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Abstract—As environmental models (such as Accelerated 

Climate Model for Energy (ACME), Parallel Reactive Flow and 

Transport Model (PFLOTRAN), Arctic Terrestrial Simulator 

(ATS), etc.) became more and more complicated, we are facing 

enormous challenges regarding to porting those applications onto 

hybrid computing architecture. OpenACC emerges as a very 

promising technology, therefore, we have conducted a feasibility 

analysis on porting the Community Land Model (CLM), a 

terrestrial ecosystem model within the Community Earth System 

Models (CESM)). Specifically, we used automatic function testing 

platform to extract a small computing kernel out of CLM, then 

we apply this kernel into the actually CLM dataflow procedure, 

and investigate the strategy of data parallelization and the 

benefit of data movement provided by current implementation of 

OpenACC. Even it is a non-intensive kernel, on a single 16-core 

computing node, the performance (based on the actual 

computation time using one GPU) of OpenACC implementation 

is 2.3 time faster than that of OpenMP implementation using 

single OpenMP thread, but it is 2.8 times slower than the 

performance of OpenMP implementation using 16 threads.  On 

multiple nodes, MPI_OpenACC implementation demonstrated 

very good scalability on up to 128 GPUs on 128 computing nodes. 

This study also provides useful information for us to look into the 

potential benefits of “deep copy” capability and “routine” feature 

of OpenACC standards. We believe that our experience on the 

environmental model, CLM, can be beneficial to many other 

scientific research programs who are interested to porting their 

large scale scientific code using OpenACC onto high-end 

computers, empowered by hybrid computing architecture. 

Keywords—OpenACC; Climate Modeling; Community Land 

Model; Functional Testing; Performance Analysis; Compiler-
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I. INTRODUCTION 

As the environmental models (such as Acclerated Climate 
Model for Energy (ACME), Parallel Reactive Flow and 
Transport Model (PFloTran), Arctic Terristrial Simulator 
(ATS), etc.) became more and more complicated, we are facing 
enormous challenges regarding to porting those applications 
onto hybrid computing architecture. OpenACC emerges as a 
very promising technology. In the paper, we present our 
feasibilty study on porting the Community Land Model (CLM) 
within the Community Earth System Models using OpenACC. 
Over the past several decades, researchers have made 
significant progress in developing high fidelity earth system 
models to advance our understanding on earth system, and to 
improve our capability of better projecting future scenarios [1]. 

The Community Earth System Model is one of the US leading 
earth system models. CESM is being actively developed under 
the “Accelarated Climate Model for Energy (ACME)” project 
to support Department of Energy’s climate and environmental 
research. Within the CESM framework, the CLM is designed 
to understand how natural and human changes in ecosystem 
affect climate [2]. The model represents several aspects of the 
land surface including surface heterogeneity and consists of 
submodels related to land biogeophysics, the hydrologic cycle, 
biogeochemistry, human dimensions, and ecosystem dynamics. 
Currently, the offline CLM simulation system contains of more 
than 1800 source files and over 350,000 lines of source code. It 
is well known that the software complexity of the Community 
Land Model becomes a barrier for rapid model improvements 
and validation, as well as efficient code porting to next 
generation HPCs [3,4]. 

The main purposes of our efforts shown in this paper 
include: 1) Test data parallelel schemes based on current CLM 
high level dataflow using a simple non-computing instentive 
function, 2) Investigate the usefullness of selective copy 
implemention within on CLM simulation. 3) Evaluate the 
benefit and cost of porting CLM on accleartors using 
OpenACC. Specifically, this paper presents detailed 
information in following sections.  We first provide a overview 
of CLM software structure and dependancy, which leads to our 
effort of scientific function testing system development. Using 
our our scientific function testing system, we have extracted 
one computational kernel out of the whole system, and design 
and computational experiment for our model potring practices 
as well as the model computtional performance evaluations, 
using both OpenMP and OpenACC. 

II. CLM SOFTWARE  DEPENDENCY, DATA STRUCTURE 

AND WORKFLOW 

The software system of the global offline CLM includes 
physical earth system components, such as the CLM, data 
atmosphere (a proxy atmosphere model, which reads in 
atmospheric forcings to drive the CLM), stub ocean, stub ice 
and stub glacier. It contains an application driver to configure 
the parallel computing environment and the whole simulation 
system (physical earth system components and flux coupler 
between those components). It also includes several shared 
software modules and utilities, such as a flux coupler and its 
APIs to individual earth system component, parallel IO and 
performance profiling libraries [4,5]. The schematic diagram of 
the CLM software structure is shown in Figure 1. It is clear that 
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the CLM simulation is highly dependent on other components, 
such as the flux coupler and the data atmosphere. 

 
 

Fig. 1. Software configuration of a global offline CLM simulation that 

shows a strong coupling with other earth system components. Several earth 

system model components are listed, including a land model (Land), a data 

atmospheric model (Data Atmosphere), stub sea ice model (Ice), ocean model 

(Ocn) and glacier model (Glc) 

 
Fig. 2. Hierarchical, derived data structure to represent the heterogeneity of 

the CLM landscape surface 

The key data structure of CLM is a globally accessible 
derived data type, designed to represent the heterogeneity of 
landscape surface. Figure 2 shows the CLM data structure in 
the memory. Each layer of the data structure contains two 
groups of variables: 1) mapping indexes to represent the spatial 
connections between those four layers: gridcell, landunit, 
column, and PFT; 2) derived datatype to store physical data 
associated with each layer including energy, water, 
momentum, flux etc. 

In the CLM, each gridcell, landunit, soil column, and PFT 
has a unique ID number. Those multiple level ID numbers are 
used to create the mapping indexes between those hierarchical 
landscape surface data structures. The computational domain 
partition depends on the total number of gridcells across the 
whole landscape. A static domain-partitioning scheme is 
implemented in the CLM, so the number of PFTs, soil 
columns, landunits, and gridcells are fixed on each process 
during the simulation, most important, there is no cross-domain 
communication at each of the layered landscape data structure. 
In another word, CLM, at current stage, is a very good 
candidate for data parallelism using GPU. Furthermore, a web-
based visual analytic system has been developed to explore 

CLM software structure, an improvement from our previous 
visual analytics [6]. It provides much needed interface for 
CLM software structure exploration and further benefits model 
interpretation and new module development (URL: http://cem-
base.ornl.gov/CLM_Web/CLM_Web.html). 

III. SOFTWARE DEPENDENCE AND SCIENTIFIC FUCNTIOANL 

TESTING SYSTEM 

It is obvious that porting the whole CLM simulation system 
onto accelerator is a very challenging task, considering the 
complexity of the code itself and more important, the high 
software dependency on the variety of external math libraries 
and other earth system components. However, we have 
implemented an automatic ecosystem function testing system, 
which is able to extract a specific subroutine/module from 
CLM and to generate a standalone functional test module for 
the given subroutine/module. It is a significant improvement 
from our previous effort on function test platform [7]. Using 
this testing system, we have successfully tested most 
ecosystem modules, and it can be extended to all submodels in 
CLM or even CESM. Originally, it is designed to create direct 
linkages between site measurements and key ecosystem 
functions within CLM. It provides much needed integration 
interfaces for both field experimentalists and ecosystem 
modelers to improve the model’s representation of ecosystem 
processes within the CESM framework without large software 
overhead. For the completeness of this paper, we briefly 
describe the functional testing system here, shown in Figure 3. 

 
Fig. 3. The software structure of ecosystem function test system. “Shared 
Library” component contains CLM key data structure and other shared 

software utilities. For a given CLM function (a single or a group of 

subroutine(s) in the “Models” component) our system can generate a 

corresponding test module, located in “Unit Test Module” component, which 

in turn, driven by “Unit Test Driver” 

As shown in Figure 3, the testing system contains a 
“Shared Library” component, which includes modules 
commonly used by most of CLM functions, such as key data 
structure (clm_type), physical/chemical/ecological constants 
(clm_const, and pft_const etc.) and other utilities (such as 
String manipulation functions). The “Models” component 
contains most of software subroutines and modules related to 
ecosystem functions in CLM, which are exactly the same as the 
ones in CLM. In order to increase the software system’s 
portability on computing platforms, we have decoupled CLM 
connections with other CESM components, such as Coupler 
and Atmosphere, and we have removed several external 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 12, 2014 

24 | P a g e  

www.ijacsa.thesai.org 

libraries and component (such as MPI, NetCDF, PIO and 
Coupler) from original source code using proxy libraries or 
component. The key data structure used by CLM (clm_type) is 
still kept as the same as before, so data used for CLM can be 
directly used in testing program.  “Unit Test Module” contains 
a set of automatically generated unit test modules for given 
ecosystem functions of interest. “Unit Test Driver” does 
initialization job to ensure memory location of variables used 
by unit test module is allocated, it also executes unit test 
module and verifies the testing results. 

IV. CASE STUDY CONFIGURATION 

As we mention in the previous section, CLM is a very 
complicated modeling system, it will be a very challenging 
task to rewrite the majority code using CUDA APIs, therefore, 
we are more towards to the high-level derivative approach 
using OpenACC [8]. In this study, we focus on the test of data 
parallel schemes based on current CLM high level dataflow 
using a simple non-computing intensive function using one 
specific ecosystem function (kernel), CNGResp. Within CLM, 
the CNGResp Module is designed to update all the growth 
respiration fluxes (the prognostic carbon state variables) at 
each timestep. Specifically, the schematic procedure of 

CNGResp Module is shown in Figure 4. 

 

 

 

 

 

 

 

 

Fig. 4. Schematic procedure of CNGResp Module within CLM 

Totally, there are 19 global variables within clm_type are 
used as input datastreams and 18 global variables are used as 
both input and output datastreams. The computational 
experiments are configured using similar settings for half-
degree offline CLM simulation. Specifically, our landscape 
surface data structure contains 62482 gridcells, 83935 
landunits, 135628 soil columns, and 1101228 plant function 
types. The workflow of our computational experiment is 
designed as follow: In each timestep, we copy all the global 
variables (both input and output datastreams, total 37 arrays) 
onto the GPU memory, then we break all the loop into parallel 
computation on GPU cores, and copy back these datastreams. 
Specifically, we first copied the user defined hierarchical data 
structure, and around 300 MB data onto GPU memory. Then, 
after all the computation is done among the CUDA cores, all 
the data are copied out of the GPU to the corresponding CPU 
memory locations. 

This experiment gives a good opportunity to investigate the 
usefulness and efficiency of selective copy implementation of 
one individual function within CLM simulation. Because the 
CNGResp module is a non computing intensive kernel, which 
can be used as a benchmark case to evaluate the benefit and 
cost of poring other CLM kernels on accelerators using similar 
OpenACC features. 

V. MPI_OPENMP IMPLEMENTATION 

Since in most cases, CLM is configured to run with the data 
of global earth, therefore, in this section, we present a way to 
wrap the CNGResp Model with MPI and OpenMP to 
maximum parallel computation. According to Fig 3, the top 
level of CLM data structure is grid cell. Each grid cell is 
independent, so a generic method is to parallel the program by 
grid cell; each MPI operates on one or more grid cells. 
However, in this particular CNGResp Model, the subroutine 
operates on the column level, so instead of dealing with grid 
cell and land unit, we only have to parallelize column. Assume 
the number of column is C, and number of MPI process is NP, 
then each MPI process operates on C/NP columns. Since most 
current CPUs have multiple cores, we use OpenMP to 
parallelize computation on each MPI process. If there are NT 
OpenMP threads, so each OpenMP operates on C/NP/NT 
columns. CNGResp Model does not access all the pfts in each 
column, so each OpenMP thread has its private pft filter 
variable to get access to the filtered pfts. Algorithm 1 shows 
the pseudo code of MPI-OpenMP implementation of 
CNGResp Model 
 

Algorithm 1 MPI_OpenMP based partition pseudo code 
of CNGResp Model 

 

column_per_MPI = C/NP 
column_per_OpenMP = column_per_MPI/NT 
steps = days * 24 * 2 
begin_index = 1 + mpi_rank*column_per_MPI 
!$OMP PARALLEL NUM_THREADS(NT)       

PRIVATE(tid, pft_filter, num_pft, end_index) 
tid = omp_get_thread_num() 

end_index = begin_index + (tid+1)*chunk_size 
DO i = 1, steps 
    DO j = begin_index + tid*column_per_OpenMP, 

begin_index + (tid+1)* column_per_OpenMP 
         call get_pft_filter(pft_filter, num_pft) 
         call CNGResp(num_pft, pft_filter) 
    END DO 

      END DO 
      !$OMP END PARALLEL 

VI. OPENACC DIRECTIVE AND  IMPLEMENTATION 

OpenACC is a directive-based language extension for 
Fortran, C, and C++, that facilitates the simple and effective 
use of accelerators (e.g., GPUs) without sacrificing portability 
for non-accelerator systems. The Oak Ridge Leadership 
Computing Facility (OLCF) has made a strategic investment in 
OpenACC for the Titan system and applications are starting to 
use it. However OpenACC is a very young specification. 
Application scientists at ORNL have already identified a 
number of extensions to OpenACC that would significantly 
enhance its expressiveness and usability in their applications. 
Looking further forward, towards ExaScale computers, we see 
trends towards node-level environments with heterogeneous 
compute resources, and more complex memory environments. 
Extending OpenACC to support such environments, with task-
based execution, the ability to control placement of data in 
memory, and interoperability with other prominent node-level 
programming models will smooth the path for today’s 

1. define local pointer to the global arrays within 

CLM_type 

2. assign local pointer to derived type arrays (input) 

3. assign local pointer to derived type arrays (output) 

4. loop though pfts to update leaf and fine root grown 

respiration 
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applications to make the transition to new ExaScale 
architectures, as well as preparing them to for the jump to next-
generation programming models and languages. One of the 
important missing features that OpenACC needs is to support 
levels of memory copy. Data structures such as “struct” and 
“STL” are common used in C and C++ programming, but users 
are not allowed to copy those encapsulated data into GPU 
memories directly. Manually restructuring code to avoid 
dereference is a common way which is used to handle those 
cases. However this is a non-trivial process, especially when 
the code contains multiple levels of dereference. At current 
stage, a very straightforward method was adopted in this study 
to evaluate the efficiency of OpenACC copy by using our real 
scientific application. Specifically, we use copy function to 
copy both the data structure, and all the input datastreams for 
CNGResp module from the clm_type data structure in CPU, 
and break the computational do loop and map those 
computation onto GPU cores. After the computation on GPU, 
we use the copy function to move these output datastreams out 
from GPU and updates the data values within clm_type in CPU 
memory.  

VII. MPI_OPENACC IMPLEMENTATION 

Parallel partition scheme within our MPI_OpenACC 
Implementation is very similar to that within MPI_OpenMP. 
Assume the number of column is C, and number of MPI 
process is NP, then each MPI process operates on C/NP 
columns. Since each computing node has a GPU, we use 
OpenACC to parallel computations on each MPI process. If 
there are NT OpenACC threads, then each OpenACC operates 
on C/NP/NT columns. Algorithm 2 shows the pseudo code of 
MPI-OpenACC implementation of CNGResp Model. The 
significant parts of the code include 1) explicit data structure 
copy (copy in), and 2) explicit data value copy  (both in and 
out). Due to the limitation of current PGI implementation, we 
are not able to use the “deep copy” and “routine” feature, but 
we are very confident that our program will greatly benefit 
from these two features once they are implemented, because 
we can use the “routine” feature to make the code structure 
more concise, and most importantly, we can use the “deep 
copy” capability to copy only these input variables on and 
output variables off the GPU memory. 
 

Algorithm 2 MPI_OpenACC based partition pseudo code of 
CNGResp Model 

 

column_per_MPI = C/NP 
steps = days * 24 * 2 
begin_index = 1 + mpi_rank*column_per_MPI 
end_index = column_per_MPI*(mpi_rank+1) 
!$ACC DATA COPYIN(struct) COPY(members) 
DO i = 1, steps 
!$ACC KERNELS 
!$ACC LOOP INDEPENDENT 
    DO j = begin_index, end_index 
         Compute CNGResp 
    END DO 
END DO 
!$ACC END KERNELS 
!$ACC END DATA 

 

VIII. COMPUTATIONAL EXPERIMENTS AND SCALABILITY 

ANALYSIS 

In this section, we investigate performance impact of MPI-
OpenMP and MPI-OpenACC implementation. The experiment 
case used in benchmark is a fixed size problem since size of 
the landscape surface data structure is already given. Therefore, 
strong scalability experiment is the best option to present the 
performance speedup by using MPI_OpenMP and 
MPI_OpenACC. In a strong scalability experiment, the 
problem size is fixed, while the number of OpenMP thread is 
increased. 

A. Computational Platform 

The computational platform used in this research is the 
Cray XT6 Titan supercomputer at the National Center for 
Computational Sciences (NCCS) at Oak Ridge National 
Laboratory (ORNL). Titan uses 16-core AMD Opteron central 
processing units (CPUs) in conjunction with NVidia Tesla 
K20X GPUs. It uses 18,688 CPUs paired with an equal number 
of graphics processing units (GPUs) to perform at a theoretical 
peak of 27 PetaFLOPS.  

A center-wide Lustre file system provides 5 PB of disk 
space for all NCCS computing resources. The broach 
configuration of K20X GPU are listed as following: Processor 
clock, 732 MHz; Memory clock, 2.6 GHz; Memory size 6 GB; 
Memory I/O 384-bit GDDR5; and Memory configuration 24 
pieces of 64M ×16 GDDR5 SDRAM.  According to the online 
K20X GPU document [9], the peak double precision floating 
point performance (board) can reach 1.31 teraflops, and the 
memory bandwidth for board (ECC off) can reach 250 
GBytes/sec. In our study, we used PGI FORTRAN compiler 
(version 14.7.0), Cray-mpich (version 6.3.0), OpenMP (version 
3.1) and CUDAtoolkit (version 5.5.20-1.0402.7700.8.1). 

B. Single Node (Shared Memory System) 

In shared memory system benchmark, we demonstrate the 
performance impact by using OpenMP to parallel computation. 
Figure 5 presents the strong scalability performance of MPI-
OpenMP implementation on 1 node. In ideal strong scaling, a 
program is considered to scale linearly if the speedup (in terms 
of work units completed per unit time) is equal to the number 
of processing elements used. While in our case, we are not able 
to achieve linear speedup when the number of threads varies 
from 1 to 16.  

However, we did observe the performance increase 
(computation time decrease) when more OpenMP threads has 
been used. It is because the operation contained in CNGResp 
subroutine is mostly floating point operation. The experiment 
case is to simulate 30 days (1 iteration simulates plant growth 
respiration in 30 minutes). There is billions of floating point 
operations in total. Since the AMD CPU contains 16 cores, 
when more OpenMP threads have been used, less computation 
work was assigned on each CPU core, therefore, less time has 
been used for those floating point operations on each CPU 
core. For example, when 16 OpenMP threads were used, the 
computation time of each core is less than 13.3 second, which 
gave out a speedup number of 6.3, as shown in Figure 5. 
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Fig. 5. Strong Scalability of CNGResp Model (MPI_OpenMP) running on a 

single node of Titan machine using one MPI process. The speedup varies by 

the number of OpenMP threads on the single computing node 

C. Multiple Nodes (Distributed Memory System) 

In the distributed memory test case, each MPI process 
occupies one computation node, and OpenMP is used to obtain 
more parallelism within each MPI process. Table 1 presents the 
strong scalability of CNGResp Model running in multiple 
Titan nodes. On each computing node, there is one MPI 
process with 16 OpenMP threads. The computation time of 
sequential implementation (using one MPI process and 1 
OpenMP thread on a single node) is around 88.9 seconds, 
which is used as the benchmark performance for the speedup 
number calculation. 

TABLE I.  STRONG SCALABILITY OF CNGRESP MODEL (MPI_OPENMP) 

RUNNING ON UP TO 128 NODES OF TITAN MACHINE. ON EACH COMPUTING 

NODE (WITH 16 CPU CORES), ONE MPI PROCESS AND 16 OPENMP THREADS 

WERE USED. THE SPEEDUP WAS CALCULATED AGAINST THE COMPUTATION 

TIME OF SEQUENTIAL IMPLEMENT (1 MPI AND 1 OPENMP THREAD) ON 

SINGLE COMPUTING NODE (88.9 SECONDS) 

# of Nodes 

(Each has 16 cores)  Time (s)  

Speedup  

(16 OpenMP threads) 

1 13.26 6.7 

2 6.22 14.3 

4 3.07 29.0 

8 1.52 58.6 

16 0.73 121.9 

32 0.41 217.1 

64 0.22 404.5 

128 0.12 741.7 

As shown in Table 1, the model demonstrated a good 
scalability up to 128 nodes, in which up to 128*16 = 2048 
CPU cores were used for computation. In the simulation using 
single computing node, the maximum computation time on 
each core is less than 13.26 seconds. While in the simulation 
using 128 nodes, the maximum computation time on each CPU 
core is less than 0.12 second. 

Similarly, we have conducted the scalability experiment on 
those Titan nodes, using MPI_OpenACC implementation. 

Table 2 shows the strong scalability of CNGResp Model 
running on Titan with the OpenACC implementation.  For the 
comparison, the speedup number of OpenACC is also 
calculated against the computation time of sequential code on 
CPU (that is around 89 seconds). Two facts worthy mentioning 
here: (1) the computational time of OpenACC implementation 
on single node (38.7 seconds) is faster than that of single thread 
OpenMP implementation (88.9 seconds), but it is slower than 
that of 16-thread OpenMP implementation (13.4 seconds). (2) 
Due to the limitation of current deep copy feature, we have to 
use the standard copy function to move all input and output 
global variable and the data structure on and off the GPU. 
More detailed results were shown in next section. Also from 
the coding perspective, we found the OpenACC 
implementation is very straightforward, so that we think 
automatic instrumentation of these OpenACC directives into 
the CLM source is feasible and have great potentials for further 
CLM parallel code development. 

TABLE II.  STRONG SCALABILITY OF CNGRESP MODEL (MPI_OPENACC 

IMPLEMENTATION) RUNNING ON UP TO 128 NODES OF TITAN MACHINE, 
EACH MPI PROCESS USES ONE K20C GPU. THE SPEEDUP IS CALCULATED 

AGAINST THE COMPUTATION TIME OF SEQUENTIAL CODE ON SINGLE CPU 

CORE (88.9 SECONDS) 

# of GPUs Time (s) Speedup 

1 38.7 2.3 

2 20.76 4.3 

4 10.56 8.5 

8 5.5 16.4 

16 2.98 30.2 

32 1.72 52.3 

64 1.05 85.7 

128 0.74 121.6 

As shown in Table 2, the model demonstrated a very good 
scalability up to 128 nodes, in which up to 128 GPUs were 
used for computation. In the simulation using single computing 
node, it took 38.7 second to finish all the computation using 
one GPU, that gave out the speedup number of 2.3. While in 
the simulation using 128 nodes, the maximum computation 
time on each GPU is less than 0.74 second, giving out a 
speedup number of 121.6. 

IX. SYSTEMATIC PERFORMANCE ANALYSIS 

In order to get more detailed information on the OpenACC 
implementation, we used Vampir toolkit (www.vampir.eu) to 
trace and analyze detailed performance matrix on GPU [10]. 

The Vampir toolkit consists of the runtime measurement 
system Score-P [11], and the performance analysis tool Vampir 
[12]. Score-P is a new convenient measurement infrastructure 
for collecting performance data. It supports the developer with 
instrumentation and allows detailed logging of program 
execution for parallel applications using message passing 
(MPI), threads (OpenMP, Pthreads), and offloading to 
accelerators (OpenACC and CUDA). Score-P provides two 
commonly used techniques to investigate the performance 
behavior of parallel applications: Profiling and Tracing. 
Profiling is based on aggregating performance data, which 
allows a statistical view on a program run such as number of 
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invocations or accumulated time of functions or messages. 
Unlike profiling, the tracing approach does not summarize 
events. Tracing records all events of an application run that are 
of interest for later examination together with the time they 
occurred and a number of event type specific properties. A 
trace file contains all recorded events in a chronological order 
and therewith allows a time line representation of the program 
execution. Trace files generated by Score-P can be analyzed 
with Vampir in a post-processing step. Vampir is a 
performance analysis tool that offers intuitive parallel event 
trace visualization with many displays showing different 
aspects of the parallel performance behavior. Vampir provides 
interactive zooming and browsing to show either a broad 
overview or details of the program behavior. Different timeline 
displays show application activities and communication along 
a time axis. Statistical displays provide quantitative results for 
arbitrary portions of the timelines. Powerful zooming and 
scrolling allows to pinpoint the real cause of performance 
problems. Vampir is designed to be an easy to use tool, which 
enables developers to quickly display the program behavior at 
any level of detail. 

Since tracing causes some instrumentation overhead we 
used profiling to get an overview of accumulated timing 
information of MPI, user regions, and CUDA kernel 
executions generated by OpenACC directives. This was very 
useful to determine the ratio of GPU to host computation. For a 
more advanced performance analysis we used tracing to 
visualize the dynamic runtime behavior in Vampir at any level 
of detail. Using tracing we have recorded exact time stamps for 
all GPU related events such as kernel execution on the 
assigned CUDA streams, fixed CUDA kernel metrics (threads 
per kernel, memory usage), host-device data transfers and 
synchronization, and GPU idle time. The Vampir analysis of 
the generated trace files helped us to understand and enhance 
the OpenACC implementation at scale by using different 
OpenACC directive combinations which have impact on 
CUDA kernel executions, host-device data transfers and 
synchronization. 

X. RESULT DISCUSSIONS 

In this section, we focus on the analysis of trace files for 
these computational experiments with OpenACC 
implementation.  

Figure 6 shows the master timeline of the simulation on 
single Titan node. The MPI_Barrier, shown at time mark 
(11.00 second), presented the completion of model 
initialization. The data copy preparation started right after the 
MPI_Barrier, and finished at the time mark of 11.25 second, 
when data copy started. The actual GPU computation started at 
the time mark of 11.34 second, therefore, the total time of data 
movement (320 MB) took only 0.09 seconds. The total GPU 
computation time was around 38.70 seconds. 

 
Fig. 6. Vampir Timeline information on CNGResp Model running on single 

Titan node with one MPI process (Master thread) and one K20x GPU 
(CUDA[0:8]) 

The CNGResp kernel was automatically renamed after the 
caller function “run_test_acc” plus the line number (#462) 
where OpenACC kernel directive was defined. 

Figure 7 shows the trace information on our simulation 
using 4 MPI processes and 4 GPUs on 4 Titan nodes, including 
master timeline, function summary, message information, as 
well as a close-up look at the data copy before the GPU 
computation. Again, the MPI_Barrier, started and finished 
between the time mark of 2.83 second and 2.86 seconds, 
presented the completion of model initialization (total time of 
11.23 second on all 4 nodes).  

The data copy preparation started right after the completion 
of MPI_Barrier (at 2.86 second), and all finished before the 
time mark of 3.08 second. Therefore, on 4 nodes, totally about 
0.88 second was used for data preparation, data copy 
(including some extra ideal time on each node). The actually 
data copy operation only took about 0.02 second on each node. 
The actual GPU computation started around the time mark of 
3.08 second, and the total time of GPU computation took about 
39.83 seconds. Totally, around 600 MB data have been moved 
in and out of GPU devices. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 12, 2014 

28 | P a g e  

www.ijacsa.thesai.org 

Fig. 7. Vampir visualization of CNGResp Model running on 4 Titan nodes with 4 MPI processes and 4 K20x GPUs.The main timeline is shown in the top panel. 

A small segment of the data movement is shown in a close-up window on the bottom. One can clearly see that the GPU is only idle when there is no data transfer 

or kernel execution. The Function Summary (left middle) shows that almost 75% of the GPU is fully occupied. The Function Summary (right middle) shows 

profile information of all functions. A Function Legend is shown on the left bottom panel. A Message Summary (left bottom) shows that 605MiB of data were 
copied between host and GPU device 

Herein, we also listed some trace information on 
computational experience across 128 Titan nodes using 128 
MPI processes and 128 GPUs. During the simulation, the 
MPI_Barrier, started and finished between the timestamps of 
0.23 second and 0.25 seconds, presented the completion of 
model initialization (total time of 30.72 second on all 128 
nodes). The data preparation and copy operations started right 
after the completion of MPI_Barrier (at 0.25 second), and all 
finished before the timestamp of 0.53 second, when the GPU 
computation starts on all GPUs. Therefore, on 128 nodes, 
totally about 35.84 second was used for data preparation and 
data copy (including significant extra ideal time on each node). 
The actually data copy operation still only took about 0.02 
second on each node. The actual GPU computation started 
around the time stamp of 0.53 second, and ended around the 
time mark of 1.01 second. Therefore, the total time of GPU 
computation took about 61.44 seconds. Again, totally, around 
600 MB data have been moved in and out of GPU devices. 

XI. CONCLUSIONS AND FUTURE WORK 

We have demonstrated our objectives, methods and case 
study to investigate the feasibility of porting CLM key data 
structure and simplified data flow onto accelerators using the 
copy feature of OpenACC.  It is obvious that there are room for 
further OpenACC performance improvement, specially related 
to selective data movement and code rewriting using “routine” 
feature. Considering the huge software complexity of CLM 
code, and continuous code changes from active model 
development, we view the high-level programing derivatives 

approach using OpenACC of great interest. Based on our 
previous work (such as on interactive CLM structure 
exploration and CLM functional testing code generation and 
data stream identification, compiler analysis and other 
preliminary CLM code immigration preparations), we think it 
is the very useful first step to porting CLM onto pre-ExaScale 
computers using OpenACC approach. There are further 
investigations needed, specially, those implementations using 
“deep copy” function and “routine” features. We are also 
conducting similarity-based analysis for CLM [13,14], which 
in turn give us more information on porting individual kernels 
onto GPUs. We believe that our experience on pilot study on 
porting modular environmental models can be beneficial to 
many other scientific research programs which adapt high-level 
programming directives to porting scientific applications on 
hybrid high-end computers. 
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