
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

142 | P a g e
www.ijacsa.thesai.org

TCP I-Vegas in Mobile-IP Network

Nitin Jain

Electronics & Communication Engineering

BBDESGI

Lucknow, India

Dr. Neelam Srivastava

Electronics Engineering

IET

Lucknow, India

Abstract—Mobile Internet Protocol (Mobile-IP or MIP)

provides hosts with the ability to change their point of

attachment to the network without compromising their ability to

communicate. However, when TCP Vegas is used over a MIP

network, its performance degrades because it may respond to a

handoff by invoking its congestion control algorithm. TCP Vegas

is sensitive to the change of Round-Trip Time (RTT) and it may

recognize the increased RTT as a result of network congestion.

This is because TCP Vegas could not differentiate whether the

increased RTT is due to route change or network congestion.

This paper presents a new and improved version of conventional

TCP Vegas, which we named as TCP I-Vegas (where “I”, stands

for Improved). Vegas performs well when compared to Reno but

when sharing bandwidth with Reno its performance degrades. I-

Vegas has been designed keeping in mind that whenever TCP

variants like Reno has to share the bandwidth with Vegas then

instead of using Vegas, if we use I-Vegas then the loss which

Vegas would have to bear will not be more. We compared the

performance of I-Vegas with Vegas in MIP environment using

Network Simulator (NS-2). Simulation results show that I-Vegas

performs better than Vegas in terms of providing better
throughput and congestion window behavior.

Keywords—TCP Vegas; Mobile-IP; NS-2

I. INTRODUCTION

A large number of heterogeneous computer networks
interconnected together using TCP/IP protocol suite
(Transmission Control Protocol/Internet Protocol) forms
Internet. With the fast prevalence of Internet users demand the
mobility of hosts, i.e., they expect that the hosts can change
their locations continuously without interrupting current
communication sessions.

TCP is a reliable, connection-oriented protocol that ensures
in-order delivery of a byte stream supplied by an application.
It provides reliable service by implementing flow control,
error detection, error recovery, in-order delivery, and
removing duplicate data. Both the sending and the receiving
node must keep state to support reliable delivery, therefore a
connection is setup before data are transferred.

MIP provides hosts with the ability to change their point of
attachment to the network without compromising their ability
in communications. The mobility support provided by MIP is
transparent to other protocol layers so as not to affect those
applications which do not have mobility features. MIP
introduces three new entities required to support the protocol:
the Home Agent (HA), the Foreign Agent (FA) and the
Mobile Node (MN). The MIP Working Group of the Internet
Engineering Task Force (IETF) has compiled a series of
Internet Drafts and Request for Comments (RFC) to define

MIP for providing an economical solutions which implements
mobility support over the existing Internet infrastructure.

There are several problems of using TCP Vegas in a MIP
network. Since TCP Vegas is tuned to perform well in
traditional wired networks in which most packet losses are due
to congestion. However, in a wireless mobile network, packet
losses usually occur due to either random loss or handoff.
After a handoff, the throughput of TCP Vegas may be
decreased due to a longer BaseRTT of the new routing path,
which is usually caused by either triangular routing or route
optimization.

In this paper, we present a new and improved version of
conventional TCP Vegas which we named as TCP I-Vegas
(where “I” stands for Improved). I-Vegas proves to be better
in terms of throughput and congestion window behavior, when
compared with conventional Vegas. Simulation results proved
that our proposed new and improved I-Vegas performs better
than Vegas in MIP wired-cum-wireless network.

The rest of paper is organized as follows: Section II
presents background of TCP Vegas and Mobile-IP networks.
Section III provides issues related with TCP Vegas. Section IV
gives algorithm of TCP I-Vegas which we have made in order
to improve the performance of TCP Vegas. Section V presents
simulation results and discussions. We conclude in Section VI.

II. BACKGROUND: MOBILE-IP & TCP VEGAS

A. Mobile-IP

In order to achieve the mobility function, the Internet
Protocol (IP) has extended to become the Mobile Internet
Protocol (Mobile IP or MIP). MIP provides hosts with the
ability to change their point of attachment to the network
without compromising their ability to communicate. The
mobility support provided by MIP is transparent to the other
protocol layers so as not to affect the operation of applications
which do not have the mobile capability. Among various IP
mobility proposals, Mobile IPv4 [1] & [2] is the oldest and
probably the most widely known mobility management
proposal with IP. MIPv4 introduces three new entities required
to support the protocol: the Home Agent (HA), the Foreign
Agent (FA) and the Mobile Node (MN). HA and FA are
introduced for mobility management. The basic idea is to use
an authenticated registration procedure between a MN and a
HA in its home network, and via a FA while MN is visiting a
foreign network. Each time a mobile host connects to a
network at a new location, it will obtain a temporary address,
called Care-of Address (COA) from a foreign agent in the
local network. Then the mobile host must inform its home

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

143 | P a g e
www.ijacsa.thesai.org

agent of the new address by a registration procedure, which
begins when the mobile host, possibly with the assistance of
the foreign agent, sends a registration request with the COA.
When the home agent receives this request, it may typically
add the necessary information to its routing table, approve the
request, and send a registration reply back to the mobile host.
Further information on MIP functionality can be found in [1]
& [2].

B. TCP Vegas

TCP Vegas, a conservative algorithm, which is delay
based, first proposed by L.S. Brakmo and L.L. Peterson [3]
ensures end-to-end integrity of data transfer, while IP
performs datagram routing and internetworking functions. It
achieves 37 to 71 percent higher throughput than most used
TCP version called TCP Reno [4], which is loss based. S.
Ahn, P.B. Danzig, Z. Liu and L. Yan [5] have evaluated the
performance of Vegas and shown that it does achieve higher
efficiency than Reno and causes much less packet
retransmissions. However, they have also observed that Vegas
when competing with other TCP variants like Reno, it does
not receive a fair share of bandwidth, i.e., TCP Reno
connections receive about 50 percent higher bandwidth. This
incompatibility property is analyzed also by J. Mo and J.
Walrand [6]. They show that due to the aggressive nature of
Reno, when the buffer sizes are large, Vegas loses to Reno
that fills up the available buffer space, forcing Vegas to back
off. Hence, there is a need to improve the performance of
Vegas, which is a conservative algorithm, so that whenever it
shares the bandwidth with other TCP variants like Reno or
New Reno [7], the loss which conventional Vegas bears
should not be more.

TCP throughput is inversely related to RTT, Vegas
measure the difference between the expected and the actual
throughput. The idea is that the actual throughput should
match the expected throughput if there is no congestion along
the network path. A lower actual throughput indicates
increased delay, and hence congestion, on the network path.
Similar to Reno, Vegas has slow start and congestion
avoidance modes.

C. 1) Slow-Start

During slow-start, Vegas maintains the threshold γ (the

value of γ is generally set to 1). As long as diff, when

comparing expected_thruput and actual_thruput is less than γ

it increases the congestion window by 1 packet every other

round trip time, rather than every RTT. Hence, during slow

start the Vegas congestion window grows exponentially,

though at a slower rate than in TCP Reno. At this point, Vegas

needs correction so that it can be made somewhat aggressive.
When either the congestion window reaches the slow start

threshold (ssthresh) or diff is larger than γ, Vegas enters the
congestion avoidance. Upon exiting slow-start, Vegas
decreases the congestion window by one eighth of its current
size in order to ensure that the network does not remain
congested.

D. 2) Congestion-Avoidance

During congestion-avoidance, Vegas maintains two
threshold values α and β (the value of α and β are usually set

as 1 and 3 respectively). The adjustment of congestion
window is done based on the value of diff given as follows:

Where,

diff = (expected_thruput – actual_thruput).base_RTT

expected_thruput = cwnd/base_RTT, where cwnd is the
current congestion window size and base_RTT is the minimum
round trip time of that connection.

actual_thruput = cwnd/RTT, where RTT is the actual
round trip time

Vegas tries to keep at least α packets but no more than β
packets in the queues. Roughly speaking, α and β in Vegas
represent respectively the minimum and the maximum number
of packets the source can pipe in the network buffers;
therefore α and β represent the aggressiveness degree of the
TCP Vegas sources. The higher their value, the more Vegas
approaches the behavior of Reno. Vegas always attempts to
detect and utilize the extra bandwidth whenever it becomes
available without congesting the network. This mechanism is
fundamentally different from that used by Reno. It always
updates its window size to guarantee full utilization of
available bandwidth, leading to constant packet losses,
whereas Vegas does not cause any oscillation in window size
once it converges to an equilibrium point.

In congestion avoidance phase, two changes can be made
in the algorithm of Vegas. Firstly, the values of α and β can be
increased, because the aim is to make the algorithm of Vegas
more aggressive. Secondly, when α < diff < β the size of the
congestion window instead of keeping same, can be increased
so that it will share the bandwidth more fairly as compared to
other variants of TCP.

E. 3) Loss Recovery

A packet loss can be detected via time out expiration or via
three duplicated acks. In the first case, the ssthresh is set to
half of the current congestion window value, the congestion
window is set to 2, and Vegas performs again the slow-start.
In second case, when Vegas source receives three duplicate
acks, it performs Fast Retransmit and Fast Recovery as Reno
does. Actually, Vegas develops a more refined fast retransmit
mechanism based on a fine-grain clock. After fast retransmit
Vegas sets the congestion window to ¾, instead of ½ of the
current congestion window and performs again the congestion
avoidance algorithm.

III. ISSUES WITH TCP VEGAS

A. Fairness

Vegas uses a conservative algorithm to decide how and
when to vary its congestion window. Reno, in an effort to fully
utilize the bandwidth, continues to increase the window size
until a packet loss is detected. Thus, when TCP Vegas and
Reno connections shares a bottleneck link, Reno uses up most

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

144 | P a g e
www.ijacsa.thesai.org

of the link and router buffer space. Vegas, interpreting this as
a sign of congestion, decreases its congestion window, which
leads to an unfair sharing of available bandwidth in favor of
Reno. This unfairness worsens when router buffer sizes are
increased. G. Hasegawa, K. Kurata, M. Murata [8] proposed
TCP Vegas+ as a method to tackle Vegas’s fairness issue.
However, Vegas

+
 assumes that an increase in the RTT value is

always due to the presence of competing traffic and rules out
other possibilities like rerouting. We feel that this is not a
reasonable assumption. Furthermore, performance of Vegas+
depends on the choice of optimal value for the new parameter
Countmax introduced in the protocol, which is an open
question. G. Hasegawa, K. Kurata, M. Murata [6] and
Raghavendra and Kinicki [9] showed that by using RED
routers in place of the tail-drop routers, the fairness between
Vegas and Reno can be improved to some degree. But there
exists an inevitable trade-off between fairness and throughput,
i.e. if the packet dropping probability of RED is set to a large
value, the throughput share of Vegas can be improved, but the
total throughput is reduced. In [10-11] Feng, Vanichpun and
Weigle showed that choosing values of α and β as a function
of the buffer capacity of the bottleneck router could improve
the fairness condition. However, they do not propose any
mechanism to measure this buffer capacity and to set
appropriate values for α and β.

B. Rerouting

In Vegas, the parameter baseRTT denotes the smallest
round-trip delay the connection has encountered and is used to
measure the expected throughput. When rerouting occurs in
between a connection, the RTT of a connection can change.
When the new route has a longer RTT, the Vegas connection
is not able to deduce whether the longer RTTs experienced are
caused by congestion or route change. Without this
knowledge, TCP Vegas assumes that the increase in RTT is
due to congestion along the network path and hence decreases
the congestion window size [12].

This is exactly opposite of what the connection should be
doing. When the propagation delay increases, the bandwidth–
delay product (bw*d) increases. The expression (cwnd-bw*d)
gives the number of packets in the buffers of the routers. Since
the aim of Vegas is to keep the number of packets in the router
buffer between α and β, it should increase the congestion
window to keep the same number of packets in the buffer
when the propagations delay increases. In [12] the authors also
proposed a modification to the Vegas to counteract the
rerouting problem by assuming any lasting increase in RTT as
a sign of rerouting. Besides the fact that this may not be a
valid assumption in all cases, several new parameters K, N, L,
δ and γ were introduced in this scheme and finding appropriate
values for these variables remain an unaddressed problem.

IV. TCP I-VEGAS

The algorithm of Vegas required making it little bit
aggressive from conservative so that when compared with
other TCP variants like Reno it should perform better than the
conventional Vegas.

Modifications in Vegas has been confined to the sender
side only because of this our I-Vegas with proposed changes is
easy to implement.

Modifications does not introduce any further thresholds,
generally hard to set, since it is completely adaptive to the
status of the network; in this prospect our I-Vegas with
proposed changes appears to be more efficient.

I-Vegas, behavior is not much different from that of the
original Vegas in presence of other Vegas sources; so it is able
to preserve all the nice features of the original Vegas: good
throughput and goodput performance and ability in network
congestion avoidance.

A. Algorithm

Following changes we have made in the algorithm of
Vegas in order to make it more aggressive so that its
performance get improved as compared to Vegas and it will
fairly share the bandwidth when competing with other TCP
variants like Reno.

During Slow-Start, we change the cwnd of Vegas more
aggressively as Reno does.

In the case of rerouting, Vegas should not decrease its
cwnd, rather to increase the thresholds α and β to 3 and
respectively.

During RTO and on reception of Three dup ACKs, α and β
are again set to 1 and 3 respectively.

During congestion avoidance, when diff lies between α and
β, instead of keeping cwnd unchanged, Vegas should change
its cwnd as it is changing when diff < α.

V. SIMULATION RESULTS AND DISCUSSION

We have created wired-cum-wireless MIP environment in
NS-2 [13] and compared the parameters like throughput and
congestion window behavior at different packet error
probabilities.

A. Network Topology

Fig. 1 shows the network topology which is a wired-cum-
wireless MIP network. In fig. 1, node 0 and node 1 are W(0)
and W(1) wired nodes respectively, node 2 and node 3 are
base station nodes behaves like a HA and FA respectively and
node 4 behaves like MN that moves between its HA and FA.
Table I gives the details. We set up a TCP flow between node
0 to node 4 i.e. between W(0) and MH. As MH moves out
from the domain of its HA, into the domain of FA, we observe
how packets destined for MH is redirected by its HA to the FA
as per MIP protocol definitions.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

145 | P a g e
www.ijacsa.thesai.org

Fig. 1. Wired-cum-Wireless MIP Network

TABLE I. NODE DETAILS

Node Nature TCP Connection

Node 0
Wired Node, W(0)

(Source Node)

Vegas/I-Vegas

Node 1 Wired Node, W(1)

Node 2
Base Station Node

Home Agent (HA)

Node 3
Base Station Node

 Foreign Agent (FA)

Node 4
Mobile Node (MN)

(Sink Node)

B. Comparison Curves for TCP Vegas and TCP I-Vegas

Fig. 2 to 9 shows the comparison curves in terms of
congestion window behavior for TCP Vegas and TCP I-Vegas
at different error probabilities. Similarly, fig. 10 to 17 shows
the comparison curves in terms of throughput of TCP Vegas
and TCP I-Vegas at different error probability.

Figure shows that I-Vegas performs better than Vegas in
terms of both congestion window behavior and throughput at
different error probabilities.

Fig. 2. Congestion Window for TCP Vegas at 0% Error

Fig. 3. Congestion Window for TCP I-Vegas at 0% Error

Fig. 4. Congestion Window for TCP Vegas at 1% Error

Fig. 5. Congestion Window for TCP I-Vegas at 1% Error

Fig. 6. Congestion Window for TCP Vegas at 5% Error

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

146 | P a g e
www.ijacsa.thesai.org

Fig. 7. Congestion Window for TCP I-Vegas at 5% Error

Fig. 8. Congestion Window for TCP Vegas at 10% Error

Fig. 9. Congestion Window for TCP I-Vegas at 10% Error

Fig. 10. Throughput of TCP Vegas at 0% Error

Fig. 11. Throughput of TCP I-Vegas at 0% Error

Fig. 12. Throughput of TCP Vegas at 1% Error

Fig. 13. Throughput of TCP I-Vegas at 1% Error

Fig. 14. Throughput of TCP Vegas at 5% Error

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

147 | P a g e
www.ijacsa.thesai.org

Fig. 15. Throughput of TCP I-Vegas at 5% Error

Fig. 16. Throughput of TCP Vegas at 10% Error

Fig. 17. Throughput of TCP I-Vegas at 10% Error

VI. CONCLUSION & FUTURE SCOPE

In this paper, we have proposed a modified algorithm of
Vegas and named it as I-Vegas, where “I” stands for

“improved”. We have also shown that making the algorithm of
Vegas from conservative to somewhat aggressive, the
performance of I-Vegas becomes much better than
conventional Vegas. Simulation results proved that
performance of I-Vegas in terms of av. throughput and
congestion window behavior becomes better than Vegas in
MIP network.

Mobile IP is a newly defined protocol which supports
mobile users but also is compatible with the current IP. It is
still in the process of being standardized, and there are still
many items that need to be worked on and enhanced, such as
the security issue and the routing issue. We are working on
these issues.

REFERENCES

[1] C. Perkins, ‘IP Mobility Support’, IETF RFC 3220, January 2002

[2] C. Perkins, ‘IP Mobility Support for IPv4’, IETF RFC 3344, August
2002

[3] L. S. Brakmo, L. L. Peterson, TCP Vegas: end-to-end congestion
avoidance on a global Internet, IEEE Journal on Selected Areas in

Communications,Vol.13, No.8, October 1995.J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3

rd
 ed., vol. 2. Oxford:

Clarendon, 1892, pp.68–73.

[4] R. W. Stevens, TCP/IP Illustrated, Vol. I, The Protocols, Addison-
Wesley, U.S.A., 1994.

[5] S. Ahn, P.B. Danzig, Z. Liu, and L. Yan, Evaluation of TCP Vegas:

Emulation and Experiment. IEEE Transactions on Communications,
25(4):185-95, Oct 1995.

[6] J. Mo and J. Walrand, Fair End-to-end Window-based Congestion

Control, SPIE '98 International Symposium on Voice, Video, and Data
Communications, Nov. 1998.

[7] S. Floyd, T. Henderson, The NewReno modification to TCP’s fast

recovery algorithm, RFC 2582 April 1999.

[8] G. Hasegawa, K. Kurata, M. Murata, Analysis and improvement of
fairness between TCP Reno and Vegas for deployment of TCP Vegas to

the internet, Proceedings of the IEEE International Conference on
Network Protocols (ICNP 2000) November 2000.

[9] A.M. Raghavendra, R.R. Kinicki, A simulation performance study of TCP
Vegas and random early detection, Proceedings of IPCCC’99, February

1999 pp. 169–176.

[10] E. Weigle, W. Feng, A case for TCP Vegas in high-performance
computational grids, Proceedings of Ninth International Symposium on

High Performance Distributed Computing August 2001.

[11] W. Feng, S. Vanichpun, Enabling compatibility between TCP Reno and
TCP Vegas, IEEE Symposium on Applications and the Internet

(SAINT 2003) January 2003.

[12] R.J. La, J. Walrand, V. Anantharam, Issues in TCP Vegas, July 1998.

[13] The Network Simulator - NS-2. URL:
http://www.isi.edu/nsnam/ns/index.html.

