
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

22 | P a g e

www.ijacsa.thesai.org

A Feasibility Study on Porting the Community Land

Model onto Accelerators Using Openacc

D. Wang

Climate Change Science
Institute

Oak Ridge National Lab
Oak, Ridge, TN, USA

W. Wu

Department of Computer
Science

University of Tennessee
Knoxville, TN, USA

F. Winkler, W. Ding, O.

Hernandez

Computer Science and
Mathematics Division Oak Ridge

National Lab Oak, Ridge, TN, USA

Abstract—As environmental models (such as Accelerated

Climate Model for Energy (ACME), Parallel Reactive Flow and

Transport Model (PFLOTRAN), Arctic Terrestrial Simulator

(ATS), etc.) became more and more complicated, we are facing

enormous challenges regarding to porting those applications onto

hybrid computing architecture. OpenACC emerges as a very

promising technology, therefore, we have conducted a feasibility

analysis on porting the Community Land Model (CLM), a

terrestrial ecosystem model within the Community Earth System

Models (CESM)). Specifically, we used automatic function testing

platform to extract a small computing kernel out of CLM, then

we apply this kernel into the actually CLM dataflow procedure,

and investigate the strategy of data parallelization and the

benefit of data movement provided by current implementation of

OpenACC. Even it is a non-intensive kernel, on a single 16-core

computing node, the performance (based on the actual

computation time using one GPU) of OpenACC implementation

is 2.3 time faster than that of OpenMP implementation using

single OpenMP thread, but it is 2.8 times slower than the

performance of OpenMP implementation using 16 threads. On

multiple nodes, MPI_OpenACC implementation demonstrated

very good scalability on up to 128 GPUs on 128 computing nodes.

This study also provides useful information for us to look into the

potential benefits of “deep copy” capability and “routine” feature

of OpenACC standards. We believe that our experience on the

environmental model, CLM, can be beneficial to many other

scientific research programs who are interested to porting their

large scale scientific code using OpenACC onto high-end

computers, empowered by hybrid computing architecture.

Keywords—OpenACC; Climate Modeling; Community Land

Model; Functional Testing; Performance Analysis; Compiler-

assisted Analysis

I. INTRODUCTION

As the environmental models (such as Acclerated Climate
Model for Energy (ACME), Parallel Reactive Flow and
Transport Model (PFloTran), Arctic Terristrial Simulator
(ATS), etc.) became more and more complicated, we are facing
enormous challenges regarding to porting those applications
onto hybrid computing architecture. OpenACC emerges as a
very promising technology. In the paper, we present our
feasibilty study on porting the Community Land Model (CLM)
within the Community Earth System Models using OpenACC.
Over the past several decades, researchers have made
significant progress in developing high fidelity earth system
models to advance our understanding on earth system, and to
improve our capability of better projecting future scenarios [1].

The Community Earth System Model is one of the US leading
earth system models. CESM is being actively developed under
the “Accelarated Climate Model for Energy (ACME)” project
to support Department of Energy’s climate and environmental
research. Within the CESM framework, the CLM is designed
to understand how natural and human changes in ecosystem
affect climate [2]. The model represents several aspects of the
land surface including surface heterogeneity and consists of
submodels related to land biogeophysics, the hydrologic cycle,
biogeochemistry, human dimensions, and ecosystem dynamics.
Currently, the offline CLM simulation system contains of more
than 1800 source files and over 350,000 lines of source code. It
is well known that the software complexity of the Community
Land Model becomes a barrier for rapid model improvements
and validation, as well as efficient code porting to next
generation HPCs [3,4].

The main purposes of our efforts shown in this paper
include: 1) Test data parallelel schemes based on current CLM
high level dataflow using a simple non-computing instentive
function, 2) Investigate the usefullness of selective copy
implemention within on CLM simulation. 3) Evaluate the
benefit and cost of porting CLM on accleartors using
OpenACC. Specifically, this paper presents detailed
information in following sections. We first provide a overview
of CLM software structure and dependancy, which leads to our
effort of scientific function testing system development. Using
our our scientific function testing system, we have extracted
one computational kernel out of the whole system, and design
and computational experiment for our model potring practices
as well as the model computtional performance evaluations,
using both OpenMP and OpenACC.

II. CLM SOFTWARE DEPENDENCY, DATA STRUCTURE

AND WORKFLOW

The software system of the global offline CLM includes
physical earth system components, such as the CLM, data
atmosphere (a proxy atmosphere model, which reads in
atmospheric forcings to drive the CLM), stub ocean, stub ice
and stub glacier. It contains an application driver to configure
the parallel computing environment and the whole simulation
system (physical earth system components and flux coupler
between those components). It also includes several shared
software modules and utilities, such as a flux coupler and its
APIs to individual earth system component, parallel IO and
performance profiling libraries [4,5]. The schematic diagram of
the CLM software structure is shown in Figure 1. It is clear that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

23 | P a g e

www.ijacsa.thesai.org

the CLM simulation is highly dependent on other components,
such as the flux coupler and the data atmosphere.

Fig. 1. Software configuration of a global offline CLM simulation that

shows a strong coupling with other earth system components. Several earth

system model components are listed, including a land model (Land), a data

atmospheric model (Data Atmosphere), stub sea ice model (Ice), ocean model

(Ocn) and glacier model (Glc)

Fig. 2. Hierarchical, derived data structure to represent the heterogeneity of

the CLM landscape surface

The key data structure of CLM is a globally accessible
derived data type, designed to represent the heterogeneity of
landscape surface. Figure 2 shows the CLM data structure in
the memory. Each layer of the data structure contains two
groups of variables: 1) mapping indexes to represent the spatial
connections between those four layers: gridcell, landunit,
column, and PFT; 2) derived datatype to store physical data
associated with each layer including energy, water,
momentum, flux etc.

In the CLM, each gridcell, landunit, soil column, and PFT
has a unique ID number. Those multiple level ID numbers are
used to create the mapping indexes between those hierarchical
landscape surface data structures. The computational domain
partition depends on the total number of gridcells across the
whole landscape. A static domain-partitioning scheme is
implemented in the CLM, so the number of PFTs, soil
columns, landunits, and gridcells are fixed on each process
during the simulation, most important, there is no cross-domain
communication at each of the layered landscape data structure.
In another word, CLM, at current stage, is a very good
candidate for data parallelism using GPU. Furthermore, a web-
based visual analytic system has been developed to explore

CLM software structure, an improvement from our previous
visual analytics [6]. It provides much needed interface for
CLM software structure exploration and further benefits model
interpretation and new module development (URL: http://cem-
base.ornl.gov/CLM_Web/CLM_Web.html).

III. SOFTWARE DEPENDENCE AND SCIENTIFIC FUCNTIOANL

TESTING SYSTEM

It is obvious that porting the whole CLM simulation system
onto accelerator is a very challenging task, considering the
complexity of the code itself and more important, the high
software dependency on the variety of external math libraries
and other earth system components. However, we have
implemented an automatic ecosystem function testing system,
which is able to extract a specific subroutine/module from
CLM and to generate a standalone functional test module for
the given subroutine/module. It is a significant improvement
from our previous effort on function test platform [7]. Using
this testing system, we have successfully tested most
ecosystem modules, and it can be extended to all submodels in
CLM or even CESM. Originally, it is designed to create direct
linkages between site measurements and key ecosystem
functions within CLM. It provides much needed integration
interfaces for both field experimentalists and ecosystem
modelers to improve the model’s representation of ecosystem
processes within the CESM framework without large software
overhead. For the completeness of this paper, we briefly
describe the functional testing system here, shown in Figure 3.

Fig. 3. The software structure of ecosystem function test system. “Shared
Library” component contains CLM key data structure and other shared

software utilities. For a given CLM function (a single or a group of

subroutine(s) in the “Models” component) our system can generate a

corresponding test module, located in “Unit Test Module” component, which

in turn, driven by “Unit Test Driver”

As shown in Figure 3, the testing system contains a
“Shared Library” component, which includes modules
commonly used by most of CLM functions, such as key data
structure (clm_type), physical/chemical/ecological constants
(clm_const, and pft_const etc.) and other utilities (such as
String manipulation functions). The “Models” component
contains most of software subroutines and modules related to
ecosystem functions in CLM, which are exactly the same as the
ones in CLM. In order to increase the software system’s
portability on computing platforms, we have decoupled CLM
connections with other CESM components, such as Coupler
and Atmosphere, and we have removed several external

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

24 | P a g e

www.ijacsa.thesai.org

libraries and component (such as MPI, NetCDF, PIO and
Coupler) from original source code using proxy libraries or
component. The key data structure used by CLM (clm_type) is
still kept as the same as before, so data used for CLM can be
directly used in testing program. “Unit Test Module” contains
a set of automatically generated unit test modules for given
ecosystem functions of interest. “Unit Test Driver” does
initialization job to ensure memory location of variables used
by unit test module is allocated, it also executes unit test
module and verifies the testing results.

IV. CASE STUDY CONFIGURATION

As we mention in the previous section, CLM is a very
complicated modeling system, it will be a very challenging
task to rewrite the majority code using CUDA APIs, therefore,
we are more towards to the high-level derivative approach
using OpenACC [8]. In this study, we focus on the test of data
parallel schemes based on current CLM high level dataflow
using a simple non-computing intensive function using one
specific ecosystem function (kernel), CNGResp. Within CLM,
the CNGResp Module is designed to update all the growth
respiration fluxes (the prognostic carbon state variables) at
each timestep. Specifically, the schematic procedure of

CNGResp Module is shown in Figure 4.

Fig. 4. Schematic procedure of CNGResp Module within CLM

Totally, there are 19 global variables within clm_type are
used as input datastreams and 18 global variables are used as
both input and output datastreams. The computational
experiments are configured using similar settings for half-
degree offline CLM simulation. Specifically, our landscape
surface data structure contains 62482 gridcells, 83935
landunits, 135628 soil columns, and 1101228 plant function
types. The workflow of our computational experiment is
designed as follow: In each timestep, we copy all the global
variables (both input and output datastreams, total 37 arrays)
onto the GPU memory, then we break all the loop into parallel
computation on GPU cores, and copy back these datastreams.
Specifically, we first copied the user defined hierarchical data
structure, and around 300 MB data onto GPU memory. Then,
after all the computation is done among the CUDA cores, all
the data are copied out of the GPU to the corresponding CPU
memory locations.

This experiment gives a good opportunity to investigate the
usefulness and efficiency of selective copy implementation of
one individual function within CLM simulation. Because the
CNGResp module is a non computing intensive kernel, which
can be used as a benchmark case to evaluate the benefit and
cost of poring other CLM kernels on accelerators using similar
OpenACC features.

V. MPI_OPENMP IMPLEMENTATION

Since in most cases, CLM is configured to run with the data
of global earth, therefore, in this section, we present a way to
wrap the CNGResp Model with MPI and OpenMP to
maximum parallel computation. According to Fig 3, the top
level of CLM data structure is grid cell. Each grid cell is
independent, so a generic method is to parallel the program by
grid cell; each MPI operates on one or more grid cells.
However, in this particular CNGResp Model, the subroutine
operates on the column level, so instead of dealing with grid
cell and land unit, we only have to parallelize column. Assume
the number of column is C, and number of MPI process is NP,
then each MPI process operates on C/NP columns. Since most
current CPUs have multiple cores, we use OpenMP to
parallelize computation on each MPI process. If there are NT
OpenMP threads, so each OpenMP operates on C/NP/NT
columns. CNGResp Model does not access all the pfts in each
column, so each OpenMP thread has its private pft filter
variable to get access to the filtered pfts. Algorithm 1 shows
the pseudo code of MPI-OpenMP implementation of
CNGResp Model

Algorithm 1 MPI_OpenMP based partition pseudo code
of CNGResp Model

column_per_MPI = C/NP
column_per_OpenMP = column_per_MPI/NT
steps = days * 24 * 2
begin_index = 1 + mpi_rank*column_per_MPI
!$OMP PARALLEL NUM_THREADS(NT)

PRIVATE(tid, pft_filter, num_pft, end_index)
tid = omp_get_thread_num()

end_index = begin_index + (tid+1)*chunk_size
DO i = 1, steps
 DO j = begin_index + tid*column_per_OpenMP,

begin_index + (tid+1)* column_per_OpenMP
 call get_pft_filter(pft_filter, num_pft)
 call CNGResp(num_pft, pft_filter)
 END DO

 END DO
 !$OMP END PARALLEL

VI. OPENACC DIRECTIVE AND IMPLEMENTATION

OpenACC is a directive-based language extension for
Fortran, C, and C++, that facilitates the simple and effective
use of accelerators (e.g., GPUs) without sacrificing portability
for non-accelerator systems. The Oak Ridge Leadership
Computing Facility (OLCF) has made a strategic investment in
OpenACC for the Titan system and applications are starting to
use it. However OpenACC is a very young specification.
Application scientists at ORNL have already identified a
number of extensions to OpenACC that would significantly
enhance its expressiveness and usability in their applications.
Looking further forward, towards ExaScale computers, we see
trends towards node-level environments with heterogeneous
compute resources, and more complex memory environments.
Extending OpenACC to support such environments, with task-
based execution, the ability to control placement of data in
memory, and interoperability with other prominent node-level
programming models will smooth the path for today’s

1. define local pointer to the global arrays within

CLM_type

2. assign local pointer to derived type arrays (input)

3. assign local pointer to derived type arrays (output)

4. loop though pfts to update leaf and fine root grown

respiration

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

25 | P a g e

www.ijacsa.thesai.org

applications to make the transition to new ExaScale
architectures, as well as preparing them to for the jump to next-
generation programming models and languages. One of the
important missing features that OpenACC needs is to support
levels of memory copy. Data structures such as “struct” and
“STL” are common used in C and C++ programming, but users
are not allowed to copy those encapsulated data into GPU
memories directly. Manually restructuring code to avoid
dereference is a common way which is used to handle those
cases. However this is a non-trivial process, especially when
the code contains multiple levels of dereference. At current
stage, a very straightforward method was adopted in this study
to evaluate the efficiency of OpenACC copy by using our real
scientific application. Specifically, we use copy function to
copy both the data structure, and all the input datastreams for
CNGResp module from the clm_type data structure in CPU,
and break the computational do loop and map those
computation onto GPU cores. After the computation on GPU,
we use the copy function to move these output datastreams out
from GPU and updates the data values within clm_type in CPU
memory.

VII. MPI_OPENACC IMPLEMENTATION

Parallel partition scheme within our MPI_OpenACC
Implementation is very similar to that within MPI_OpenMP.
Assume the number of column is C, and number of MPI
process is NP, then each MPI process operates on C/NP
columns. Since each computing node has a GPU, we use
OpenACC to parallel computations on each MPI process. If
there are NT OpenACC threads, then each OpenACC operates
on C/NP/NT columns. Algorithm 2 shows the pseudo code of
MPI-OpenACC implementation of CNGResp Model. The
significant parts of the code include 1) explicit data structure
copy (copy in), and 2) explicit data value copy (both in and
out). Due to the limitation of current PGI implementation, we
are not able to use the “deep copy” and “routine” feature, but
we are very confident that our program will greatly benefit
from these two features once they are implemented, because
we can use the “routine” feature to make the code structure
more concise, and most importantly, we can use the “deep
copy” capability to copy only these input variables on and
output variables off the GPU memory.

Algorithm 2 MPI_OpenACC based partition pseudo code of
CNGResp Model

column_per_MPI = C/NP
steps = days * 24 * 2
begin_index = 1 + mpi_rank*column_per_MPI
end_index = column_per_MPI*(mpi_rank+1)
!$ACC DATA COPYIN(struct) COPY(members)
DO i = 1, steps
!$ACC KERNELS
!$ACC LOOP INDEPENDENT
 DO j = begin_index, end_index
 Compute CNGResp
 END DO
END DO
!$ACC END KERNELS
!$ACC END DATA

VIII. COMPUTATIONAL EXPERIMENTS AND SCALABILITY

ANALYSIS

In this section, we investigate performance impact of MPI-
OpenMP and MPI-OpenACC implementation. The experiment
case used in benchmark is a fixed size problem since size of
the landscape surface data structure is already given. Therefore,
strong scalability experiment is the best option to present the
performance speedup by using MPI_OpenMP and
MPI_OpenACC. In a strong scalability experiment, the
problem size is fixed, while the number of OpenMP thread is
increased.

A. Computational Platform

The computational platform used in this research is the
Cray XT6 Titan supercomputer at the National Center for
Computational Sciences (NCCS) at Oak Ridge National
Laboratory (ORNL). Titan uses 16-core AMD Opteron central
processing units (CPUs) in conjunction with NVidia Tesla
K20X GPUs. It uses 18,688 CPUs paired with an equal number
of graphics processing units (GPUs) to perform at a theoretical
peak of 27 PetaFLOPS.

A center-wide Lustre file system provides 5 PB of disk
space for all NCCS computing resources. The broach
configuration of K20X GPU are listed as following: Processor
clock, 732 MHz; Memory clock, 2.6 GHz; Memory size 6 GB;
Memory I/O 384-bit GDDR5; and Memory configuration 24
pieces of 64M ×16 GDDR5 SDRAM. According to the online
K20X GPU document [9], the peak double precision floating
point performance (board) can reach 1.31 teraflops, and the
memory bandwidth for board (ECC off) can reach 250
GBytes/sec. In our study, we used PGI FORTRAN compiler
(version 14.7.0), Cray-mpich (version 6.3.0), OpenMP (version
3.1) and CUDAtoolkit (version 5.5.20-1.0402.7700.8.1).

B. Single Node (Shared Memory System)

In shared memory system benchmark, we demonstrate the
performance impact by using OpenMP to parallel computation.
Figure 5 presents the strong scalability performance of MPI-
OpenMP implementation on 1 node. In ideal strong scaling, a
program is considered to scale linearly if the speedup (in terms
of work units completed per unit time) is equal to the number
of processing elements used. While in our case, we are not able
to achieve linear speedup when the number of threads varies
from 1 to 16.

However, we did observe the performance increase
(computation time decrease) when more OpenMP threads has
been used. It is because the operation contained in CNGResp
subroutine is mostly floating point operation. The experiment
case is to simulate 30 days (1 iteration simulates plant growth
respiration in 30 minutes). There is billions of floating point
operations in total. Since the AMD CPU contains 16 cores,
when more OpenMP threads have been used, less computation
work was assigned on each CPU core, therefore, less time has
been used for those floating point operations on each CPU
core. For example, when 16 OpenMP threads were used, the
computation time of each core is less than 13.3 second, which
gave out a speedup number of 6.3, as shown in Figure 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

26 | P a g e

www.ijacsa.thesai.org

Fig. 5. Strong Scalability of CNGResp Model (MPI_OpenMP) running on a

single node of Titan machine using one MPI process. The speedup varies by

the number of OpenMP threads on the single computing node

C. Multiple Nodes (Distributed Memory System)

In the distributed memory test case, each MPI process
occupies one computation node, and OpenMP is used to obtain
more parallelism within each MPI process. Table 1 presents the
strong scalability of CNGResp Model running in multiple
Titan nodes. On each computing node, there is one MPI
process with 16 OpenMP threads. The computation time of
sequential implementation (using one MPI process and 1
OpenMP thread on a single node) is around 88.9 seconds,
which is used as the benchmark performance for the speedup
number calculation.

TABLE I. STRONG SCALABILITY OF CNGRESP MODEL (MPI_OPENMP)

RUNNING ON UP TO 128 NODES OF TITAN MACHINE. ON EACH COMPUTING

NODE (WITH 16 CPU CORES), ONE MPI PROCESS AND 16 OPENMP THREADS

WERE USED. THE SPEEDUP WAS CALCULATED AGAINST THE COMPUTATION

TIME OF SEQUENTIAL IMPLEMENT (1 MPI AND 1 OPENMP THREAD) ON

SINGLE COMPUTING NODE (88.9 SECONDS)

of Nodes

(Each has 16 cores) Time (s)

Speedup

(16 OpenMP threads)

1 13.26 6.7

2 6.22 14.3

4 3.07 29.0

8 1.52 58.6

16 0.73 121.9

32 0.41 217.1

64 0.22 404.5

128 0.12 741.7

As shown in Table 1, the model demonstrated a good
scalability up to 128 nodes, in which up to 128*16 = 2048
CPU cores were used for computation. In the simulation using
single computing node, the maximum computation time on
each core is less than 13.26 seconds. While in the simulation
using 128 nodes, the maximum computation time on each CPU
core is less than 0.12 second.

Similarly, we have conducted the scalability experiment on
those Titan nodes, using MPI_OpenACC implementation.

Table 2 shows the strong scalability of CNGResp Model
running on Titan with the OpenACC implementation. For the
comparison, the speedup number of OpenACC is also
calculated against the computation time of sequential code on
CPU (that is around 89 seconds). Two facts worthy mentioning
here: (1) the computational time of OpenACC implementation
on single node (38.7 seconds) is faster than that of single thread
OpenMP implementation (88.9 seconds), but it is slower than
that of 16-thread OpenMP implementation (13.4 seconds). (2)
Due to the limitation of current deep copy feature, we have to
use the standard copy function to move all input and output
global variable and the data structure on and off the GPU.
More detailed results were shown in next section. Also from
the coding perspective, we found the OpenACC
implementation is very straightforward, so that we think
automatic instrumentation of these OpenACC directives into
the CLM source is feasible and have great potentials for further
CLM parallel code development.

TABLE II. STRONG SCALABILITY OF CNGRESP MODEL (MPI_OPENACC

IMPLEMENTATION) RUNNING ON UP TO 128 NODES OF TITAN MACHINE,
EACH MPI PROCESS USES ONE K20C GPU. THE SPEEDUP IS CALCULATED

AGAINST THE COMPUTATION TIME OF SEQUENTIAL CODE ON SINGLE CPU

CORE (88.9 SECONDS)

of GPUs Time (s) Speedup

1 38.7 2.3

2 20.76 4.3

4 10.56 8.5

8 5.5 16.4

16 2.98 30.2

32 1.72 52.3

64 1.05 85.7

128 0.74 121.6

As shown in Table 2, the model demonstrated a very good
scalability up to 128 nodes, in which up to 128 GPUs were
used for computation. In the simulation using single computing
node, it took 38.7 second to finish all the computation using
one GPU, that gave out the speedup number of 2.3. While in
the simulation using 128 nodes, the maximum computation
time on each GPU is less than 0.74 second, giving out a
speedup number of 121.6.

IX. SYSTEMATIC PERFORMANCE ANALYSIS

In order to get more detailed information on the OpenACC
implementation, we used Vampir toolkit (www.vampir.eu) to
trace and analyze detailed performance matrix on GPU [10].

The Vampir toolkit consists of the runtime measurement
system Score-P [11], and the performance analysis tool Vampir
[12]. Score-P is a new convenient measurement infrastructure
for collecting performance data. It supports the developer with
instrumentation and allows detailed logging of program
execution for parallel applications using message passing
(MPI), threads (OpenMP, Pthreads), and offloading to
accelerators (OpenACC and CUDA). Score-P provides two
commonly used techniques to investigate the performance
behavior of parallel applications: Profiling and Tracing.
Profiling is based on aggregating performance data, which
allows a statistical view on a program run such as number of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

27 | P a g e

www.ijacsa.thesai.org

invocations or accumulated time of functions or messages.
Unlike profiling, the tracing approach does not summarize
events. Tracing records all events of an application run that are
of interest for later examination together with the time they
occurred and a number of event type specific properties. A
trace file contains all recorded events in a chronological order
and therewith allows a time line representation of the program
execution. Trace files generated by Score-P can be analyzed
with Vampir in a post-processing step. Vampir is a
performance analysis tool that offers intuitive parallel event
trace visualization with many displays showing different
aspects of the parallel performance behavior. Vampir provides
interactive zooming and browsing to show either a broad
overview or details of the program behavior. Different timeline
displays show application activities and communication along
a time axis. Statistical displays provide quantitative results for
arbitrary portions of the timelines. Powerful zooming and
scrolling allows to pinpoint the real cause of performance
problems. Vampir is designed to be an easy to use tool, which
enables developers to quickly display the program behavior at
any level of detail.

Since tracing causes some instrumentation overhead we
used profiling to get an overview of accumulated timing
information of MPI, user regions, and CUDA kernel
executions generated by OpenACC directives. This was very
useful to determine the ratio of GPU to host computation. For a
more advanced performance analysis we used tracing to
visualize the dynamic runtime behavior in Vampir at any level
of detail. Using tracing we have recorded exact time stamps for
all GPU related events such as kernel execution on the
assigned CUDA streams, fixed CUDA kernel metrics (threads
per kernel, memory usage), host-device data transfers and
synchronization, and GPU idle time. The Vampir analysis of
the generated trace files helped us to understand and enhance
the OpenACC implementation at scale by using different
OpenACC directive combinations which have impact on
CUDA kernel executions, host-device data transfers and
synchronization.

X. RESULT DISCUSSIONS

In this section, we focus on the analysis of trace files for
these computational experiments with OpenACC
implementation.

Figure 6 shows the master timeline of the simulation on
single Titan node. The MPI_Barrier, shown at time mark
(11.00 second), presented the completion of model
initialization. The data copy preparation started right after the
MPI_Barrier, and finished at the time mark of 11.25 second,
when data copy started. The actual GPU computation started at
the time mark of 11.34 second, therefore, the total time of data
movement (320 MB) took only 0.09 seconds. The total GPU
computation time was around 38.70 seconds.

Fig. 6. Vampir Timeline information on CNGResp Model running on single

Titan node with one MPI process (Master thread) and one K20x GPU
(CUDA[0:8])

The CNGResp kernel was automatically renamed after the
caller function “run_test_acc” plus the line number (#462)
where OpenACC kernel directive was defined.

Figure 7 shows the trace information on our simulation
using 4 MPI processes and 4 GPUs on 4 Titan nodes, including
master timeline, function summary, message information, as
well as a close-up look at the data copy before the GPU
computation. Again, the MPI_Barrier, started and finished
between the time mark of 2.83 second and 2.86 seconds,
presented the completion of model initialization (total time of
11.23 second on all 4 nodes).

The data copy preparation started right after the completion
of MPI_Barrier (at 2.86 second), and all finished before the
time mark of 3.08 second. Therefore, on 4 nodes, totally about
0.88 second was used for data preparation, data copy
(including some extra ideal time on each node). The actually
data copy operation only took about 0.02 second on each node.
The actual GPU computation started around the time mark of
3.08 second, and the total time of GPU computation took about
39.83 seconds. Totally, around 600 MB data have been moved
in and out of GPU devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

28 | P a g e

www.ijacsa.thesai.org

Fig. 7. Vampir visualization of CNGResp Model running on 4 Titan nodes with 4 MPI processes and 4 K20x GPUs.The main timeline is shown in the top panel.

A small segment of the data movement is shown in a close-up window on the bottom. One can clearly see that the GPU is only idle when there is no data transfer

or kernel execution. The Function Summary (left middle) shows that almost 75% of the GPU is fully occupied. The Function Summary (right middle) shows

profile information of all functions. A Function Legend is shown on the left bottom panel. A Message Summary (left bottom) shows that 605MiB of data were
copied between host and GPU device

Herein, we also listed some trace information on
computational experience across 128 Titan nodes using 128
MPI processes and 128 GPUs. During the simulation, the
MPI_Barrier, started and finished between the timestamps of
0.23 second and 0.25 seconds, presented the completion of
model initialization (total time of 30.72 second on all 128
nodes). The data preparation and copy operations started right
after the completion of MPI_Barrier (at 0.25 second), and all
finished before the timestamp of 0.53 second, when the GPU
computation starts on all GPUs. Therefore, on 128 nodes,
totally about 35.84 second was used for data preparation and
data copy (including significant extra ideal time on each node).
The actually data copy operation still only took about 0.02
second on each node. The actual GPU computation started
around the time stamp of 0.53 second, and ended around the
time mark of 1.01 second. Therefore, the total time of GPU
computation took about 61.44 seconds. Again, totally, around
600 MB data have been moved in and out of GPU devices.

XI. CONCLUSIONS AND FUTURE WORK

We have demonstrated our objectives, methods and case
study to investigate the feasibility of porting CLM key data
structure and simplified data flow onto accelerators using the
copy feature of OpenACC. It is obvious that there are room for
further OpenACC performance improvement, specially related
to selective data movement and code rewriting using “routine”
feature. Considering the huge software complexity of CLM
code, and continuous code changes from active model
development, we view the high-level programing derivatives

approach using OpenACC of great interest. Based on our
previous work (such as on interactive CLM structure
exploration and CLM functional testing code generation and
data stream identification, compiler analysis and other
preliminary CLM code immigration preparations), we think it
is the very useful first step to porting CLM onto pre-ExaScale
computers using OpenACC approach. There are further
investigations needed, specially, those implementations using
“deep copy” function and “routine” features. We are also
conducting similarity-based analysis for CLM [13,14], which
in turn give us more information on porting individual kernels
onto GPUs. We believe that our experience on pilot study on
porting modular environmental models can be beneficial to
many other scientific research programs which adapt high-level
programming directives to porting scientific applications on
hybrid high-end computers.

ACKNOWLEDGMENT

This research was partially funded by Terrestrial
Ecosystem Sciences (TES) Program and Climate Sciences for
Sustainable Energy Future (CSSEF) Program under the
Biological and Environmental Research (BER), Office of
Science of the U.S. Department of Energy (DOE). This
research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is managed by UT-Battelle LLC for the Department of
Energy under contract DE-AC05-00OR22725.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

29 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Washington, W. M., C. L. Parkinson, 2005, An Introduction to Three-
Dimensional Climate Modeling, University Science Books, 2rn edition.

[2] Oleson, K., Lawrence, D., Gordon, B., Flanner, M., Kluzek, E., Peter, J.,
Levis, S., Swenson, S., Thornton, P., and Feddema J., 2010, Technical
description of version 4.0 of the Community Land Model (CLM).

[3] Wang, D., Post, W., Wilson, B., 2011. Climate Change Modeling:
Computational Opportunities and Challenges, IEEE Computing in
Science and Engineering, Vol 13(5), pp36-42

[4] Wang, D., Schuchart, J., Janjusic, T., Winkler, F., and Xu, Y. 2014a.
Toward Better Understanding of the Community Land Model within the
Earth System Modeling Framework, International Conference on
Computational Science, Cairns, Australia, 2014,

[5] Domke, J., Wang, D., Runtime Tracing of the Community Earth System
Model: Feasibility Study and Benefits, 12th Workshop on Tools for
Program Development and Analysis in Computational Science, Omaha,
Nebraska, June 2012, procedia CS 9: pp1950-1958, 2012

[6] Xu, Y., Wang, D., Janjusic, T., Xu, X., A Web-based Visual Analytic
System for Understanding the Structure of Community Land Model,
International Conference on Software Engineering Research and
Practice, June, 2014.

[7] Wang, D., Xu, Y., Thornton, P., King, A., Gu, L., Steed, C., Schuchart,
J., 2014b. A Functional Testing Platform for the Community Land
Model, Environmental Modeling and Software, Vol. 55, pp25-31,
10.1016/j.envsoft.2014.01.015

[8] Oscar Hernandez, Wei Ding, Barbara Chapman, Ramanan Sankaran,
Richard L. Graham, Christos Kartsaklis, "Experiences with High-Level

Programming Directives for Porting Applications to GPUs". Facing the
Multicore - Challenge II. Lecture Notes in Computer Science, Volume
7174/2012, pages 96-107, 2012

[9] Telse K-Series Overview, available online at
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-
LR.pdf

[10] Dietrich, R., Winkler, F., William, T., Stolle, J., Henschel, R., & Berry,
D. K. (2013). A Case Study: Holistic Performance Analysis on
Heterogeneous Architectures using the Vampir Toolchain.
In PARCO (pp. 793-802).

[11] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. Müller and W.E. Nagel, “The Vampir Performance Analysis Tool-
Set”, Tools for High Performance Computing, pp 139-155, Springer
Verlag, 2008

[12] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorf, K. Diethelm, D.
Eschweiler, M. Gerndt, D. Lorenz, A. D. Malony, W. E. Nagel, Y.
Oleynik, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner,
B. Wesarg, F. Wolf: Score-P - A Joint Performance Measurement Run-
Time Infrastructure for Periscope, Scalasca, TAU, and Vampir,
Proceedings of 5th Parallel Tools Workshop, 2011

[13] Ding, W., Hsu, C. H., Hernandez, O., Chapman, B., & Graham, R.
(2013). KLONOS: Similarity‐based planning tool support for porting
scientific applications. Concurrency and Computation: Practice and
Experience, 25(8), 1072-1088

[14] Wei Ding, Oscar Hernandez, and Barbara Chapman. "A Similarity-
Based Analysis Tool for Porting OpenMP Applications". In Facing the
Multicore-Challenge III, pp. 13-24. Springer Berlin Heidelberg, 2013.

