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Abstract—In this paper, a model is described for a system 

consisting of an inverted pendulum attached to a cart. We design 

for this model a feedback optimal control based on Linear 

Quadratic regulator, LQR by using the generating Function 

technique. This design with hard and soft constraints will help 

the pendulum to stabilize in the upright position. A solution of 

the continuous low-thrust optimal control problem based on 

LQR method is implemented. An example applied to this control 

design for a hard constraint boundary condition. 
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I. INTRODUCTION 

The traditional problem for the field of control systems is 
the inverted pendulum system see e.g. [1] , [3] , [5] , [6] and 
[9]. The system is consist of an inverted pendulum exposed  to 
a torque and attached to a cart which equipped with a motor 
that drives it along a friction  horizontal track. Both the torque 
and the force produced from the motor of the cart are the 
feedback-control forces. there are two equilibrium points for 
the inverted pendulum system, one of them is that when the 
pendulum is pointing downwards which is stable, the other 
one is at the upwards position which is unstable. The stable 
equilibrium requires no control input to be achieved and, thus, 
is uninteresting from a control perspective. The unstable 
equilibrium corresponds to a state in which the pendulum 
points strictly upwards and, thus, requires a control force to 
maintain this position. 

In literature, the feedback control of inverted pendulum 
control system is made by linearizing the dynamics about the 
nominal trajectory and by applying the classic control theory 
to such linear dynamical system. The approach of optimal 
feedback control using the generating function [8] is very 
efficient when used to solve the control problem of this 
system. In order to use the feedback optimal control approach 
the lateral dynamics is expressed in a state vector form with 
adding the control forces to the equations of motion. 

II. MODELLING 

In this system, a  pendulum with a torque T(t), is attached 
to the side of cart by means of a pivot which allows the 
pendulum to swing in the xy-plane. A cart equipped with a 
motor exerts force F(t), provides horizontal motion of the cart 
on a friction track, see Fig 1 .  The purpose of the torque T(t) 
and the force F(t) is that keeping the pendulum balanced 
upright. 

A. Formation of the problem : 

By assuming that the pendulum is a thin rod with length l. 
Then, applying Newton's second law to the linear and angular 
displacement, the equations of motion are [4] 
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where M is the cart mass, m is the pendulum mass, x(t) is 
displacement of the center of mass of the cart from the center 

of the inertial frame, tis the angle between the pendulum 
and the top vertical. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Inverted Pendulum system 

After some calculation, we can obtain 
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where                                     

2 24 1
( ) ( ) cos (4 ) sin

3 3
M m m M m m                   (5) 

and g is the acceleration due to gravity and equal 9.8 m/s. 

By introducing the following variables for a more 
convenient form of the equations (3) and (4) 

        
1 2 3 4( , , , ) ( , , , )T Ty y y y x x  y                               (6) 

We obtain the following equivalent first-order system 
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where 
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It is well known that for (7) with no control (F(t) = 0 and 
T(t)=0), the cart at rest with the pendulum in the upright 
position is an unstable equilibrium, while the cart at rest with 
the pendulum in the downward position is a stable 
equilibrium. Our concern is that when the pendulum at the 
unstable equilibrium point, so in the following section the 
system will be linearized about the unstable equilibrium

(0,0,0,0)T
. 

B. Linearization: 

Now, by putting  (7) in the following form 

         ( ) ( )C D y y y y u                                                   (9) 
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and 
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The system (9) will be linearized about the nominal 

trajectory (0,0,0,0)T
. Now by applying  that 
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This linearized system (13) allow to apply the feedback 
optimal control to balance the inverted pendulum around the 
point of linearization, as seeing in the following section. 

III. CLOSED LOOP (FEEDBACK) OPTIMAL CONTROL 

PROBLEM 

The feedback optimal control problem is introduced to find 
optimal solutions minimize a certain performance index 

starting from a generic initial state 
0y , The outcome is a 

control law written in terms of the time and the initial state, 
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This represents a closed loop solution: given any initial 

state 
0y  at the time 

0t , it is possible to evaluate the optimal 

solution starting from such state up to the final target. If for 
any reason the state is perturbed and assumes a new value 

0 0 0 0' , 'y y x t t t      , we are able to compute the new 

optimal solution by simply evaluating 
0 0( ' , , )v v y t t , 

avoiding, in this way, the solution of another two-point 
boundary value problem. Thus, a trajectory designed in this 
way has the property to respond to errors that occur during the 
transfer. Another important aspect of this approach is the 
robustness of the solution. Once the optimal feedback control 

problem is solved, the solution 
0 0( , , )v v y t t is available. 

Analyzing this function, the control law that is less sensitive to 
changes in the initial conditions can be chosen as nominal 
solution. This solution is said to be robust with respect to the 
initial conditions. 

A. Solving the Feedback Optimal Linear Quadratic Terminal 

Controller Using the Generating Function Technique 

Consider the problem of minimizing the following 
performance index , [7] , [8] 
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subject to the linear dynamics 

                               y Ay Bv                                        (16) 
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According to the classical theory, the Hamiltonian of the 
optimal control problem is 
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where the set of Lagrangian multipliers has been 
introduced. From the optimality condition 
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It is possible to get an explicit expression for the control in 
terms of the Lagrangian multipliers 

                  1 Tv R B                                                     (19) 

Substituting the expression of given by equation (19), the 
Hamiltonian (17) turns out to be 
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while the dynamics of the system and that of the Lagrange 
multipliers reduces to 
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Suppose now that we have a generating function 

2 0 0( , , , )F y t t  for the transformation between a fixed state

0 0 0( , , )y t  and a moving state 
0( , , )y t  . This transformation 

is canonical because it preserves the area in the phase space 

and in addition generates the identity transformation at 
0t t . 

we can derive this generating functions and their associated 
relations for this canonical transformation from Hamilton-
Jacobi PDE 
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Since the Hamiltonian is quadratic, 
2F can be put in a 

quadratic form as follows 
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which can be used to find the unknown boundary 

conditions using the given ones. From the properties of  
2F we 

have 
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The Hamiltonian (20) can be expressed as a function of  

0( , )y   by using equation (21) 
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Since the Hamiltonian at the fixed state can be taken zero 
without any loss of generality, then the Hamiltonian of the 
moving state and the generating function satisfy the Hamilton-
Jacobi PDE (22.c) 
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whose sub-matrix components provide the following set of 

matrix ODEs for (Riccati Equations [2]) 0( , )yyF t t ,  
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The initial conditions which verify the identity 

transformation at 
0t t  are 
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B. Computing the Generating function 

 The HCP 

We compute 2 0( , , , )fF y t t  by using ft as our initial time, 

then we have from (23) 
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Since we have 
0y and fy are given the initial Lagrange 

multiplier can be evaluated through 
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Using (30) we can get the optimal trajectory by forward 
integration of (21). Since this relation (30) is valid for any 

initial time  ft t , we have 
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and therefore the control can be given by from (21) 
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 The SCP 

We compute 
1F  from Legendre transformation as follows 
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Using (32) we can get the optimal trajectory by forward 
integration of (21). Since this relation (32) is valid for any 

initial time ft t , we have 
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When  fQ is large enough the SCP solution converges to 

the HCP one. 

IV. NUMERICAL EXAMPLE 

The values of the parameters for our numerical example 
are given as follow, 

0.8 , 0.21 and 2.1M kg m kg    . 

and  

    0 00 and 0.001 0.001 0.0002 0.0001
T

t  y , 

    0.45 and 0.0 0.0 0.0 0.0
T

f ft s y . 

Then, by substituting in (14) and (15)  we have  

     

0 0 1 0

0 0 0 1

0 1.8106 2.4633 0

0 28.5506 6.0574 0

A
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 
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0 0

1.1730 2.8845

2.8845 45.4851
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. 

and by putting 
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100 0 0 0

0 100 0 0
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Q

 
 
 
 
 
 

, 

                
1 0

0 1
R

 
  
 

, 

and  
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We plot the resulting data in the following figures 

 

 

Fig. 2. Plot of trajectory of x and   ̇ 

 

Fig. 3. Plot of trajectory of     and   ̇ 

 

Fig. 4. Plot of x(t) 

 

Fig. 5. Plot of       

 

Fig. 6. Plot of   ̇    
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Fig. 7. Plot of   ̇    

 

Fig. 8. Plot of F(t) 

 

Fig. 9. Plot of T(t) 

 

Fig. 10. Plot of Lagrangian multiliers 

V. CONCLUSION 

In the present study, the feedback optimal control of highly 
nonlinear inverted pendulum problem is solved by linearizing 
the original nonlinear dynamics. The linearized problem has 
been solved using the generating function technique where the 
method can be used for both hard and soft constraint boundary 
condition. 

A proof exists in the very simple case of linear hard 
constraint problem (the final state is fully specified) and the 
figures (Fig2 to Fig 10) for the numerical example showed an 
excellent result in keeping  the inverted pendulum in the 
unstable state for a short time. For a future work we can apply 
the same method feedback optimal control by using the 
generating function technique on the double inverted 
pendulum. 
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