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Abstract—The main idea of the current work is to use a 

wireless Electroencephalography (EEG) headset as a remote 

control for the mouse cursor of a personal computer. The 

proposed system uses EEG signals as a communication link 

between brains and computers. Signal records obtained from the 

PhysioNet EEG dataset were analyzed using the Coif lets 

wavelets and many features were extracted using different 

amplitude estimators for the wavelet coefficients. The extracted 

features were inputted into machine learning algorithms to 

generate the decision rules required for our application. The 

suggested real time implementation of the system was tested and 

very good performance was achieved. This system could be 

helpful for disabled people as they can control computer 

applications via the imagination of fists and feet movements in 

addition to closing eyes for a short period of time. 
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I. INTRODUCTION 

Brain-Computer Interface (BCI) is a device that enables the 
use of the brain’s neural activity to communicate with others or 
to control machines, artificial limbs, or robots without direct 
physical movements [1-4]. As computerized systems are 
becoming one of the main tools for making people’s lives 
easier and with the ongoing growth in the BCI field, it is 
becoming more important to understand brain waves and 
analyze EEG signals. Electroencephalography (EEG) is the 
process of measuring the brain’s neural activity as electrical 
voltage fluctuations along the scalp as a result of the current 
flows in brain’s neurons [5]. The brain’s electrical activity is 
monitored and recorded, in typical EEG tests, using electrodes 
that are fixed on the scalp [6]. BCI captures EEG signals in 
conjunction with a specific user activity then uses different 
signal processing algorithms to translate these records into 
control commands for different machine and computer 
applications [7]. 

BCI was known for its popular use in helping disabled 
individuals by providing a new channel of communication with 
the external environment and offering a feasible tool to control 
artificial limbs [8]. A variety of BCI applications were 
described in[9] including the control of devices using the 
translation of thoughts into commands in video games and 
personal computers. BCI is a highly interdisciplinary research 
topic that combines medicine, neurology, psychology, 
rehabilitation engineering, Human-Computer Interaction 
(HCI), signal processing and machine learning [10]. 

In our previous research [11-13] we proposed many 
systems that could efficiently discriminate between executed 
(or imagined) left and right fist (or feet) movements. In this 
work, we integrated these systems into one hybrid application 
that is based on the imagined fists and feet movements. 

II. LITERATURE REVIEW 

The translation approach used to transform EEG signal 
patterns into machine commands reflects the strength of BCI 
applications. In [14], the authors recorded EEG signals for 
three subjects while imagining either right or left hand 
movement based on a visual cue stimulus. They were able to 
classify EEG signals into right and left hand movements using 
a neural network classifier with an accuracy of 80% and 
concluded that this accuracy did not improve with increasing 
number of sessions. 

The authors of[15] used features produced by Motor 
Imagery (MI) to control a robot arm. Features such as the band 
power in specific frequency bands (alpha: 8-12Hz and beta: 13-
30Hz) were mapped into right and left limb movements. In 
addition, they used similar features with MI, which are the 
Event Related Resynchronization and Synchronization 
(ERD/ERS) comparing the signal’s energy in specific 
frequency bands with respect to the mentally relaxed state. 

The combination of ERD/ERS and Movement-Related 
Cortical Potentials (MRCP) was proven to improve the 
classification of EEG signals as this offers an independent and 
complimentary information [13, 16]. The authors of 
[17]presented an approach for the classification of single trial 
MRCP using a discrete dyadic wavelet transform and Support 
Vector Machines (SVMs) and they provided a promising 
classification performance. 

A single trial right/left hand movement classification is 
reported in [18]. The authors analyzed both executed and 
imagined hand movement EEG signals and created a feature 
vector consisting of the ERD/ERS patterns of the mu and beta 
rhythms and the coefficients of the autoregressive model. 
Artificial Neural Networks (ANNs) is applied to two kinds of 
testing datasets and an average recognition rate of 93% is 
achieved. 

A three-class BCI system was presented in [19] for the 
translation of imagined left/right hands and foot movements 
into commands that operates a wheelchair. This work used 
many spatial patterns of ERD on mu rhythms along the 
sensory-motor cortex and the resulting classification accuracy 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 5, No. 4, 2014 

194 | P a g e  
www.ijacsa.thesai.org 

for online and offline tests was 79.48% and 85.00%, 
respectively. The authors of [20] proposed an EEG-based BCI 
system that controls hand prosthesis of paralyzed people by 
movement thoughts of left and right hands. They reported an 
accuracy of about 90%. 

In [21], a hybrid BCI control strategy is presented. The 
authors expanded the control functions of a P300 potential 
based BCI for virtual devices and MI related sensorimotor 
rhythms to navigate in a virtual environment. Imagined 
left/right hand movements were translated into movement 
commands in a virtual apartment and an extremely high testing 
accuracy results were reached.The Daubechies, Coiflet and 
Symmlet wavelet families were applied in[22]to a dataset of 
MI to extract features and describe right and left hand 
movement imagery. The authors reported that the use of Linear 
Discriminate Analysis (LDA) and Multilayer Perception 
(MLP) Neural Networks (NNs) provided good classification 
results and that LDA classifier achieved higher classification 
results of up to 88% for different Symmlet wavelets. The 
authors of[23]used the discrete wavelet transform (DWT) to 
create inputs for a NNs classifier and the authors reported a 
very high classification accuracy of 99.87% for the recognition 
of some mental tasks. 

III. THE PROPOSED SYSTEM 

The main idea of the current work is to use a wireless EEG 
headset such as the one designed by NeuroSky[24] as a remote 
control for the mouse cursor of personal computers and the 
computer applications. As depicted in Fig. 1, the captured EEG 
signals have to be pre-processed to filter out the unwanted 
content and then the content of interest has to be represented 
using some features that can be inputted into machine learning 
algorithms. The outcome of this process is a collection of 
decision rules that can be translated, as required, into PC 
commands. 

 
Fig. 1. A block diagram for the suggested system 

A. Eeg Data 

The PhysioNetEEG dataset [25] is used in this work. It 
consists of more than 1500 one or two minutes-duration EEG 
records obtained from 109 healthy subjects. Subjects were 
asked to execute and imagine different tasks while 64 channels 
of EEG signals were recorded from the electrodes that were 
fitted along the scalp.  

In the records of the dataset that are related to the current 
research, each subject performed the following tasks: 

 One-minute baseline run with eyes open. 

 One-minute baseline run with eyes closed. 

 Three two-minutes experimental runs of imagining 
moving theright or left fists while the left or right side 
of a computer screen is showing a target. 

 Three two-minute experimental runs of imagining 
moving both fists or both feet while the top or bottom 
side of a computer screen is showing a target. 

The obtained EEG signals were recorded according to the 
international 10-20 system as seen in Fig. 2.  

 
Fig. 2. Electrode Positions for the C3, Cz, and C4 channels 

For this work, we created a subset for 100 subjects 
including 8 runs per subject. 

B. Preprocessing 

Only channels C3, C4, and Cz were used in our work for 
two reasons:(1) It is reported in [6] that most EEG channels 
represent redundant information and (2), it was 
concludedin[26, 27] that the neural activity that is mostly 
correlated to the fists movements is almost exclusively 
contained within these channels as depicted in Fig. 2. 

The authors of [28] showed thatEEG signals are noisy and 
non-stationary signals that have to be filtered to get rid of the 
unnecessary content. Hence, the channels C3, C4, and Cz were 
filtered, using a band-pass filter (0.5-50 Hz),for the purpose of 
removing the DC shifts and minimizing the presence of 
filtering artifacts at epoch boundaries. 

In [29], it was stated that EEG signals are usually masked 
by physiological artifacts that produce huge amounts of useless 
data. Eye and muscle movements could be good examples of 
these artifacts that constitute a challenge in the field of BCI 
research. The Automatic Artifact Removal (AAR) toolbox [30] 
was used to process our EEG subset. 

A MATLAB script was written to analyze the filtered EEG 
signals and it was found that a subject imagines opening and 
closing a fist (or both fists/feet) and keeps doing this for 4.1 
seconds then he takes a rest for the duration of 4.2 seconds. 
This means that each two-minute EEG run includes 15 events 
that are separated by a short neutral period where the subject 
relaxes. As the Physionet dataset was sampled at 160 samples 
per second, each vector includes 656 samples of the original 
recorded EEG signal. And because we used the available 
records for 100 subjects, our subset included 18000 vectors 
representing imagined left fist, right fist, both fists, and both 
feet movements. An additional 1500 vectors were extracted 
from the one-minute baseline run (with eyes open) and another 
1500 vectors from the one-minute baseline run with eyes 
closed. So, the total number of extracted samples (events) was 
12000 samples. 
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IV. FEATURE EXTRACTION 

A. The Discrete Wavelet Transform 

The Wavelet transform analysis was used in a wide range 
of research topics within the field of signal processing. Based 
on a multi-resolutions process, the wavelet properties of a 
scalable window allow pinpointing signal components. These 
properties of dilation and translation enable the extraction of all 
components for every position by creating different scales and 
shifted functions (in time domain) of a signal [31, 32]. As a 
result, wavelet finer and large scaling, permit all information of 
the signal (the big picture), while small scales shows signal 
details by zooming into the signal components. 

For discrete data, such as the datasets used in the current 
work, the Discrete Wavelet Transform (DWT) is better fit for 
analysis. It was shown in [33] that a suitable wavelet function 
must be used to optimize the analysis performance. A large 
selection of DWT mother wavelets, such as the Daubechies, 
Symmlet, and Coif let, is available to be used in our work [22]. 
But the Coif let(Coif) family of wavelet functions provided the 
best classification performance in our previous work [11]. So, 
we decided to calculate the Coif lets wavelets Coif1-Coif5 in 
this work. 

As shown in Fig. 3, the main purpose of the DWT is to 
decompose the recorded EEG signal into multi-resolution 
subsets of coefficients: a detailed coefficient subset(cDi) and an 
approximation coefficient subset (cAi) at theleveli.So, at the 
first decomposition level we obtain cD1 and cA1 then the first 
approximation cA1 can be transformed into cD2 and cA2 at the 
second level, and so on. For our experiments, the 
decomposition level was set to generate four level details. 

 
Fig. 3. The multi-resolution decomposition of a sample EEG signal. 

 

All EEG signals in the subset were sampled at 160Hz. So, 
the wavelet transformation of each record at four levels results 
in four details: cD1(40-80Hz), cD2(20-40Hz), cD3(10-20Hz), 
and cD4(5-10Hz), and a single approximationcA4(0-5Hz). As 
explained in [11], the details cD2, cD3and cD4 provided proper 
representation for the activities of interest. So, we decided to 
extract the vectors of features from these details only. 

B. Amplitude Estimators 

Many amplitude estimators for neurological activities were 
defined mathematically in [34] and some of them were selected 
based on our previous results obtained in [11]. 

If we assume that the nth sample of a wavelet decomposed 
detail at level i is Di(n), then the following features can be 
defined: 

 Root Mean Square (RMS) 

  

 Mean Absolute Value (MAV) 

  

 Integrated EEG (IEEG) 

  

 Simple Square Integral (SSI) 

  

 Variance of EEG (VAR) 

  

 Average Amplitude Change (AAC) 

  

C. Feature Vectors 

In our experiments, we applied the Coifletswavelets Coif1 
to Coif5 for each one of the channels C3, C4, and Cz of an 
EEG record. This process was repeated for each event in our 
dataset of 12000 vectors.  
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Then, all estimators were calculated using (1) through (6) 
for the details cD2, cD3and cD4 of each instance.At the end of 

these calculations, 9 features of each estimator (3 channels 3 
details) were generated for each Coiflets wavelet. These 
features were numerically represented in a format that is 
suitable for use with SVMs and NNs algorithms [35, 36] as 
described in the next section.  

V. MACHINE LEARNING 

SVMs and NNs learning algorithms were used in [13, 14, 
22, 23, 37] and provided excellent classification performances. 
A detailed description of SVMs and NNs can be found in[36]. 
The MATLAB NN toolbox was used for all the training and 
testing experiments. The training experiments were handled 
with the aid of the back-propagation learning algorithm [38]. 

SVM experiments were carried out using the “MySVM” 
software[39]. SVM can be performed with different kernels 
and most of them were reported to provide similar results for 
similar applications [6]. So, the Anova-Kernel SVM was used 
in this work. 

As shown on Fig. 4, NNs and SVMs classifiers were 
created with 9 inputs, representing features of one estimator. 
The SVM classifier has one output node representing the target 
function: closed eyes/opened eyes. The NN classifier has one 
output node that has five possible classes: opened eyes, left fist, 
right fist, both fists, and both feet. Both classifiers were 
integrated such that the NN classifier is only enabled when the 
eyes are open. 

In SVM, each of the degree and gamma parameters were 
varied from 1 to 10 and the number of hidden layers for the 
neural network was varied from 1 to 20. 

 
Fig. 4. The Hybrid Machine Learning System 

At each specific number of hidden layers (or a specific 
degree-gamma pair), 80% of the samples (9600 events) were 
randomly selected and used for training and the remaining 
20%for testing. This process was repeated 10 times, and in 
each time the datasets were randomly mixed. For each specific 
configuration, the average accuracy was calculated for the ten 
training-testing pairs. 

A huge number of training and testing experiments were 
carried out. Table I and Table II list the best average accuracies 
with their associated classifier configurations. It can be noted 
that the use of a SVMs classifier of gamma = 9 and degree = 6 
with inputs that were generated by a Coif4 wavelet and MAV 
features provided the optimum classification performance of an 
accuracy of 74.97%. In addition, a NNs classifier of 15 hidden 
layers with inputs that were generated by a Coif2 wavelet and 
IEEG features provided an accuracy of 71.6%. These are very 
promising results as they were obtained while most of the 
available data are for imagined movements. 

TABLE I.  OPTIMUM CLASSIFICATION RESULTS ACHIEVED USING DIFFERENT COIFLETSWAVELETS WITH SVMS. 

Features MAV RMS AAC IEEG SSI VAR 

Coiflets wavelet gam deg AvgAcc gam deg AvgAcc gam deg AvgAcc gam deg AvgAcc gam deg AvgAcc gam deg AvgAcc 

Coif1 3 6 0.7011 3 5 0.6911 9 7 0.6821 5 8 0.6930 4 6 0.6183 8 8 0.6011 

Coif2 8 5 0.6903 9 2 0.6857 3 6 0.6532 6 5 0.6814 3 5 0.6634 5 2 0.6122 

Coif3 3 4 0.7152 6 2 0.7033 6 9 0.6642 8 7 0.6598 3 7 0.6120 6 5 0.5984 

Coif4 9 6 0.7497 8 7 0.7112 8 3 0.6803 3 4 0.6786 8 3 0.6045 4 6 0.6103 

Coif5 9 5 0.7325 4 5 0.7058 2 2 0.6792 6 3 0.6133 8 4 0.6143 5 7 0.6002 
 

TABLE II.  OPTIMUM CLASSIFICATION RESULTS ACHIEVED USING DIFFERENT COIFLETSWAVELETS WITH NNS. 

Features MAV RMS AAC IEEG SSI VAR 

Coiflets wavelet HL AvgAcc HL AvgAcc HL AvgAcc HL AvgAcc HL AvgAcc HL AvgAcc 

Coif1 16 0.6166 14 0.6186 17 0.5801 19 0.6612 19 0.6247 13 0.5781 

Coif2 20 0.6470 19 0.6430 13 0.5821 15 0.7160 19 0.5862 12 0.5801 

Coif3 16 0.5882 19 0.6349 18 0.5923 20 0.6207 13 0.5578 18 0.6491 

Coif4 16 0.5984 16 0.6186 19 0.6045 18 0.6065 9 0.5538 15 0.5538 

Coif5 11 0.6247 18 0.6045 20 0.5984 19 0.6227 13 0.5335 17 0.5396 

 

VI. REAL TIME IMPLEMENTATION 

A simple software interface was designed as show in Fig. 5. 
This software reads streams of EEG signals from a test EEG 
record or from an EEG mouse (if available).  

The system extracts the features needed for the SVM and 
NN decision rules and provides near-real time actions. The 
default configurations of this system are to translate the 
“closing eyes for 2s” activity into a mouse click and the 
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imagined left/right fists, both fists, and both feet movements 
into computer cursor movements as seen in Fig. 6. These 
configurations can be reprogrammed to run different computer 
applications instead of simple cursor movements. 

 
Fig. 5. EEG Mouse Control Panel 

 
Fig. 6. The Suggested Real-Time Implementation of the System 

VII. CONCLUSIONS 

The objective of this work was to enable the use of the 
available commercial EEG headsets as a remote control for 
computer applications. Disabled people may use this system as 
a channel of communication with computers and they can 
provide some simple computer commands by imagination. 
Signal records obtained from the PhysioNet EEG dataset were 
analyzed using the Coiflets wavelets and machine learning 
algorithms and promising classification performances were 
obtained. 
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