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Abstract—The paper states and proves an important result 

related to the theory of flow networks with disturbed flows:“the 

throughput flow constraint in any network is always equal to the 
throughput flow constraint in its dual network”.  

After the failure or congestion of several edges in the network, 

the throughput flow constraint theorem provides the basis of a 

very efficient algorithm for determining the edge flows which 

correspond to the optimal throughput flow from sources to 

destinations which is the throughput flow achieved with the 
smallest amount of generation shedding from the sources. 

In the case where a failure of an edge causes a loss of the 

entire flow through the edge, the throughput flow constraint 

theorem permits the calculation of the new maximum throughput 

flow to be done in )(mO  time, where m is the number of edges 

in the network.In this case, the new maximum throughput flow is 

calculated by inspecting the network only locally, in the vicinity 

of the failed edge, without inspecting the rest of the network. 

The superior average running time of the presented 

algorithm, makes it particularly suitable for decongesting 

overloaded transmission links of telecommunication networks, in 

real time.In the paper, it is also shown that the deliberate choking 

of flows along overloaded edges, leading to a generation of 

momentary excess and deficit flow, provides a very efficient 
mechanism for  decongesting overloaded branches. 

Keywords—networks with disturbed flows; congestion; 

decongestion; maximum throughput flow; telecommunication 

networks 

I. THE NEED FOR A HIGH-SPEED CONTROL OF FLOW 

NETWORKS 

Although almost all real networks are networks with 
disturbed flows, the focus of existing research on flow 
networks has been exclusively on static flow networks. 
Research and algorithms related to static flow networks has 
been presented in [1-3]. The first majorcategory of algorithms 
for maximising the throughput flow in networks includes the 
augmentation algorithms which preserve the feasibility of the 
network flow at all steps, until the maximum throughput flow 
is attained [4-5].The second major category of algorithms are 
based on the preflow concept used in [6] and subsequently in 
[7] and [8]. The central idea behind these algorithms is 
converting the preflow into a feasible flow. 

The best of these methods however, have a polynomial 
running time and do not provide the necessary computational 

speed for re-optimising the throughput flow in a large and 
complex network in real time, after an edge failure or 
congestion. The main reason is that classical algorithms for 
maximising the throughput flow start from a network with 
empty edges and do not make use of special properties of the 
network providing a short cut to determining the maximum 
throughput flow. 

The central question for networks with disturbed flows is 
how to re-optimise the network flows after an edge flow 
disturbance (caused by edge failure or congestion), so that a 
new optimal throughput flow is attained quickly.The concept 
‘new optimal throughput flow’ means a throughput flow 
achieved with a minimum reduction of flow production from 
the flow generators (with a minimum generation shedding). 

After edge failure or edge congestion, often there exists a 
possibility for redirecting the flow through alternative paths 
with non-zero residual capacity, so that a new throughput flow 
is reached quickly, with a minimum loss of flow. Even for 
relatively simple networks, it is not obvious how the edge 
flows should be reset in order to attain the required throughput 
flow, with a minimum generation shedding. Without an 
appropriate algorithm, the task of resetting correctly the edge 
flows in order to attain the new optimum throughput flow is 
almost impossible, for large and complex flow networks. In 
addition, the computational time of the algorithm must be 
within milliseconds, if the algorithm is to be capable of re-
optimising the network flows in real time, after a contingency 
event. For very large networks (>10000 transmission links) an 
algorithm with approximately linear average running time in 
the size of the network is needed. 

The lack of optimisation of the network flow after a 
contingency event leads to a severe disruption of the flow, 
suboptimal performance and loss of throughput flow. The 
importance of dynamically rerouting the traffic in 
telecommunication networks has been stressed in [9]. Despite 
the critical importance of the problem related to re-optimising 
the flows upon disappearance of an edge due to failure, it is 
difficult to find a relevant theoretical discussion.Such a 
discussion would provide the necessary short cut speeding the 
performance of algorithms calculating the re-optimised 
throughput flow. This problem has been mentioned in question 
6.35b from [1], where the authors propose to the reader to 
show that after an overestimation of the capacity of an edge by 
k units, the labelling algorithm can re-optimise the maximum 
flow in O(km) time, where m is the number of edges in the 
network.  
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Disregarding the fact that the running time O(km) of the 
labelling algorithm is too slow for large k, the direct 
application of the labelling algorithm to solve this problem 
leads to sub-optimal solutions. This can be demonstrated 
immediately with the network in Fig.1, where the first number 
on the edges denotes the throughput capacity of the edge and 
the second number denotes the actual flow through the edge. 
Initially, the throughput flow has been maximised by using the 
labelling algorithm. The path (1, 2, 7) has been augmented 
with 40 units and path (1, 3, 6, 7) with 60 units. There are no 
more augmentable s-t paths and according to the Ford-
Fulkerson theorem [4] the throughput flow in the network is 
the maximum throughput flow. 

Now suppose that the capacity of edge (3,6) has actually 
been overestimated by 30 units and the actual capacity of the 
edge is only 30 units. In this case, the labelling algorithm re-
optimises the flow by diminishing the flow along the s-t path 
(1,3,6,7) by 30 units.However, the total throughput flow in the 
network from the source s to the sink t, obtained by the 
labelling algorithm, is 70 units, which is a sub-optimal value 
(Fig.1b). 

If before diminishing the flow along the path (1,3,6,7) an 
additional operation was performed, the total throughput flow 
would be 80 units, not 70 units. Due to constraining the flow 
along edge (3,6) by 30 units a “momentary excess flow” 
appears at node 3 and a “momentary deficit flow“ appears at 
node 6. The network should be augmented first with the 
momentary excess flow of 30 units at node 3 aimed to cancel 
first the momentary deficit flow of 30 units at node 6. As can 
be seen, the maximum of 10 units momentary excess flow can 
be sent from node 3 to node 6 through path (3,4,2,5,6). After 
cancelling 10 units of flow, the remaining momentary excess 
flow at node 3 is 20 units and the remaining momentary deficit 
flow at node 6 is also 20 units. Now, by using the labelling 
algorithm, the momentary excess flow and deficit flow can be 
reduced to zero by diminishing the flow along the s-t path 
(1,3,6,7) by 20 units. The result is the network in Fig.1c where 
the total throughput flow is 80 units, which is the maximum 
possible throughput flow. 

A similar deficiency is present in the algorithm reported in 
[10], treating the problem of maximising the flow in a static 
network by starting from a network where all edges are fully 
saturated with flow. This causes unbalanced excess and deficit 
nodes to appear in the network. The sum of the flows going 
into an excess node is greater than the sum of the outgoing 
flows while for a deficit node, the sum of the ingoing flows is 
smaller than the sum of the outgoing flows. The essence of the 
draining algorithm presented in [10]is to cancel excess flow 
with a deficit flow by augmenting paths starting from excess 
nodes and ending at deficit node. The process of cancellation 
of excess and deficit flow in [10] was done only in a network 
with a back circulation edge, connecting the sink with the 
source. In [11], it was shown that this approach leads to 
suboptimal solutions where the obtained throughput flow is 
feasible but not maximal. It has also been demonstrated in [11] 
that to achieve an optimal solution, there is a need of two 
distinctive stages. In the first stage, cancelling of excess and 
deficit flow is done in a network without a circulation edge. In 

the second stage, draining of excess and deficit flow is done in 
a network with a circulation edge. 

In short, applying the labelling algorithm without an 
intermediate stage consisting of cancelling as much as possible 
excess and deficit flow, results in sub-optimal solutions. 

 

 
Fig. 1. Applying the labelling algorithm for re-optimising the flow after an 

overestimation of the capacity of an edge results in a sub-optimal solution 

Component failures in flow networks and congestion are 
inevitable. These events lead to disappearance of flow 
capacity and the expected magnitude of the throughput flow 
from sources to destinations may not be guaranteed. As a 
result, the quality of service received from the network (which 
is a key performance characteristic) can be affected seriously.  

These problems are particularly acute for 
telecommunication networks, oriented towards media 
applications, for transportation networks and power 
distribution networks, because they all require a high 
throughput flow rate. Selecting the shortest path for a data 
transfer, as it is commonly done [12] is often far from optimal. 
It is a common-sense strategy which often leads to 
overloading and congestion of network sections, and 
ultimately, to a low throughput flow. 

Consequently, the objectives of this paper are: (i) to 
present a theoretical analysis of the important problem related 
to the flow constraint arising in the case of edge failures or 
congestion;(ii) to use the analysis for improving the efficiency 
of calculation of the new optimal throughput flow after 
failures or congestion of edges in the network and (iii) to 
achieve the new throughput flow in the network with a 
minimum generation shedding. 

II. AN NEW THROUGHPUT FLOW WITH MINIMUM 

GENERATION SHEDDINGAFTER FAILURE OR CONGESTION OF 

SEVERAL EDGES  

A flow network can always be modelled by a directed 
graph G = (V,E) consisting of a set of nodes V and a set of 
edges. The network flow is said to be feasible, if the next two 

conditions are fulfilled. At each node iv , different from a 

source or a sink, the flow conservation law holds (equation 1). 





 m

i

k

i mvfvkf ),(),(                  (1) 
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The flow conservation law simply states that the sum of 

the edge flows 
k

ivkf ),(  entering node 
iv  is equal to the 

sum of the edge flows 
m

i mvf ),(  leaving the node. The 

second condition involves the capacity constraints imposed by 
the edges: 

),(),( jicjif                                    (2) 

The capacity constraint condition simply states that the 

flow ),( jif  through edge (i,j)cannot exceed the capacity 

),( jic  of the edge – the maximum flow that the edge 

permits. 

The performance of an algorithm for re-optimising the 
network flows after failure or congestion of edges can be 
increased significantly in comparison with classical 
algorithms, which always start the maximisation of the 
throughput flow from a network with empty edges. 

This can be done by using the important circumstance that 
after a disturbance of the flow along a particular edge, the rest 
of the edges are not empty but are already fully or partially 
saturated with flow. An algorithm which starts the re-
optimisation from a network with edges which are fully or 
partially saturated with flow avoids the augmentation of all 
feasible paths and has a clear advantage to an algorithm which 
starts the optimisation from a network with empty edges. 

In the case of a single edge failure, a method for re-
optimising the flows has already been outlined in [13]. 
However, the critical question related to eliminating the 
overloading and congestion along branches of a flow network, 
with minimum generation shedding,was not discussed in 
Ref.[13]. Finally, Ref.[13] treats only the special case where 
the throughput flow in the network is the maximum possible 
throughput flow. In communication networks, electrical 
networks and transportation networks however, the throughput 
flow is rarely the maximum possible throughput flow. For real 
networks the central issue is to re-optimise the network flow in 
such a way that the contingency event causes a minimum flow 
generation shedding. In this sense, the notion ‘optimum 
throughput flow’ used here stands for the restored new 
feasible throughput flow in the network attained with the 
smallest decrease of flow generation (generation shedding). 

As we shall see later, the deliberate choking of flows along 
overloaded edges, leads to a generation of momentary excess 
and deficit flow and provides a very efficient mechanism of 
relieving overloaded branches of the network. In this respect, 
it is important to state and prove a result related to the 
magnitude of the optimal throughput flow after the flows 
along several edges have been constrained (choked) to a 
particular level. 

After the choking of the flow along an edge (e.g. edge ( ie ,

id )), from the initial level ),( ii def  to the level ),(' ii def  

( ),(),('0 iiii defdef  ), the network flow is disturbed 

at nodes ie  and id  to which the edge ( ie , id ) has been 

connected. The flow along edge ( ie ,
id ) may be fully choked 

because of edge failure ( 0),(' ii def ) or partially choked (

),(),('0 iiii defdef  . 

If edge ( ie , id ) is not empty, after the choking of its flow, 

a momentary excess flow appears at one of the nodes (node ie

) equal to the amount of choked flow ),('),( iiii defdef   

along the edge. In other words, the sum of the edge flows 

going into node ie  is greater than the sum of the edge flows 

leaving the node. This difference will be referred to as 

‘momentary excess flow’ imef : 





 m

i

k

ii mefekfmef 0),(),(                (3) 

and node ie  will be referred to as momentaryexcess node. 

Alternatively, after choking the flow along edge ( ie , id ), 

momentary deficit flow will be created at node id , equal to 

the amount of choked flow ),('),( iiii defdef   along the 

edge( ie , id ). The sum of the edge flows going into node id  is 

smaller than the sum of the edge flows leaving node id . The 

difference between the sum of the ingoing flows and the sum 
of the outgoing flows is negative, and will be referred to as 

momentary deficit flow imdf : 





 m

i

k

ii mdfdkfmdf 0),(),(             (4) 

Accordingly, node id  will be referred to as momentary 

deficit node. 

After choking the flow along n edges, 1M  momentary 

excess nodes ie , with momentary excess flows imef  (i=1,...,

1M ) and 2M  momentary deficit nodes jd  with momentary 

deficit flows jmdf  (j=1,..., 2M ), will be created. In general, 

21 MM   because a momentary excess flow at a particular 

node from choking the flow along a particular edge may have 
been compensated or turned into a deficit flow by the 
momentary deficit flow from choking the flow along another 

edge incident to the node. The quantity 0
1

1




M

i

imef  is the 

total amount of momentary excess flow at the excess nodes, 

after choking the flows along the 1M  edges.  

The state of any node (neutral, momentary excess node or 
momentary deficit node) is determined by the algebraic sum of 
the momentary excess and deficit flows created at that node. 
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However, the sum of the momentary excess flows at all excess 
nodes is always equal to the sum of the momentary deficit 

flows at all deficit nodes: 



21

11

M

j

i

M

i

i mdfmef . 

These concepts will be illustrated by the network in Fig.2a, 
where the first number on each edge is the edge capacity and 
the second number is the actual magnitude of the flow through 
the edge. In the network from Fig.2a, edge (10,14) has been 
overloaded by 30 units of flow and the flow magnitude needs 
to be reduced from 60 units to 30 units. Temporary 
overloading of edges for example is common for electrical 
power networks. The flow along a power line could exceed for 
a short time its nominal capacity but if the flow through the 
line is not returned within the throughput capacity of the line, 
the result is a failure of the overloaded line. 

After choking the flow along edge (10,14) in Fig.2a, from 

the initial level 60)14,10( f  to the new level 

30)14,10(' f , the network flow is disturbed locally at 

nodes 10 and 14 to which the edge (10,14) is connected 
(Fig.2a). Edge (10,14) is not empty after the choking of its 
flow. After choking the edge, it can be thought as if a 
momentary excess flow appears at one of the nodes (node 10), 
equal to the amount of choked flow 

30)14,10(')14,10(  ff  through the edge. In other 

words, the sum of the edge flows going into node 10 becomes 
greater than the sum of the edge flows leaving the node. This 

difference is the excess flow 10mef  and node 10 becomes a 

momentary excess node. 

Alternatively, after choking the flow along edge (10,14), a 
momentary deficit flow will be created at node 14, equal to the 

amount of choked flow 30)14,10(')14,10(  ff  of the 

edge. The sum of the edge flows going into node 14 is smaller 
than the sum of the edge flows leaving node 14. The 
difference between the sum of the ingoing flows and the sum 
of the outgoing flows is negative, and will be referred to as a 

momentarydeficit flow, 14mdf . Accordingly, node 14d
becomesamomentary deficit node. 

Now, a new start node ds  with unlimited capacity can be 

introduced, connected with the momentary excess node 10 

(Figure 2a) through a fully saturated edge (10, ds ) with 

capacity equal to the momentary excess flow at the 

momentary excess node 10. A new end node dt  is also 

introduced, connected with the momentary deficit node 14. 

The connecting edge ( dt ,14) is a fully saturated edge with 

capacity equal to the momentary deficit flow at the momentary 
deficit node. The result is the network in Fig.2a, which will be 
referred to as dual network. 

As a result of introducing the fully saturated auxiliary 
edges, the momentary excess and deficit nodes disappear and 
feasible flow is established in all parts of the dual network. 
Suppose that a feasible throughput flow Q has been 

established in the original network before choking the flow 
along edge (10,14). 

 

 
Fig. 2. The two basic stages of the fast decongestion algorithm 

The algorithm for determining the edge flows 
corresponding to the new optimal throughput flow in the 
network, characterised by a minimum generation shedding, is 
based on the next theorem: 

Theorem 1. 
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a) The edge flows corresponding to the optimal 
throughput flow after choking the flow along several edges 

can be obtained by a two-stage procedure which consists of: 

(i) augmenting with flow the dual network until no more 

augmentable paths can be found, followed by (ii) augmenting 

with flow the dual circulation network until no more 

augmentable paths can be found. 

b) The optimal throughput flow in any flow network 

after choking the flow along several edges is equal to the 

throughput flow in the network before choking the edge flows, 
minus the total amount of momentary excess flow at the excess 

nodes, plus the maximum throughput flow in the dual network. 

The path augmentation is a Ford-Fulkerson type 
augmentation [4]. In this sense, a path is augmentable if all 
edges along the path are characterised by a nonzero residual 
capacity, i.e. if no forward edge from the path is fully 
saturated and no backward edge is empty. For the network in 

Fig.2a, the path ( ds ,10,9,8,13,15,14, dt ) is augmentable and 

can be augmented with 20 units of flow. The result is the 
network in Fig.2b.During the augmentation of paths in the 
dual network the original source and sink are treated as 
ordinary nodes. Because there are no more augmentable paths 
in the dual network, and there is still 10 units momentary 
excess flow at node 10 (Fig.2b), a circulation edge (t, s) is 
introduced with capacity equal to the flow (270) towards the 
sink (Fig.2c). The network obtained from the dual network, 
where the original sink t has been connected with the original 
source s through a circulation edge (t,s), will be referred to as 
dual circulation network (Fig.2c). 

Augmenting path ( ds ,10,6,3,1,15,14, dt ) with 10 units of 

flow, removes the momentary excess and deficit flow of 10 
units at nodes 10 and 14 and the flow in the network becomes 
feasible (Fig.2d). The flow is also optimal because the new 
feasible flow has been achieved with a minimum decrease of 
the flow production from the source s (10 units only). Note 
that a feasible flow could have been achieved simply by 
draining 30 units of flow from the network by augmenting the 

path ( ds ,10,6,3,1,15,14, dt ) in Fig.2a with 30 flow units in the 

dual circulation network (with the circulation edge (t,s) 
included). This would mean however that the generation from 
the source s would have been decreased by 30 units (not by 10 
units) hence, the throughput flow will not be optimal. Note 
that augmenting the dual circulation network, before the 
maximum possible augmentation in the dual network has been 
done, leads to suboptimal solutions. Executing the two stages 
of the algorithm in the correct sequence is absolutely essential 
to optimizing the network flow. 

The described algorithm works equally well if choking of 
the flow has been done along several edges. 

III. PROOF OF THEOREM 1AND AN ALGORITHM 

Theorem 1 can be proved by using the following two 
lemmas, whose detailed proofs are given in the Appendix. 

Lemma 1. If there are no augmentable dd ts   paths in 

the dual network, the momentary excess flow at the excess 

nodes and the momentary deficit flow at the deficit nodes can 

always be reduced by augmenting a 
dd ts   path in the dual 

circulation network, where the circulation edge (t,s) belongs 

to the augmented path. 

Lemma 2. If no augmentable 
dd ts   path exists in the 

dual network, augmentation of a
dd ts   path in the dual 

circulation network results in the absence of augmentable s-t 

paths in the original network. 

Proof of Theorem 1. Suppose that by augmenting dd ts   

paths in the dual network, the entire momentary excess flow 
max

dq  has been purged from all backward edges ( ds , ie ), 

(i=1,..., 1M ) connecting the excess nodes ie  with the new 

start node ds . Because the total momentary excess flow at the 

excess nodes ie  (i=1,..., 1M ) is always equal to the total 

momentary deficit flow at the deficit nodes, id  (i=1,..., 2M ), 

eliminating the momentary excess flow will also eliminate the 
momentary deficit flows. In this case, the resultant throughput 
flow in the original network will be feasible and, at the same 

time, it will be equal to the initial throughput flow Q . This 

flow will also be optimal because the path augmentations have 
been done in the dual network only and no reduction of flow 
generation from the original source has been made. 

Now, consider the second possibility: (ii) the maximum 

purged momentary excess flow 
max

dq  from edges ( ds , ie ), 

i=1,..., 1M , in the dual network is smaller than the sum of the 

momentary excess flow from the excess nodes (





1

1

max
M

i

id mefq ). 

The augmentation of dd ts   paths in the dual network 

terminates when no more augmentable dd ts   paths can be 

found. Let 
max

dq  be the maximum throughput flow, with 

which the dual network has been augmented at the end of the 

first stage. The remaining excess flow remq to be purged from 

the edges connecting the excess nodes with the new start node 

ds  is given by 



1

1

max
M

i

direm qmefq . According to Lemma 

1, there is always an augmentable dd ts   path in the dual 

circulation network, which reduces the remaining excess flow 

remq . Because an augmentable dd ts   path in the dual 

circulation network always includes the circulation edge (t,s), 

each augmentation of an dd ts   path subtracts equal amount 

of flow from edges going out of the source s and from edges 
going into the sink t.  

According to Lemma 2, after each augmentation of a

dd ts   path in the dual circulation network, there will be no 

augmentable s-t path in the original network. The 
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augmentation of dd ts   paths in the dual circulation network 

is repeated, until the entire remaining excess flow 
remq from 

the first stage disappears. Consequently, the new throughput 

flow 'Q  after choking the flows along several edges, will be  





1

1

max'
M

i

di qmefQQ ,                           (5) 

Where Q  is the throughput flow in the original network 

before choking the edge flows. This new throughput flow is 
achieved with a minimum generation shedding.  
Simultaneously, according to Lemma 2, there will be no 
augmentable s-t path in the network. According to the Ford-
Fulkerson theorem [4], the absence of augmentable s-t paths in 
the original network means that the throughput flow in the 
original network is indeed the maximum possible. 

Consequently, the flow 'Q  given by equation (5) is the new 

optimal flow in the network, achieved with a minimal 
generation shedding. This proves the theorem.□ 

A. An algorithm for re-optimising the throughput flow after 

choking the flows along multiple edges 

The algorithm for determining the edge flows 
corresponding to the maximum throughput flow in the 
network has essentially been formulated by Theorem 1. It 
consists of the following two basic steps: 

1) Augment dd ts  paths in the dual network until no 

more augmentable paths can be found. 

2) If there is still remaining flow in the backward edges 

connecting the new start node ds , augment dd ts   paths in 

the dual circulation network until the remaining flow is 

removed. 
Theorem 1 establishes a very important link between the 

optimal throughput flow Qin a flow network after constraining 
the flow capacity of an edge and the maximum throughput 

flow 
max

dq in its dual network. Theorem 1 replaces the task of 

determining the optimal throughput flow in the original 
network, with the task of determining the maximum 
throughput flow in the dual network. In the case of choking 
the flow of a single edge (for example after an edge failure), 
there are only two unbalanced nodes. In this case, determining 
the maximum throughput flow in the dual network is 
significantly easier than determining the maximum throughput 
flow in a network with empty edges. The reason for this 
important trade-off is that the dual network is already 
saturated with flow.  

Because augmenting a single path or few paths is a 
procedure of worst-case complexity O(m) (where m is the 
number of edges in the network), in the cases where the 
momentary excess flow is eliminated after augmenting a 

single dd ts   path or few dd ts   paths, the running time of 

the proposed re-optimisation algorithm will be proportional to 
the number of edges m in the network. Because the 
momentary excess and deficit nodes, resulting from choking 
the flow along an edge, are adjacent nodes, in many cases, the 

momentary excess and deficit flow are eliminated after a 
single augmentation along a single path or after augmenting 
few paths. The proposed algorithm has a significantly smaller 
average running time compared to classical algorithms starting 
from a network with empty edges. As it will be demonstrated 
later, in some cases, the algorithm re-optimises the flow in 
time, independent of the size of the network. 

Numerous experiments with different network topologies 
indicated that apparently, only in extreme, deliberately 
designed cases, the running time of the proposed re-
optimisation algorithm approaches the running time of the 
classical Edmonds and Karp algorithm [5]. Experiments with 
networks of different size and topology indicated that the 
average running time of the re-optimisation algorithm appears 
to be increasing approximately linearly with increasing the 
number of edges of the network.  

The algorithm can also be used for a real-time control of 
flow networks, upon contingency events. Its high 
computational speed makes it appropriate for decongesting 
overloaded edges of networks in real time. This is particularly 
important for telecommunication networks, which need to be 
controlled within the range of milliseconds, upon congestion 
or failure of a transmission link. The ever increasing demand 
on the existing computer networks and communication 
networks requires a faster congestion management if the 
number of dropped calls, the delays caused by congestion are 
to be minimised. The algorithm has also important 
applications for real-time control of active power networks, 
production networks (e.g. oil and gas production networks), 
manufacturing networks, and supply logistics networks. 

Another significant advantage of the proposed algorithm is 
that upon choking the flows along edges, the edge flows can 
be simultaneously re-optimised by several independent agents 
attached to the edges of the network.  In this case, achieving a 
global maximum throughput flow from sources to destinations 
is guaranteed, as long as no imbalanced nodes remain in the 
network after the re-optimisation from the independent agents.  

This point will be illustrated with the network in Fig 3a in 
which edge (6,5) and edge (10,12) have failed. The result is a 
momentary excess flow of 10 units at node 6 and 30 units at 
node 10, and the same quantities of momentary deficit flows at 
nodes 5 and 12, respectively (Fig.3a). Suppose that two 
independent agents one attached to edge (6,5) and one 
attached to edge (10,12) are independently re-optimising the 
throughput flow.  

The agent attached to edge (6,5) is trying to cancel the 
momentary excess and deficit flow of 10 units at nodes 6 and 
5 by sending 10 units of momentary excess flow from node 6 
towards node 5. This can be done by augmenting the path 
(6,7,5) by 10 units of flow. The agent attached to edge (10,12) 
is re-optimising the flow by trying to cancel the 30 units of 
momentary excess flow at node 10 with the 30 units of 
momentary deficit flow at node 12. This can be done by 
augmenting the path (10,9,8,11,12) with 30 units of flow. The 
result is the network in Fig.3b, where the momentary excess 
and deficit flows no longer exist. The network flow has been 
re-optimised by the independent actions of the agents. 
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Fig. 3. The network flow can be simultaneously re-optimised by the 

independent actions of agents attached to the separate edges of the network 

IV. THE THROUGHPUT FLOW CONSTRAINT 

Suppose that in a particular flow network, a number of 
sources supply flow to a number of consumers. The total 

maximum amount of flow which all sources can supply is gQ

. Suppose, for the sake of simplicity, that the total amount of 
throughput flow transmitted to the consumers, in the absence 

of edge failures, isalso gQ . Because of capacity degradation, 

the new maximum possible throughput flow 'Q  transmitted 

through the network after edge failures is usually smaller than 

the maximum possible generated quantity gQ . The difference 

'QQg   will be referred to as throughput flow constraint in 

the original network. 

Now, let us introduce a similar concept related to the dual 
network. The amount of momentary excess flow in the dual 

network is 


1

1

M

i

imef  and the maximum possible throughput 

flow from the new start node ds  to the new end node dt is 

max

dq . The difference 
max

1

1

d

M

i

i qmef 


 will be referred to as 

throughput flow constraint in the dual network. 

Note that a network with multiple distributed sources can 
always be transformed to a network with a single source by 
linking the separate sources with a super-source, through 
edges whose capacities are equal to the amount of generated 
flow from the separate sources. 

Thus, the network in Fig.4a features three sources of flow 
s1, s2 and s3, whose flow generation powers are: s1 = 15 

GB/h, s2 = 20 GB/h and s3 = 30 GB/h. The possible 
transmission paths and their throughput capacities have been 
specified as labels on the edges. 

 
Fig. 4. Transforming a network with multiple sources of generation into a 

single-source network 

The network in Fig.4a, with multiple sources of generation 
can be transformed into an s-t network (with a single source) 
by introducing a super-source s as it is shown in Fig.4b. The 
flow capacities of the edges (s,s1), (s,s2) and (s,s3) connecting 
the super-source s with the sources of generation (nodes s1, s2 
and s3) are equal to the flow generation power of the separate 
sources. As a result, the multiple sources disappear and 
throughput edges appear instead (Fig.4b). 

It can now be shown that the following theorem holds: 

Theorem 2. (Throughput flow constraint theorem). 

The throughput flow constraint in any network after 

restricting the flows along some of the edges is always equal 

to the throughput flow constraint in its dual network. 
Proof.  

Suppose that the throughput flow Q is equal to the 

generated by the sources flow ( gQQ  ). 

According to the earlier discussion, a network with 

multiple sources which supplies gQ  total amount of 

throughput flow can always be reduced to a single source 

network which supplies the maximum of gQ throughput flow. 

Let the new maximum throughput flow after choking the 

flows along some of the edges be 'Q .According to Theorem 

1, equation (5) holds: 





1

1

max'
M

i

dig qmefQQ                            (6) 

After rearranging the terms, equation (6) becomes 

max

1

1

' d

M

i

ig qmefQQ  


,                         (7) 

Which proves Theorem 2.□ 

For a single edge flow constraint in a saturated with flow 
network, it is easier to determine the throughput flow 
constraint in the dual network rather than the throughput flow 
constraint in the original network. This explains the efficiency 
of the optimisation algorithm working with the dual network. 
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Using these ideas, a similar invariant can also be 
formulated for static flow networks. Consider a static flow 
network with edges fully saturated with flow. Similar to 
networks with disturbed flows, excess and deficit nodes can 
also be defined. If the sum of capacities of all edges going into 
a node e (different from the source and the sink) is greater than 
the sum of capacities of all outgoing edges, the node is said to 

be an excess node. The amount of momentary excess flow ef  

at an excess node e is given by: 





 ji

jeceicef 0),(),( .                   (8) 

Conversely, if the sum of capacities of all edges going into 
a node d (different from the source and the sink) is smaller 
than the sum of capacities of all outgoing edges, the node is 
said to be a deficit node. The amount of momentary deficit 
flow df in the deficit node is: 





 ji

jdcdicdf 0),(),( .                 (9) 

Finally, if the sum of capacities of all edges going into a 
particular node is equal to the sum of capacities of all edges 
going out of the node, the node is referred to as balanced 
node. The amount of excess/deficit flow at a balanced node is 
zero. Unlike the momentary excess and deficit nodes in 
networks with disturbed flows, the excess and deficit flows in 
static networks with fully saturated edges are real.  

Consider now the static network in Fig.5a, whose edges 
are fully saturated with flow. As a result, excess and deficit 
nodes appear in the network: the excess node ‘4’ with 30 units 
excess flow and the deficit node ‘3’ with 20 units deficit flow. 
These are imbalanced nodes and the network flow is not 
feasible. The purpose is to make it feasible and maximise the 
throughput flow, by appropriate flow redistribution between 
excess and deficit nodes and by draining flow from the 
network. 

Now let us connect all excess nodes (for the network in 
Fig.5a the only excess node is node 4) with the sink t, by fully 
saturated ghost edges directed to the sink, with flow capacities 
equal to the amount of excess at the excess nodes. 
Simultaneously, let us also connect the source s with all deficit 
nodes (for the network in Fig.5a the only deficit node is node 
3) by fully saturated ghost edges directed towards the deficit 
nodes, with flow capacities equal to the deficit flows at the 
deficit nodes. This operation transforms the original network 
into a network where all internal nodes are balanced. The 
ghost edges have been drawn by dashed lines (Fig.5b). 

 
Fig. 5. By using ghost edges (the dashed lines), the excess and deficit nodes 

in any static flow network with fully saturated edges can be transformed into a 
network where all internal nodes are balanced. 

After the introduction of ghost edges, the network flow is 
feasible everywhere (Fig.5b). In other words, the flow 
conservation at the nodes and the capacity constraints of the 
edges are honored in the network.  

Now, suppose that the ghost edges in the network from 
Fig.5b ‘fail’ simultaneously. Because, by saturating all edges 
with flow, the throughput flow in the network has essentially 
been maximised, the problem is now reduced to the problem 
treated earlier - in a network with feasible flow several edges 
(the ghost edges) are choked. Because the conditions of 
Theorem 1 are fulfilled, it can be applied for determining the 
new maximum throughput flow in the network, after the 
‘failure’ of all ghost edges. Theorem 2 will also be valid. If a 
dual network is now constructed, the following theorem will 
hold: 

Theorem 3. (Throughput flow constraint theorem for static 

flow networks) 

The throughput flow constraint in any static flow network 

is always equal to the throughput flow constraint in its dual 

network. 

 
i

di

k

g

i

qefQkscisc max

max),(),(  (10) 

In equation (10), 
i

isc ),(  is the sum of capacities of all 

real edges coming out of the sources;
k

g ksc ),(  is the sum 

of capacities of all ghost edges coming out of the source s; 


i

ief  is the sum of the excess flow formed by the ‘failure’ 

of all ghost edges in the network; maxQ  is the maximum 

throughput flow in the original network (without any ghost 

edges) and 
max

dq  is the maximum throughput flow in the dual 

network (with failed ghost edges). Equation (10) can also be 
rearranged as 

 
i

di

k

g

i

qefksciscQ max

max ),(),( ,(11) 

which permits computing the maximum throughput flow 

maxQ in static networks immediately, after obtaining the 

maximum throughput flow 
max

dq in the corresponding dual 

network. If there are no augmentable dd ts   paths in the dual 

network, 0max dq  and the maximum throughput flow in the 

original network can be established instantly: 

 
i

i

k

g

i

efksciscQ ),(),(max  

Because the absence of augmentable paths is established in 

)(mO  time, where m is the number of edges in the network, 

the maximum throughput flow in this case will be established 

in )(mO  time. 

As a result, in some cases, the invariant throughput flow 

constraint theorem provides the opportunity to determine the 
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maximum throughput flow in a static network by inspecting 

the network only locally, without considering the rest of the 

network. 
For the network in Fig.5b, the maximum throughput flow 

in the dual network, after the failure of the ghost edges, is 

20max dq  units. Because 150),( 
i

isc , 

20),( 
k

g ksc  and 
i

ief 50 , from equation (11) the 

maximum throughput flow becomes 

140205020150max Q  

V. APPLICATION OF THE DUAL NETWORK THEOREM FOR 

DECONGESTING OVERLOADED TRANSMISSION PATHS IN 

TELECOMMUNICATION NETWORKS 

Consider the telecommunication network in Fig.6a, where 
data is transmitted from node 1 to node 7 and where sections 
(1,2) and (2,5) have been congested and causing delays. To 
relieve congestion, the data flow along these edges should, for 
example, be reduced by 5 GB/h.  

The first step is to choke the flows along the congested 
transmission links by limiting the capacities of the 
corresponding edges to the desired amount of flow – to 20 
GB/h for edge (1,2) and to 15 GB/h for edge (2,5). As a result, 
momentary excess and deficit flow of 5 GB/h appears at the 
beginning and at the end of the edges whose flow has been 
choked. Node 2 however, remains a balanced node, because 
the momentary excess data flow of 5 GB/h from choking the 
flow along edge (2,5) has been cancelled canceled by the 
momentary deficit data flow of 5 GB/h from choking the flow 
along edge (1,2). 

Additional start node ds  is then added, connected to the 

excess node ‘1’ by the backward, fully saturated edge ( 1,ds ), 

with capacity 5 GB/h. Similarly, additional end node dt  is 

also added, connected to the deficit node 5, by the backward, 

fully saturated edge ( dt ,5), with capacity 5 GB/h (Fig.6b). 

The algorithm for redistributing the flow in the resultant 
network, then proceeds as follows. The shortest augmentable 

path ( ds ,1,3,6,5, dt ) is augmented with 5 GB/h, which results 

in the network flow from Fig.6c. The momentary excess and 
deficit flows disappear, the network flow is feasible; the 
throughput flow (35 GB/h) is equal to the throughput flow 
before the redistribution. The transmission links (1,2) and 
(2,5) however, are no longer congested. 

Note, that for a long directed flow path, where the choked 
flow along each edge is the same, only two imbalanced nodes 
will appear after the choking. The start node of the directed 
path will appear as an excess node and the end node will 
appear as a deficit node. At any other node i along the directed 
path, the momentary deficit flow from choking edge (i-1,i) 
will be cancelled by the momentary excess flow from choking 
edge (i,i+1). The result will be a neutral node i. 
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Fig. 6. Decongestion of edges (1,2) and (2,5). 

In this example, the optimisation has been achieved 
without decreasing the generation of flow from the source. In 
some cases however, correcting the generated flow is 
necessary to avoid exceeding the permitted throughput 
capacities of the transmission links as in the example from 
Fig.2.Exceeding the permitted transmission capacities of 
transmission links occurs for example in overloaded power 
lines. 

VI. ADVANTAGE OF THE PROPOSED METHOD TO 

CLASSICAL OPTIMISATION METHODS 

To demonstrate the advantage of the proposed method, 
consider an illustration example, featuring the 
telecommunication network in Fig.7, where data flow of 
magnitude 280 GB/h is transmitted from a source s to a 
destination t. The capacities of the transmission lines ‘c’ and 
the actual data flows ‘f’ along them are shown as edge labels 
‘c/f’.  

Suppose that the transmission link (6,5), carrying 30 GB/h, 
has actually been overloaded and its flow needs to be reduced 
from 30 GB/h to 20GB/h. According to the earlier discussion, 
the congestion can be eliminated by choking the flow of edge 
(6,5) from 30 GB/h to 20 GB/h, by reducing the capacity of 
the edge from 30GB/h to 20 GB/h. The throughput flow in the 
network after reducing the capacity of edge (6,5) (Fig.7), was 
re-optimised by using the classical Edmonds and Karp 
algorithm [5], which starts from a network with empty edges. 
For the network in Fig.7, one million runs of the Edmonds and 
Karp algorithm, on a computer with processor Intel(R) 
Core(TM) 2 Duo CPU T9900 @ 3.06 GHz, took 11.3 seconds. 

The proposed re-optimisation algorithm from section 2 
was also run on the network in Fig.7, after introducing a start 

node ds  and end node dt . Because the flow through edge 

(6,5) before its choking was 30 GB/h, after the choking, 10 
GB/h momentary excess flow will appear at node 6 and 10 
GB/h momentary deficit flow will appear at node 5. Following 
the re-optimisation algorithm, the throughput flow in the dual 
network was maximised by augmenting the shortest paths 

starting at the new source ds  and ending at the new sink dt . 

One million runs of the re-optimisation algorithm were 
executed for only 0.98 seconds, more than an order of 
magnitude faster than the running time of the classical 
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Edmonds and Karp algorithm working on a network with 
empty edges. 

 
Fig. 7. A network, demonstrating the performance of the fast re-optimisation 

algorithm 

The re-optimisation algorithm augments essentially the 

shortest path ( dd ts ,5,7,6, ) with 10GB/h. After the 

augmentation and the removal of the connecting edges, the 
momentary deficit and excess flow at nodes 6 and 5 disappear 
and feasible edge flows are set up everywhere in the network. 
The maximum throughput flow in the network after the re-
optimisation is still 280 GB/h. Even if the network is increased 
significantly in size, by adding many nodes between node 7 
and the sink t for example, the running time of the re-
optimisation algorithm will not increase and will remain the 
same!  

A fast re-optimisation of the network flow after an edge 
overloading or congestion is critically important for large flow 
networks including thousands of edges and nodes (e.g. 
telecommunication networks and computer networks). 
Restoring quickly the throughput flow minimises the flow 
disruption and optimises the network performance in real 
time.Another study conducted on a computer with a processor 
Intel (R) Core (TM) 2 Duo CPU T9900 @ 3.06 GHz, has 
indicated that after a component failure in a network with 
m=10000 edges, an augmentation algorithm with average 

running time proportional to m2, needs many seconds to 
maximise the throughput flow.  

Indeed, for a network with 10000 edges, the average 
running time of such algorithm is proportional to (10000 x 

10000) x t, where t =2.5x10-6 s is the average time 
expended on a single edge. This equates to an average running 
time of 250 seconds, which is unacceptable for re-optimising 
the flows in real-time. If the proposed re-optimisation 
algorithm with approximately linear average running time in 
the size m of the network is used, in a network with 10000 
nodes, the average running time would be proportional to 
10000 x ∆t s, which means a running time of about 25 
milliseconds! 

The proposed re-optimisation algorithm is also very useful 
in cases where only the maximum throughput flow is needed 
but not the values of the edge flows. This application is 
relevant to designing fast discrete-event simulators for 
determining the throughput availability of flow networks by 

calculating the throughput flow hundreds of thousands times, 
upon failures of various edges. 

There are many cases where a failure of an edge causes the 
entire flow through the edge to be lost. For example, the entire 
class of networks with tree topology possesses this feature. 
With respect to these cases, the following theorem can be 
formulated: 

Theorem 4.If an edge failure causes a loss of the entire 

flow through the edge, the new maximum throughput flow can 

be computed in )(mO  time. 
 

Proof. The excess flow associated with the failure of the edge 

(i,j) is equal to the flow ),( jif  through the edge. According 

to equation (5), 

max),(' dqjifQQ                             (12) 

Holds for the new maximum throughput flow 'Q . 

Simultaneously, if the failure of an edge causes a loss of the 
entire flow through the edge,  

),(' jifQQ                                     (13) 

From (12) and (13), it follows that 0max dq . In other 

words, there is no augmentable path in the dual network. In a 
connected network, discovering that there is no augmentable 

path is an operation with worst-case running time )(mO , 

where m is the number of edges in the network. Computing the 

expression ),(' jifQQ   after discovering that 

0max dq  has running time )1(O . Consequently, the 

magnitude of the new maximum flow can be computed in 

)(mO  time.□ 

As an illustrating example, consider the communication 
network in Fig.8. After the failure of edge (3,5), the new 
maximum throughput flow in the network has been obtained 
by the proposed re-optimisation algorithm. Because, there are 

no augmentable dd ts   paths in the dual network, 0max dq  

and, according to equation (5), the new optimal throughput 
flow after the failure of edge (3,5) is simply 

15030180)5,3('  fQQ  GB/h (Fig.8). The re-

optimisation algorithm discovers that no augmentable dd ts   

path exist in the dual network in O(m) time. One million runs 
of the Edmonds and Karp shortest-path algorithm for 
determining the maximum throughput flow (starting from a 
network with empty edges), took 9.3 seconds. In contrast, one 
million runs of the proposed re-optimisation algorithm took 
only 0.53 seconds, 17.5 times faster! 

While the running time of classical re-optimisation 
methods based on maximising the throughput flow always 

increases with increasing the size of the network, as can be 

seen from the example in Fig.8, the running time of the 

proposed re-optimisation algorithm does not necessarily 

increase with increasing the size of the network. 
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Fig. 8. The maximum flow of 150 after the failure of edge (3,5) is obtained 

in )(mO  time, after discovering that no augmentable flow paths exist. 

In the example from Fig.8, the algorithm recalculated the 
new maximum network flow by inspecting the network 
locally, in the vicinity of the failed edge, without actually 
considering the rest of the network. The throughput flow 
constraint theorem permits the recalculation of the new 
optimum throughput flow to be done by a local inspection of 
the network. This feature of the proposed method is an 
important contributing factor determining its high 
computational speed.  

The re-optimisation after a failure of unreliable node can 
easily be reduced to the already considered case related to 
unreliable edges and perfectly reliable nodes. Each flow 
network with unreliable nodes and unreliable edges can 
always be reduced to a network with perfectly reliable nodes 
and unreliable edges. In order to do this, each node ‘i’ of the 
network (Fig.9a), characterised by a failure rate (expected 

number of failures per unit time) 0i , can be presented by 

a pair of perfectly reliable nodes i1, i2 ( 01 i , 02 i ) 

connected with an unreliable edge (i1,i2), characterised by a 
throughput flow capacity equal to the sum of the flow 

capacities of the edges entering node i and failure rate i , 

equal to the failure rate of the unreliable node i. For each 
unreliable node i, the first perfect node i1 collects flow from 
all edges entering node i. The second perfect node i2 is 
incident to all edges leaving the unreliable node i. 

a) b)

50 50

40 40
20 20
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Fig. 9. Representing an unreliable node ‘i’ by splitting it in two perfectly 

reliable nodes 1i and 2i , connected with unreliable edge ( 21, ii ). 

Now, the failure of the unreliable node i is treated as a 

failure of the unreliable replacing edge ( 1i , 2i ). The advantage 

of this approach is that after the failure of the unreliable node 

i, only one excess node (node 1i ) and one deficit node (node 

2i ) appear in the network. 

The re-optimisation method proposed in this paper has the 
potential to deliver a significant improvement in the real-time 
control of real networks with disturbed flows, for example for 
telecommunication networks. 

Telecommunication networks are an important example of 
networks with disturbed flows. The increased need for 
exchanging data and information is increasing the need for 
efficient telecommunication networks. The increased network 
efficiency leads to increased access, and hence an increase in 
network traffic. Maintaining a high quality of service during 
the transfer of large media files requires optimal management 
of the available bandwidth capacity. Finally, the 
telecommunication network is the backbone of the smart grid 
with active control of the power flows – the power network of 
the future [14]. In order to fulfil its function, the smart grid 
requires a supporting telecommunication network needed to 
accommodate and control the large volumes of data generated 
from distributed sensors, meters, generators and loads and the 
data flows channelled to the hardware control devices. 

To improve the automation of network flows, recently, the 
autonomous agent-based type of control has been gaining 
popularity [15-18]. However, despite the intensive recent 
research on multi-agent systems control, currently there is a 
lack of algorithms for optimal flow management, which 
guarantees that the independent interventions of the 
autonomous agents upon overloading and congestion will 
eventually lead to a minimum generation shedding from the 
sources and to an optimum utilization of the residual capacity 
of the network. In the case of component failures, the 
mitigating actions from the autonomous agents are reduced to 
sending signals to shed load from the sources of flow. This 
approach requires special control systems in place, each 
monitoring for a different scenario and requiring a different 
control [15]. This approach not only leads to very complex 
control actions that are not at all straightforward and 
transparent. As the example from Fig.1 demonstrates, this 
approach may result in unnecessary reduction of the generated 
flow. As a result, this approach provides no guarantee that the 
optimal flows will be set up, which minimise the generation 
shedding and maximise the throughput flow delivered from 
sources to destinations.  

The approach presented in this paper can be used with 
success for re-optimising the flow after congestion and failure 
by the actions of independent agents.  

VII. CONCLUSIONS 

1) A new result has been stated and proved:“the 

throughput flow constraint in any network is always equal to 

the throughput flow constraint in its dual network”. 

2) After choking the flow along several edges of a 

network, the new throughput flow is equal to the throughput 

flow in the network before choking the edge flows, minus the 

total amount of momentary excess flow at all excess nodes, 

plus the maximum throughput flow in the dual network. 

3) In the case where a failure of an edge causes a loss of 

the entire flow through the edge, the throughput flow 

constraint theorem permits the calculation of the new 
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maximum throughput flow to be done in )(mO  time, where m 

is the number of edges in the network. 

In this case, the maximum throughput flow is determined 

by inspecting the network only locally, in the vicinity of the 

failed edge, without inspecting the rest of the network. 

4) The throughput flow constraint theorem provides the 

basis for an efficient algorithm for determining the edge flows 

which correspond to the optimal throughput flow from sources 

to destinations – the throughput flow achieved with the 

smallest amount of generation shedding from the sources. 

5) The deliberate choking of flows along overloaded 

edges, leading to a generation of momentary excess and deficit 

flow, provides a very efficient mechanism for decongesting 

overloaded branches of the network. 

6) The very high average running time of the presented 

algorithm, makes it particularly suitable for decongesting 

overloaded transmission links of telecommunication networks, 

in real time.  

7) The proposed algorithm can also be used for re-

optimising the flow upon failure or congestion of edges, by 

independent agents.  

APPENDIX 

Lemma 1 If there are no augmentable dd ts   paths in 

the dual network, the momentary excess flow at the excess 

nodes ie  and the momentary deficit flow at the deficit nodes 

id  can always be reduced by augmenting an dd ts   path in 

the dual circulation network, where the circulation edge (t,s) 

belongs to the augmented path. 

Proof. The network flow in the dual circulation network is 

feasible, because the flow conservation law is honored at each 

node and the edge capacity constraints are not violated. There 

are no excess and deficit nodes in the network, except at the 

new source ds  and at the new sink dt  (Fig.A1). 

 

Fig. 10.  Determining directed dd ts   paths, consisting of backward edges 

only. 

Let us start from the start node ds , by selecting a non-

empty backward edge (
id es , ), and consider the edges going 

into node ie . Because node ie  is now a balanced node, if edge 

( ie ,
ds ) carries some flow out of node ie , there must be 

another backward edge ( iek ,1 ) going into node ie  and 

carrying flow greater than zero. Let us consider the start node 

1k  of this edge (Fig.A1). The reasoning, which has been 

applied to node, ie  can now be applied to node 1k  and so on, 

until either a visited node is reached or the end node dt  is 

reached. Suppose that a visited node v has been reached, 

before the new sink dt . This means that a cyclic path has been 

encountered, consisting of backward edges only. Next, the 
edge carrying the smallest amount of flow belonging to the 
encountered directed cyclic path is identified, and its flow is 
subtracted from all edges of the cyclic path. During this 
operation, the edge carrying the smallest amount of flow 
becomes empty and the flow conservation law at the repeated 
node v, will not be violated. 

Because the edge through which the repeated node v has 
been first reached is not part of the cyclic path, we continue 
from node v and the same process is repeated until no more 
directed cyclic paths are encountered. After each flow 
subtraction from the edges of the encountered directed cyclic 
path, at least one edge from the network becomes empty and is 
never filled with flow again, because only backward edges are 

selected for the augmented ds - dt  path. Reaching the end 

node dt  is guaranteed after at most m repetitions of this 

process, where m is the number of edges in the network. 

Reaching the end node dt  is always guaranteed because all 

nodes in the network are balanced, except nodes ds and dt . 

Note that during this process, the dd ts   path must 

necessarily include the circulation edge (t,s). Otherwise, it will 

follow that there is an augmentable dd ts  path in the dual 

network, which contradicts the condition of the lemma. □ 

Lemma 2. If no augmentable dd ts   path exists in the 

dual network, an augmentation of dd ts   path in the dual 

circulation network, results in the absence of augmentable s-t 

paths in the original network. 

 
Proof. Consider the dual network in which there are no 

augmentable dd ts   paths, for example the dual network, 

immediately after the first stage (Fig.A1). 

In the dual network, define a set A of nodes that can be 

reached through augmentable paths from node ds  (Fig.A2). 

An augmentable path is a path along which there are no fully 
saturated forward edges or empty backward edges.  
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Fig. 11.  An s-t cut, defined by the possibility to reach nodes from the new 

sink ds . 

The set A  includes all nodes that cannot be reached from 

ds  through augmentable paths. The new sink dt  does not 

belong to set A because, according to the condition of the 

lemma, there is no augmentable dd ts   path in the dual 

network. The original source s belongs to set A  because, 
according to Lemma 1, there is always an augmentable path in 
the dual circulation network; therefore, there is always an 

augmentable path from the start node ds  to the original source 

s. 

On the other hand, the original sink t does not belong to set 

A , because, according to Lemma 1, there is always an 
augmentable path in the dual circulation network from the 

start node ds  to the end node dt , which includes the 

circulation edge (t,s). This means that there is always an 

augmentable path from the original sink t to the end node dt  

in the dual network. If the original sink t was reachable from 

ds  through an augmentable path (if the sink t belonged to set 

A), the end node dt  would also be reachable from ds  and this 

will contradict the condition of Lemma 2, that there is no 

augmentable dd ts   path in the dual network. Consequently, 

the original sink t belongs to the set A . Because a node in the 

network either belongs to set A or to set A  and no node can 

simultaneously belong to both sets,  AA and

VAA  , where V is the set of all nodes in the network. 

In addition, As and At . As a result, the sets A  and 

A  define an s-t cut AA  in the original network. 

Edges which cross the s-t cut from set A to set A  are fully 
saturated with flow while edges which cross the cut in the 

opposite direction, from set A  to set A, are empty (Fig.A2). 
Indeed, if a forward edge (i,j) crossing the s-t cut is not fully 
saturated with flow or a backward edge (i,j) is not empty, this 

will make edge (i,j) augmentable and node j will be reachable 

from 
ds , because node i belongs to set A and is therefore 

reachable from 
ds  through an augmentable path. Node 

jhowever, is in set A  and cannot be reached through an 

augmentable path from the new source ds . 

The augmented dd ts   path in the dual circulation 

network cannot possibly cross the s-t cut through a directed 

edge, from a node in set A towards a node in set A , because 
all forward edges crossing the s-t cut are fully saturated and all 
backward edges are empty – therefore none of these edges can 
be augmented. 

The augmented dd ts   path however may cross the s-t 

cut through an edge whose starting node j is in set A and 

whose end node iis in set A  (Fig.A3). To do so, the 
augmented path must either enter the A set through a fully 
saturated backward edge, thereby decreasing its flow, or 
through an empty forward edge, thereby increasing its flow 
(Fig.A3). After entering the set A, in order to reach the new 

sink dt , the augmented dd ts   path must come back and 

cross the s-t cut again. Now, except the edge through which 

the dd ts   path entered the A set, there are no other 

augmentable edges crossing the s-t cut from set A to set A , 

along which the dd ts   path can return to set A . 

 

Fig. 12.  An augmented dd ts   path in the dual circulation network 

The only possibility for the dd ts   path to return to set 

A is through the same edge through which it has entered the 

set A. This means that the augmented dd ts   path will 

restore the state of the edge through which it first entered set A 
and leave the edge in the way it was before entering the set A 
(Fig.A3). This is because the bottleneck flow with which the 
path is augmented is the same for all edges along the path. 

Because the augmented dd ts   path must reach the new sink 

dt , the path can only cross the s-t cut ( A , A )an even number 

of times. Therefore, the state of the edges crossing the s-t cut 
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from set A  to set A  will be exactly the same as it was before 

the augmentation of the 
dd ts   path – fully saturated 

forward edges and empty backward edges. Consequently, 
there will be no augmentable s-t path in the original network, 

after the augmentation of the 
dd ts   path in the dual 

circulation network. This finally proves the lemma. □ 
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