systems, programming
languages and hardware. It helps significantly when develop-
ing distributed applications. Any middleware works with the
differences among operative systems and hardware [9] [10].

Within the general architectural model of a distributed
application, a middleware layer uses message-based protocols
between processes to provide higher-level abstractions such as
remote invocations and events[9]. A middleware provides these
features [11]:

• Location transparency: A client executing processes
is not capable of distinguish if it is executing locally
or remote.

• Communication protocols independence: The proto-
cols giving support to the abstractions of the middle-
ware are independent of the protocols of underlying
transport.

• Hardware independence: Components of the dis-
tributed system can interact in a proper way indepen-
dently of the platform executing the process.

• Operative systems independence: Abstractions at
higher-level provided by the middleware are indepen-
dent of the underlying operative systems.

• Use of several programming languages: Different
middleware are designed to allow that distributed
applications can be written beyond one programming
language. This can be achieved using an Interface
Definition Language (IDL).

There are different types of middleware[12] [13] [14]:

• Message oriented. Based under the concept of mes-
sage interception, supports communication between
distributed components through message passing.
Components can communicate one on one through
publication and subscription of data using the global
name space. Communication is asynchronous. It is
particularly ideal to implement event notification-
based as well as publish/subscribe paradigm-based
distributed architectures.

• Object oriented. Based on Object Broker. Uses the
concepts of object oriented programming for the de-
sign and implementation of the middleware. Allows
independence of each component distribution and the
interaction of each component is defined by interfaces.
Scalability of this type of middleware is limited.

• Transaction oriented. Based on transaction monitor-
ing. Uses the Two-Phases Commit protocol to support
distributed transaction. Simplifies the development of
a transactional distributed system. However, it causes
a unwanted overhead if it is not necessary the use of
transactions.

• Service oriented. Based on Service Oriented Architec-
ture (SOA), which is a computing paradigm that uses
services as main elements to support fast development,
low cost and easy composing of distributed appli-
cations. A middleware based on this paradigm must
show services and manage them through three key
components: name service provider, service requester
and register. Particularly, provides enough support to
service providers so they can show the services and
allows to publish their presence in the registry so that
the service requesters can find and use the services.

III. RELATED WORK

Nowadays the are some LMS trying to adapt their features
towards mobile devices through the development of specific
applications for a mobile device platform as well as the use
of rich-client architectures to adapt the interface in the mobile
device. Some works are mentioned below:

Mobile application developers bound the development of
these for one or two platforms given their proliferation due
there is no execution support in multiple platforms. A solution
is developing web-based applications but there are drawbacks
such as adaptability, server overloads and low use of the mobile
capacities. A middleware-based architecture can solve the
mobile applications requirements through the implementation
of rich-client applications in order to manage the differences
in heterogeneous platforms [15].

Moodle Mobile project (MM) is an application of Moodle
for mobiles based on technologies such as HTML5 that basi-
cally is a web client using REST as protocol to obtain and send
information to Moodle in the server [16]. The layer is created
using HTML5 and CSS3 while interaction with mobiles is
provided by Phonegap and uses jQuery for DOM manipulation.

www.ijacsa.thesai.org
135 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 



The only feature that all the mobile platforms share is that
they have a browser, which is accessible from native code.
Each platform allows to instantiate a browser and interact with
a Javascript interface from native code[17].

A developer can use different methods to write mobile
applications: HTML5, native and cross-platform applications
and give solutions to interfaces for different LMS with their
own frameworks [8].

The proposal of extending Moodle services [18] towards
mobile devices describes a way to integrate mobile devices and
educative applications with the LMS Moodle through the use
of web services, proposing a set of open specifications of web
services to integrate external mobile applications with Moodle.

IV. MIDDLEWARE ARCHITECTURE

Within this work is presented a proposal of the design of a
middleware-based architecture capable of integrate different
LMS and manage a set of student role functionalities.

From a functional analysis in different LMS were identified
the main student role functionalities which are implemented in
all LMS. These functionalities are:

• Student registry.

• List of courses of all LMS connected to the middle-
ware.

• Course enrollment.

• User autentication in the middleware.

• Show student profile.

• Edit student profile.

The middleware encapsulates these functionalities of the
LMS reaching an heterogeneity grade among them.

The proposed architecture is shown in figure 1, is weakly-
coupled-based and the middle layer is a service oriented
middleware. The middleware layer implements the student role
functionalities through the interface LMSMiddlewareAPI, and
publish a service so the client applications (rich-client) can
execute in a remote way these functionalities. The middleware
API, together with the methods of DAO component manage the
registry, update and obtain data of the users registered in the
middleware database. The middleware’s LMSAPI component
implements methods that manage the access to the LMS as
well as functions such as: list courses, course enrollment and
obtaining educative contents from the LMS connected to the
middleware.

A. Rich-client

In the previous architecture it is showed a rich-client layer
on the top, which represents web browser clients connected
to the middleware through HTTP requests. A rich-client ap-
plication allows the interface to be adapted dynamically to
different devices such as: smartphones, tablets, laptops or
desktop computers. Besides, is independent of the device
platform, hardware or operative system. Therefore a rich-client
application allows the management of different platforms and

Fig. 1: General design of middleware-based architecture for
integrating Learning Management Systems.

provides support to show the information of the LMS in a
proper way. Together with a middleware-based architecture is
possible to create an open system. The rich-client has different
modules that a student-role user can use to access data from
different LMS. These modules are:

• Login. Grants access to the system. This module
validates the user in the middleware database.

• User registry. Adds a user in the middleware database.
Requested fields are: Name, last name, user name,
password, city, country and e-mail. These data are
essential to register a student in the LMS.

• List of courses. Show the courses of the LMS con-
nected to the middleware.

• Show user profile. Show the current data of the user.

• Edit user profile. Show an application form to modify
the information of the user in the middleware database.
If the user is registered in one or more LMS the
information is updated in each LMS database.

• Course Detail. Show the contents of the selected
course. In this module is presented the option of
course enrollment. The middleware database contains
the information of users subscribed to the course. For
users enrolled in the course it is showed a leyend that
says ”you actually are registered to this course”.

B. Controller

The rich-client controller component allows the interaction be-
tween the middleware and the rich-client layers. It encapsulates
functions that make dynamically the rich-client presentation.
At this component level it must be programmed the invoca-
tions towards middleware functions. To communicate with the
middleware layer, the component must: know the location of
the middleware (this is reached parameterizing important data
such as: IP, port and name service); having implemented a

www.ijacsa.thesai.org
136 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 



communication protocol to call middleware remote procedures
(RPC, XML-RPC, RMI).

C. LMSMiddlewareAPI

Every middleware in any distributed system needs a pro-
gramming interface (API) that allows the communication with
the upper and lower layers of this component. According with
[19], a proper API design for the application must be small
and sufficient, it means, it must not implement unnecessary
functions. Also, the methods names must describe clearly the
function they accomplish. Following these statutes, we have
designed a proper API for the middleware of our arquitecture
which allows the communication with the rich-client. The de-
sign of this API is based on the functional analysis previously
mentioned where there were presented the main functionalities
that were looking for encapsulate. The methods that conform
this API are shown below:

• lms validateAndObtainUser: Validates the existence
of the user from a given user name and password,
if it exists the method returns the user.
Parameters:
String : username
String : password

• lms registerUser: Registers a user in the database, if
it exists returns the user id.
Parameters:
Associative Array : new user

• lms updateUser: Updates the information of the user
in the database without considering the username. If
the user exist in the LMS the information is updated
in the LMS as well.
Parameters:
Associative Array : user

• lms obtainUserByUsername: Obtains a user from the
database given a username.
Parameters:
String : username

• lms listCourses: List all the courses contained in all
LMS connected to the middleware. If there is not
a LMS connected to the middleware a void list is
returned.
Parameters:
None

• lms obtainCompleteCourse: Obtain the general con-
tents of the course from the LMS.
Parameters:
Associative Array : Course

• lms isRegisteredToACourse: Verifies if the user is reg-
istered in a given course.
Parameters:
int : idUser
Associative Array : Course

• lms subscribeToCourse: Subscribe the user in the
course. Indeed adds a registry of the subscription in
the middleware database. If the user is not enrolled in
the LMS course, it makes the enrollment in the LMS

course.
Parameters:
Associative Array : user
Associative Array : Course

To try to standardize the data type and can be used indepen-
dently of the communication protocol, there were used native
data types for object oriented languages. In some functions,
is used a data type named Associative Array, that use named
keys assigned to a value. This array can be used in many object
oriented languages, for example in PHP, or in Java this arrays
are known as Map data type.

The middleware must publish these methods as a service
so they can be accessed. The rich-client controller can com-
municate with the middleware invoking the methods of this
API through a remote communication protocol such as RPC,
RMI, XML-RPC and SOAP to name a few.

D. Middleware Database

The database in the middleware layer store information linked
to the users that access through the rich-client as well as
information of the LMS located in the lowest layer of the
architecture. Besides it is stored information that involves users
with courses. The communication with the database is achieved
through the DAO layer within the middleware which is invoked
directly from the methods of the LMSMiddlewareAPI compo-
nent. The methods of DAO allow the update and insertion of
user data and information linked to the courses.

E. LMSAPI

Although there is an API for communicating the upper layers
of the middleware (towards rich-client) there must exist an API
in charge of communicate the lower layers (towards LMS).
LMSAPI function is to communicate the middleware with the
LMS platforms, implementing necessary methods that invoke
the required functions of these platforms. Due to the existence
of the LMS heterogeneity as showed in the figure, it must
exist a dedicated component that implements the methods calls
for each LMS. For this, it can be useful the public APIs
of the LMS in the case there is documentation of the APIs.
The programming can change depending of the way the LMS
publish their services, the type of communication required and
the data type requested in the input and output parameters.
Now is presented the methods of the LMSAPI component
which must be implemented in each LMSN API:

• registerUser.

• updateUser.

• obtainUser.

• listCourses.

• courseEnrollment.

• obtainCompleteCourse.

These methods represent the basic functionalities of the
LMS for student-role users and are invoked from the methods
of the LMSMiddlewareAPI component. These functionalities
invoke propietary methods of the APIs from the LMS.

www.ijacsa.thesai.org
137 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 



F. Types of objects

With the purpose of a better information management in the
application programming, the middleware layer can encapsu-
late own data of entities in objects as data types. These data
types are LMS, User and Course.

The User data are used to encapsulate information provided
from the rich-client and from LMS, to store them into the
middleware database. The LMS data was used to encapsu-
late information provided from the database and are used in
methods that access the LMS. The Course data are used to
encapsulate information provided by the LMS and send them
to the rich-client.

The LMS attributes are in general: id; name/type; url;
username/password (administrator); web service name, to-
ken/secret key.

The attributes of a course are: id; idLMS; category id;
course name; course short name; description; contents and start
date.

V. PROTOTYPE

The prototype presented in this work consists in the develop-
ment of an application within the middleware-based architec-
ture presented in the previous section. The specific architecture
for this prototype is shown in figure 2.

Fig. 2: Specific architecture for prototype application.

The prototype was developed with HTML5 and PHP for the
rich-client layer and PHP language was used for developing the
middleware layer. The type of communication between rich-
client and the middleware is through XML-RPC protocol, used
to achieve remote communications and create web services. It
is important to mention that for operation of the XML-RPC
for PHP it is necessary to have three libraries: xmlrpc.inc,
xmlrpcs.inc and xmlrpc wrappers.inc. The rich-client must
know the location of the published services by the middleware.
This information is provided by the configuration file conf.php
of the rich-client. Also, the middleware must know the location
of the LMS. This information is stored in the middleware
database.

The LMS used to verify the middleware functionality in
this prototype were Moodle and Chamilo. As shown in figure
2, the remote interaction between the middleware and the LMS
layers is through web services. Moodle and Chamilo were
installed in different servers with the purpose to prove the
transparency at location level. Analogous, the middleware was
set in a different server.

The middleware needs to know the location of the LMS in
order to obtain the information of these. Also, it is necessary
to authenticate in a remote way for this to be possible. During
the development of this prototype it was not possible to find
a standard way to access different LMS. The information of
authentication used for Moodle and Chamilo differs and must
be stored in the database for being used by the middleware.
Here is presented the authentication way to access contents of
both Moodle and Chamilo.

A. MoodleAPI

In order to access the functionalities in Moodle is necessary
to have a token which is a key that grants permissions to a
user to access and use the functionalities of the web services.
Moodle has implemented functions to obtain a token. In this
way, the middleware can access the functions of Moodle.
To achieve this in real time, in Moodle were created a user
with permissions to generate tokens from a HTTP calls which
must contain as parameters the username and password of
the user who has the permissions to generate the token. This
information is important to the middleware so it must be
stored in the database. With the token, the middleware calls
the functions of Moodle through public web services using
REST, concatenating the token with the name of the required
function. The functions of the web services used were:

• core user create users. This function allows the cre-
ation of one or more users in Moodle.

• core course get courses. This function obtain a list
of courses in Moodle.

• core user get users by field. This function obtain
user data given a username.

• core course get contents. This function obtains the
contents of one or more courses available in Moodle.

• enrol manual enrol users. This function enrolls one
or more users in a given course.

B. ChamiloAPI

Chamilo web service uses SOAP as communication protocol
so it is necessary to create a client that communicates with
Chamilo through SOAP objects. To achieve the connection
it is necessary to know the secret key of Chamilo, which
is a string of encrypted characters that grants access to the
web service methods. The secret key is part of the parameters
in the SOAP calls for Chamilo. This secret key can not be
generated in real time as the token in Moodle, exist within
the configuration file config.php in the file system of Chamilo
and can be modified by the administrator of Chamilo. For this
prototype the secret key of the installation of Chamilo was
used in the middleware to access the functions. The functions
of the web service of Chamilo are described below:

www.ijacsa.thesai.org
138 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 



• WSCreateUserPasswordCrypted. This function creates
a user but the password must be encrypted with sha1
method.

• WSCMUser.find id user. This function returns the
user data given a username and password.

• WSListCourses. This function search and list all the
courses available in Chamilo.

• WSCourse.SubscribeUserToCourse. This function en-
rolls a user into a given course available in Chamilo.

• WSCourse.GetCourseDescriptions. This function ob-
tains the description of a specific course available in
Chamilo.

VI. CONCLUSION

From the prototype presented, it is suggested that the design
of a middleware-based architecture is a factible option to
achieve the integration of different LMS platforms and create
a cross-platform system between LMS. In this architecture
is proposed that the encapsulated functionalities of the LMS
in the middleware layer must be used as services which are
available anytime as well as consumed by the clients when
required. It means that the information is obtained under
demand. For this reason the middleware has a weakly-coupled
architecture. This type of architecture is used when modules or
layers of a system are independent among them and interact
when it is necessary. Weakly-coupled architectures are used
in service oriented systems. This middleware encapsulates
functions and publish them as services, so the middleware is
service oriented. Besides, encapsulates the general information
provided by the LMS and the rich-client in object types that
are used to manage data, beyond learning objects. Internally,
the middleware works under an object oriented scheme.

Also some LMS publish their services to access contents
in a remote way. To use this services, there is an authentication
way that varies depending on the LMS. In the prototype, the
objective was to integrate Moodle and Chamilo. Web services
of Moodle and Chamilo were used and both differ in their
access way, as an example Moodle uses tokens generated by
users while Chamilo uses a static private key. The middleware
is in charge of hide the access types to the users that obtain the
contents of the LMS through the rich-client. More over not all
Open source LMS have web services to access remotely. Open
source LMS have an API that is used locally to deploy their
contents. A strategy to incorporate them into the architecture
is to create an associated web service to the middleware
that implements a set of methods which invokes the local
API functions of the LMS. The web service serves as a link
between the middleware and the LMS. The prototype uses this
strategy implementing the XML-RPC protocol.

As future work, the above strategy might be implemented,
besides supplementing the current middleware. In the proto-
type there were used only two Open source LMS, Moodle
and Chamilo. To supplement the middleware functionality it
is possible to extend the prototype implementation with the
LMS, not only for open source but privates too. In the case of
private LMS it must be identified if it counts with a web service
that can be useful to link it with the middleware. Otherwise,

´

˜

it must be explored if it is a factible strategy to create a web
service for this type of LMS.

ACKNOWLEDGMENT

The authors would like to thank Instituto Politecnico Na-
cional, SIP-IPN, SEPI-ESCOM, CINVESTAV and COMECyT.

REFERENCES

[1] L. Johnson, S. Adams Becker, M. Cummins, A. Estrada, V.and Freeman,
and H. Ludgate, “Nmc horizon report: 2013 higher education edition,”
The New Media Consortium, Tech. Rep., 2013.

[2] S. Kurkovsky, “Integrating mobile culture into computing education,”
in Integrated STEM Education Conference (ISEC), 2012 IEEE 2nd.
IEEE, 2012, pp. 1–4.

[3] D. Vazquez Sanchez, E. H. Rubio, E. F. Ruiz Ledesma, and A. M.
Viveros, “Student role functionalities towards learning management
systems as open platforms through mobile devices,” in Electronics,
Communications and Computers (CONIELECOMP), 2014 Interna-
tional Conference on. IEEE, 2014, pp. 41–46.

[4] B. Simon, D. Massart, F. Van Assche, S. Ternier, E. Duval, S. Brantner,
D. Olmedilla, and Z. Miklos, “A simple query interface for interoperable
learning repositories,” in Proceedings of the 1st Workshop on Interop-
erability of Web-based Educational Systems, 2005, pp. 11–18.

[5] M. G. Nascimento, L. O. Brandao, and A. A. Brandao, “A model to
support a learning object repository for web-based courses,” in Frontiers
in Education Conference, 2013 IEEE. IEEE, 2013, pp. 548–552.

[6] P. Raju and V. Ahmed, “Enabling technologies for developing next-
generation learning object repository for construction,” Automation in
Construction, vol. 22, pp. 247–257, 2012.

[7] M. Szabo, “Cmi theory and practice: Historical roots of learning
managment systems,” in World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education, vol. 2002, no. 1, 2002,
pp. 929–936.

[8] S. Watermeyer, “Extending sakai web services for mobile application
support.”

[9] C. George, D. Jean, and K. Tim, “Sistemas distribuidos, conceptos y
diseno,” Addison Wesley, 2007.

[10] M. Van Steen, “Distributed systems principles and paradigms,” Network,
vol. 2, p. 28, 2002.

[11] C. Britton and P. Bye, IT architectures and middleware: strategies for
building large, integrated systems. Pearson Education, 2004.

[12] L. Qilin and Z. Mintian, “The state of the art in middleware,” in
Information Technology and Applications (IFITA), 2010 International
Forum on, vol. 1. IEEE, 2010, pp. 83–85.

[13] V. Issarny, M. Caporuscio, and N. Georgantas, “A perspective on the
future of middleware-based software engineering,” in 2007 Future of
Software Engineering. IEEE Computer Society, 2007, pp. 244–258.

[14] L. Jingyong, Z. Yong, C. Yong, and Z. Lichen, “Middleware-based
distributed systems software process,” in Proceedings of the 2009
International Conference on Hybrid Information Technology. ACM,
2009, pp. 345–348.

[15] I. M. T. Hernandez, A. M. Viveros, and E. H. Rubio, “Analysis for the
design of open applications on mobile devices,” in Electronics, Com-
munications and Computing (CONIELECOMP), 2013 International
Conference on. IEEE, 2013, pp. 126–131.

[16] (2014, Sep). [Online]. Available:
http://docs.moodle.org/dev/Moodle Mobile

[17] A. Charland and B. Leroux, “Mobile application development: web vs.

˜

native,” Communications of the ACM, vol. 54, no. 5, pp. 49–53, 2011.
[18] M. J. Casany, M. Alier, E. Mayol, J. Piguillem, N. Galanis, F. J.

Garcı́a-Penalvo, and M. A. Conde, “Extending moodle services to
mobile devices: the moodbile project,” in UBICOMM 2012, The Sixth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, 2012, pp. 24–28.

[19] D. Jacobson, D. Woods, and G. Brail, APIs: A strategy guide. ”
O’Reilly Media, Inc.”, 2011.

www.ijacsa.thesai.org
139 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 10, 2014 




