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Abstract—Despite the predictive performance of Analogy-

Based Estimation (ABE) in generating better effort estimates, 

there is no consensus on: (1) how to predetermine the 

appropriate number of analogies, (2) which adjustment technique 

produces better estimates. Yet, there is no prior works attempted 

to optimize both number of analogies and feature distance 

weights for each test project. Perhaps rather than using fixed 

number, it is better to optimize this value for each project 

individually and then adjust the retrieved analogies by 

optimizing and approximating complex relationships between 

features and reflects that approximation on the final estimate. 

The Artificial Bees Algorithm is utilized to find, for each test 

project, the appropriate number of closest projects and features 

distance weights that are used to adjust those analogies’ efforts. 

The proposed technique has been applied and validated to 8 

publically datasets from PROMISE repository. Results obtained 

show that: (1) the predictive performance of ABE has noticeably 

been improved; (2) the number of analogies was remarkably 

variable for each test project. While there are many techniques to 

adjust ABE, Using optimization algorithm provides two solutions 

in one technique and appeared useful for datasets with complex 

structure. 

Keywords—Cost Estimation; Effort Estimation by Analogy; 

Bees Optimization Algorithm  

I. INTRODUCTION 

Analogy-Based Estimation (ABE) has preserved 
popularity within software engineering research community 
because of its outstanding performance in prediction when 
different data types are used [1, 15]. The idea behind this 
method is rather simple such that the new project’s effort can 
be estimated by reusing efforts about similar, already 
documented projects in a dataset, where in a first step one has 
to identify similar projects which contain the useful 
predictions [15]. The predictive performance of ABE relies 
significantly on the choice of two interrelated parameters: 
number of nearest analogies and adjustment strategy [8]. The 
goal of using adjustment in ABE is twofold: (1) minimizing 
the difference between a new project and its nearest analogies, 
and (2) producing more successful estimates in comparison to 
original ABE [2]. If the researchers read the literature on ABE, 
they will encounter large number of ABE models that use 
variety of adjustment strategies. Those strategies suffer from 
common problems such as they are not able to produces stable 
results when applied in different contexts as well as they use 
fixed number of analogies for the whole dataset [1]. Using 
fixed number of analogies has been proven to be unsuccessful 

in many situations because it depends heavily on expert 
opinion and requires extensive experimentation to identify the 
best k value, which might not be predictive for individual 
projects [2]. 

The aim of this work is therefore to propose a new method 
based on Artificial Bees Algorithm (BA) [14] to adjust ABE 
by optimizing the feature similarity coefficients that 
minimizes difference between new project and its nearest 
projects, and predicting the best k number of nearest analogies. 
The paper is structured as follows: Section 2 introduces an 
overview to ABE and adjustment methods. Section 3 presents 
the proposed adjustment method. Section 4 presents research 
methodology. Section 5 shows obtained results. Finally the 
paper ends with our conclusions. 

II. RELATED WORKS 

ABE method generates new prediction based on 
assumption that similar projects with respect to features 
description have similar efforts [8, 15]. Adjustment is a part of 
ABE that attempts to minimize the difference between new 

observation ( iê ) and each nearest similar observation ( ie ), 

then reflects that difference on the derived solution in order to 
obtain better solution ( te ). Consequentially, all adjusted 

solutions are aggregated using simple statistical methods such 

as mean (  


k

i it eke
1

1 ˆ ). In previous study [17] we 

investigated the performance of BA, on adjusting ABE and 
finding best k value for the whole dataset. This model showed 
some improvements on the accuracy, but on the other side it 
did not solve the problem of predicting the best k value for 
each individual project. In addition the solution space of BA 
was a challenge because there was only one common weight 
for all nearest analogies. The used optimization criterion (i.e. 
MMRE) was problematic because it was proven to be biased 
towards underestimation. For all these reason and since we 
need to compare our proposed model with validated and 
replicated models, we excluded this model from comparison 
later in this paper. This paper thereby attempts to solve 
abovementioned limitations.  

In literature there is a significant number of adjustment 
methods that have been documented and replicated in previous 
studies. Therefore we selected and summarized only the most 
widely used strategies. Walkerden and Jeffery proposed Linear 
Size Adjustment (LSE) [16] based on the size extrapolation. 
Mendes et al. [12] proposed Multiple Linear Feature 
Extrapolation (MLFE) to include all related size features. 
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Jorgenson et al. [6] proposed Regression Towards the Mean 
(RTM) to adjust projects based on their productivity values. 
Chiu and Huang [4] proposed another adjustment based on 
Genetic Algorithm (GA) to optimize the coefficient αj for each 
feature distance based on minimizing performance measure. 
Recently, Li et al. [10] proposed the use of Neural Network 
(NN) to learn the difference between projects and reflects the 
difference on the final estimate. Further details about these 
methods and their functions can be found in [1].  

Indeed, the most important questions to consider when to 
use such methods is how to predict the best number of nearest 
analogies (k). In recent years various approaches have been 
proposed to specify this number such as: 1) fixed number 
selection (i.e. k=1, 2, 3…etc) as in studies of [7, 11, 12, 16], 2) 
Dynamic selection based on clustering as in study of [2, 17]. 
3) Similarity threshold based selection as in studies of [5, 9]. 
Generally, these studies except [2] use the same k value for all 
projects in the dataset which does not necessarily produce best 
performance for each individual project. On the other hand, 
the certain problem with [2] is that it does not include 
adjustment method but it predicts the best k value based on the 
structure of dataset. 

III. THE PROPOSED METHOD (OABE) 

The proposed adjustment method starts with Bees 
Algorithm in order to find out, for each project: (1) the feature 
weights (w), and (2) the best k number of nearest analogies 
that minimize mean absolute error. The search space of BA 
can be seen as a set of n weight matrixes where the size of 
each matrix (i.e. solution) is k × m. That means each possible 
solution contains weight matrix with dimension equivalent to 
the number of analogies (k) and number of features (m) as 
shown in Figure 1. The number of rows (i.e. k) and weight 
values are initially generated by random. Each row represents 

weights for one selected analogy and accordingly 


m

j jw
1

1 . 

In each run the algorithm selects the top k nearest analogies 
based on the number of k weights in the search space. Then 
each selected analogy is adjusted with corresponding weights 
taken from the matrix w as shown Eq.1. The algorithm 
continues searching until the value of Mean Error (i.e.

 
 

k

j ijkMR
1

1 ) between new project and its k analogies is 

minimized. The optimized k value and weight matrix are then 
applied to Eqs. 1, 2 and 3 to generate new estimate. The new 
integration between ABE with BA will be called Optimized 
Analogy Based Estimation (hereafter OABE). 
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Fig. 1.  Weight Matrix for one solution in the search space 
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The setting parameters for AB have been found after 
performing sensitivity analysis on the employed datasets to see 
the appropriate values. Table I shows BA parameters, their 
abbreviations and initial values used in this study. Below we 
briefly describe the process of BA in finding best k values and 
the corresponding weights for each new project. The algorithm 
starts with an initial set of weight matrixes generated after 
randomly initializing k for each matrix. The solutions are 
assessed and sorted in ascending order after they are being 
evaluated based on MR. The best from 1 to b solutions are 
being selected for neighborhood search for better solutions, 
and form new patch. Similarly, a number of bees (nsp) are also 
recruited for each solution ranked from b+1 to u, to search in 
the neighborhood. The best solution in each patch will replace 
the old best solution in that patch and the remaining bees will 
be replaced randomly with other solutions. The algorithm 
continues searching in the neighborhood of the selected sites, 
recruiting more bees to search near to the best sites which may 
have promising solutions. These steps are repeated until the 
criterion of stop (minimum MR) is met or the number of 
iteration has finished.  

TABLE I. BA PARAMETERS 

Parameter Description  Value 

q dimension of solution 
(number of 

features +1) 

n represents size of initial solutions 100 

u 
number of sites selected out of n visited 

sites 
20 

b 
number of best sites out of s selected 

sites 
10 

nep number of bees recruited for best b sites 30 

nsp 
Number of bees recruited for the other 

selected sites 
20 

ngh initial size of patches (ngh) 0.05 

IV. METHODOLOGY 

A. Datasets 

The proposed OABE model has been validated over 8 
software effort estimation datasets come from companies of 
different industrial sectors [3]. The datasets characteristics are 
provided in Table II which shows that the datasets are strongly 
positively skewed indicating many small projects and a limited 
number of outliers. It is important to note that all continuous 
features have been scaled and all observation with missing 
values are excluded. 
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TABLE II. DESCRIPTIVE STATISTICS OF THE DATASETS 

Dataset Feature Size 
Effort Data 

Min Max Mean Skew 

Albrecht 7 24 1 105 22 2.2 

Kemerer  7 15 23.2 1107.3 219.2 2.76 

Nasa 3 18 5 138.3 49.47 0.57 

Desharnais 12 77 546 23940 5046 2.0 

COCOMO 17 63 6 11400 683 4.4 

China 18 499 26 54620 3921 3.92 

Maxwell 27 62 583 63694 8223.2 3.26 

Telecom  3 18 23.54 1115.5 284.33 1.78 

B. Performance measures 

A key question to any estimation model is whether the 
predications are accurate, the difference between the actual 

effort ( ie ) and the predicted effort ( iê ) should be as small as 

possible because large deviation will have opposite effect on 
the development progress of the new software project [13]. 
This section describes several performance measures used in 
this research as shown in Table III. Although some measures 
such as MMRE, MMER have been criticized as biased to under 
and over estimations, we insist to use them because they are 
widely used in commenting on the success of predictions [13].  

TABLE III. ERROR MEASURES 

Error Measure Name Equation 

Magnitude Relative Error 
ie

ieie
MRE

ˆ
  

Mean  Magnitude 

Relative Error 
i iMRENMMRE 1  

Median  Magnitude 

Relative Error 
)( iMREimedianMdMRE  

Mean Magnitude of Error 

Relative to the estimate 


i
ie

ieie
NMMER

ˆ

ˆ
1

 

Mean Balanced Error 

(MBRE)  


i
ieie

ieie
NMBER

ˆ,min

ˆ
1

 

Prediction Performance  


 


N
i otherwise

iMREif

N
lpred

1 0

25.01100
 

Interpreting these error measures without any statistical 
test can lead to conclusion instability, therefore we used win-
tie-loss algorithm [8] to compare the performance of OABE to 
other estimation methods. We first check if two methods 
methodi; methodj are statistically different according to the 
Wilcoxon test. If so, we update wini; winj and lossi; lossjafter 
checking which one is better according to the performance 
measure at hand; otherwise we increase tiei and tiej. The 
performance measures used here are MRE, MMRE, MdMRE, 
MMER, MBER and Pred25. Algorithm 1 illustrates the win-tie-
loss algorithm [8]. Also, the Bonferroni-Dunn test is used to 
perform multiple comparisons for different models based on 
the absolute error to check whether there are differences in 
population rank means among more than populations. 

Algorithm 1. Pseudocode of win-tie-loss algorithm betweenmethodi and 

methodjbased on performance measure E [8] 

  1: Wini=0,tiei=0,lossi=0 

  2: Winj=0,tiej=0;lossj=0 

  3: if Wilcoxon (MRE(methodi), MRE(methodj), 95) says they are the same 

then 

  4: tiei = tiei + 1; 

  5: tiej = tiej + 1; 
  6:else 

  7: if better(E(methodi), E(methodj)) then 

  8: wini = wini + 1 
  9: lossj = lossj + 1 

10: else 

11: winj = winj + 1 
12: lossi = lossi + 1 

13:end if 
14: end if 

V. RESULTS 

This section presents performance figures of OABE 
against various adjustment techniques used in constructing 
ABE models. Since the selection of the best k setting in OABE 
is dynamic, there was no need to pre-set the best k value. In 
contrast, for other variants of adjustment techniques there was 
necessarily finding the best k value that almost fits each 
model, therefore we applied different k settings from 1 to 5 on 
each model as suggested by Li et al. [9] and the setting that 
produces best overall performance has been selected for 
comparison with other different models. Tables IV, V, VI, VII 
and VIII summarize the resulting performance figures for all 
investigated ABE models. The most successful method should 
have lower MMRE, MdMRE, MMER, MBER and higher 
Pred25. The obtained results suggest that the OABE produced 
accurate predictions than other methods with quite good 
performance figures over most datasets. 

TABLE IV. MMRE RESULTS 

Dataset OABE LSE MLFE RTM GA NN 

Albrecht 40.2 62.9 65.2 61.2 45.4 51.2 

Kemerer 39.6 41.4 64.5 44.6 60.4 166.0 

Desharnais 34.5 37.2 45.6 33.4 49.4 78.4 

COCOMO 50.1 65.8 148.2 54.0 159.5 203.6 

Maxwell 41.7 71.2 71.2 46.4 117.2 199.9 

China 24.7 20.9 32.8 36.5 46.5 68.6 

Telecom 13.2 15.4 36.7 15.2 39.1 78.9 

Nasa 61.2 58.3 55.7 54.9 58.6 99.2 

TABLE V. PRED25 RESULTS 

Dataset OABE LSE MLFE RTM GA NN 

Albrecht 44.6 37.5 37.5 33.3 33.3 29.2 

Kemerer 53.3 60.0 26.7 33.3 33.3 13.3 

Desharnais 48.2 42.9 37.7 41.6 37.7 31.2 

COCOMO 20.2 31.7 14.3 25.4 14.3 6.3 

Maxwell 34.4 27.4 27.4 32.3 17.7 3.2 

China 80.7 82.4 25.9 45.9 43.9 46.1 

Telecom 84.0 77.8 55.6 77.8 61.1 22.2 

Nasa 50.0 33.3 33.3 33.3 38.9 11.1 

TABLE VI. MDMRE RESULTS 

Dataset OABE LSE MLFE RTM GA NN 

Albrecht 37.2 29.7 30.3 40.5 38.5 43.1 

Kemerer 23.3 21.3 39.6 46.1 41.4 128.5 

Desharnais 26.3 28.9 31.0 30.9 35.9 51.9 

COCOMO 47.7 38.0 71.6 46.9 81.1 99.5 

Maxwell 44.2 48.1 48.1 41.0 60.2 160.0 

China 24.6 22.6 84.4 28.4 29.2 29.2 

Telecom 10.3 13.4 20.0 12.6 18.7 58.4 

Nasa 25.8 39.4 44.1 36.6 31.5 81.3 
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However, these findings are indicative of the superiority of 
BA in optimizing k analogies and adjusting the retrieved 
project efforts, and consequentially improve overall predictive 
performance of ABE. Also from the obtained results we can 
observe that there is evidence that using adjustment techniques 
can work better for datasets with discontinuities (e.g. 
Maxwell, Kemerer and COCOMO). Note that the result is 
exactly the “searching for the best k setting” result as might be 
predicted by the researchers mentioned in the related work. 
We speculate that prior Software Engineering researchers who 
failed to find best k setting, did not attempt to optimize this k 
value with adjustment technique itself for each individual 
project before building the model. 

TABLE VII. MMER RESULTS 

Dataset OABE LSE MLFE RTM GA NN 

Albrecht 38.6 57.2 50.0 86.1 53.1 154.4 

Kemerer 51.3 59.7 55.5 53.8 56.8 73.3 

Desharnais 37.2 35.2 38.0 40.7 47.4 95.1 

COCOMO 58.0 62.9 226.6 117.8 285.2 111.9 

Maxwell 54.7 48.3 48.3 63.1 108.2 117.4 

China 16.2 14.8 47.1 55.2 44.8 64.4 

Telecom 15.2 18.2 27.1 16.1 26.5 357.9 

Nasa 44.4 49.3 53.0 80.5 46.6 279.4 

TABLE VIII. MBRE RESULTS 

Dataset OABE LSE MLFE RTM GA NN 

Albrecht 61.2 87.7 82.7 107.5 65.8 166.0 

Kemerer 57.5 71.4 83.9 64.8 81.1 124.3 

Desharnais 40.4 45.6 54.1 46.8 65.5 81.4 

COCOMO 97.3 92.9 319.4 129.0 383.3 239.4 

Maxwell 84.2 81.9 81.9 74.3 175.9 199.8 

China 23.3 23.0 32.1 62.1 62.3 90.1 

Telecom 16.5 16.9 39.7 17.4 42.6 73.0 

Nasa 71.1 75.6 73.7 98.0 74.1 99.6 

 
Furthermore, two results worth some attention while we 

are carrying this experiment: Firstly, the general trend of 
predictive accuracy improvements across all error measures, 
overall datasets is not clear this certainly depends on the 
structure of the dataset. Secondly, there is no consistent results 
regarding the suitability of OABE for small datasets with 
categorical features (as in Maxwell and Kemerer datasets) but 
we can insist that OABE is still comparable to LSE in terms of 
MMRE and Pred25 and have potential to produce better 
estimates.  

In contrast, OABE showed better performance than LSE 
for the other two small datasets (NASA and Telecom) that do 
not have categorical features. To summarize the results we run 
the win-tie-loss algorithm to show the overall performance. 
Figure 3 shows the sum of win, tie and loss values for all 
models, over all datasets. Every model in Figure 2 is compared 
to other five models, over six error measures and eight 
datasets. Notice in Figure 2 that except the low performing 
model on, the tie values are in 49-136 band. Therefore, they 
would not be so informative as to differentiate the methods, so 
we consult win and loss statistics to tell us which model 
performs better over all datasets using different error 
measures.  

Apparently, there is significant difference between the best 

and worst models in terms of win and loss values (in the 
extreme case it is close to 119). The win-tie-loss results offer 
yet more evidence for the superiority of OABE over other 
adjustment techniques. Also the obtained win-tie-loss results 
confirmed that the predictions based on OABE model 
presented statistically significant but necessarily accurate 
estimations than other techniques.  

Two aspects of these results are worth commenting: 1) The 
NN was the big loser with bad performance for adjustment. 2) 
LSE technique performs better than MLFE which shows that 
using size measure only is more predictive than using all size 
related features. 

We use the Bonferroni-Dunn test to compare the OABE 
method against other methods as shown in Figure 3. The plots 
have been obtained after applying ANOVA test followed by 
Bonferroni test. The ANOVA test results in p-value close to 
zero which implies that the differences between two methods 
are statistically significant based on AR measure. The 
horizontal axis in these figures corresponds to the average 
rank of methods based on AR. The dotted vertical lines in the 
figures indicate the critical difference at the 95% confidence 
level. Obviously, the OABE methods generated lower AR than 
other methods over most datasets except for small datasets. 
For such datasets, all models except NN generated relatively 
similar estimates but with preference to OABE that has 
smaller error. This indicates that OABE adjustment method is 
far less prone to incorrect estimates. 

 

Fig. 2. Win-Tie-Loss Results for all Models 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents a new adjustment technique to tune 
ABE using Bees optimization algorithm. The BA was used to 
automatically find the appropriate k value and its feature 
weights in order to adjust the retrieved k closest analogies. The 
results obtained over 8 datasets showed significant 
improvements on prediction accuracy of ABE. We can notice 
that all models’ ranking can change by some amount but 
OABE has relatively stable ranking according to all error 
measure as shown in Figure 2. Future work is planned to study 
the impact of using ensemble adjustment techniques. 
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(a) Albrecht dataset (b) Kemere dataset 

  
(c) Desharnais dataset (d) COCOMO dataset 

  
(e) Maxwell dataset (f) China dataset 

  
(g) Telecom dataset (h) NASA dataset 

Fig. 3. Bonferroni-Dunn test multiple comparison test over all datasets  
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