
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

1 | P a g e
www.ijacsa.thesai.org

Integrating Android Devices into Network

Management Systems based on SNMP

Fernando Hidalgo

Escuela de Computación

Central University of Venezuela

Caracas, Venezuela

Eric Gamess

Laboratorio de Comunicación y Redes

Central University of Venezuela

Caracas, Venezuela

Abstract—Mobile devices are becoming essential for today

life. In developed countries, about half of the people have a

smartphone, resulting in millions of these electronic devices.

Android is the most popular operating system for smartphones

and other electronic devices such as tablets. Hence, for network

administrators, it is essential to start managing all the Android

based devices. SNMP is the de facto standard for network

administration, where agents that are running in managed

devices are polled by management stations. Some primitive tools

have already been developed to transform an Android device as a

basic management station. However, so far, there is no SNMP

agent for this operating system. In this paper, we develop the first

SNMP agent for Android. We also propose an SNMP benchmark

to study the SNMP traffic that can be supported by our SNMP

agent over some real and actual Android devices. The results

obtained show that it is realistic to integrate mobile Android

devices in network management systems since they can handle a

high number of SNMP requests in a reasonable period of time.

Keywords—Network Management Systems; SNMP; Android;

Performance Evaluation; Benchmarks

I. INTRODUCTION

All over the world, millions of cell phones have been sold.
In developed countries, smartphone penetration among cell
phone users are around 45% in US and 50% in Europe,
resulting in a huge number of new devices with a high
processing power.

Even if the majority of smart phones and tablets are owned
and operated by people, for an organization it can be very
useful to integrate these devices in its network administration
system. That is, the organization could manage the smart
mobile devices that are used for its operation, and the smart
mobile devices of its employees with their consent.

The industry standard for network administration is called
Simple Network Management Protocol (SNMP) [1][2], and has
been around for more than two decades now. SNMP is based
on the client/server model, where clients are also referred as
network management stations and servers are agents running in
the administrated devices. In SNMP, management stations
regularly poll agents for information. Even though SNMP is
widely spread, it is still rare in these new mobile devices. Most
of the SNMP applications proposed for mobile devices are
small management tools that allow a limited monitoring of
classical network devices such as servers, switches, or routers
from the mobile devices.

There are several Operating Systems (OSs) proposed for
mobile devices, such as Symbian [3] from Nokia, BlackBerry
OS [4] from BlackBerry Limited, iOS [5] from Apple,
Windows Phone [6] from Microsoft, and Android [7][8] from
Google. Recently, Android has taken the most important part of
the market with this OS installed in more than 70% of the
smartphones shipped. To the best of our knowledge, there is no
SNMP agent for Android, making it impossible for network
administrators to incorporate these devices to their monitoring
systems. In this work, we develop an SNMP agent for Andriod.
It implements many of the SNMP objects and can be used to
integrate Android mobile devices to network management
systems. To study the SNMP traffic that can be handled by our
SNMP agent in real Android based devices, we also develop an
SNMP benchmarking tool to get two important metrics
(Response Time and Reply Request Ratio). The results
obtained show that it is realistic to integrated mobile Android
devices in network administration systems since they can
handle a high number of SNMP requests in a reasonable period
of time.

The rest of this paper is structured as follows. Section II
presents the related work. In Section III, we introduce SNMP,
the de facto network management protocol. Android is shortly
described in Section IV. The development of our SNMP agent
is discussed in Section V. Section VI is focused on evaluating
the SNMP traffic that can be handled by our agent in real life
Android devices. Finally, the paper concludes in Section I.

II. RELATED WORK

Despite of its popularity among developers and users, just a
few applications have been released for Android in the field of
network administration based on SNMP. SNMP MIB Browser,
created by ZOHO Corporation, can be downloaded for free
from Google Play, formerly known as the Android Market.
Google Play is a distribution platform for applications for the
Android operating system operated by Google. SNMP MIB
Browser enables users to browse/view the MIB data of SNMP
enabled network devices such as servers, switches, routers, etc.,
from an Android based device. Users can load any standard
MIB and fetch values from the managed devices to show the
MIB data in an intuitive manner, just by clicking an object, a
group of objects, or a table. It supports all the versions of
SNMP (v1, v2c, v3). In the case of SNMPv3 [9], it implements
MD5 and SHA algorithms for authentication, and DES, 3DES,
AES-128, AES-192 and AES-256 algorithms for encryption.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

2 | P a g e
www.ijacsa.thesai.org

SNMP Manager is similar to SNMP MIB Browser. That is,
it is another basic application for Android that allows users to
browse/view MIBs. Its support for SNMPv3 is actually in
development. However, it has additional features such as trap
reception and transmission. It can be freely downloaded from
Google Play.

ezNetScan1 is a free application developed by VR Software
Systems Pvt Ltd from India, for network administration for
mobile devices. It has been ported to Android and can be
downloaded from Google Play. ezNetScan can display basic
information of WiFi networks, scan the WiFi networks the
Android device is connected to, and display information about
the other connected devices, reporting their IP addresses,
hostnames, MAC addresses, and more. Through SNMPv1 or
SNMPv2c, ezNetScan can do basic operations and collect
information about monitored devices such as operating system,
file system capacity, installed applications, and running
processes. Other features of ezNetScan include TCP port
scanning, ping, and traceroute.

SNMP Traffic Grapher is a basic application that can be
downloaded from Google Play. It allows real-time graphing of
two SNMP Object Identifiers (OIDs) at the same time. The
idea is to monitor the download and upload streams that transit
the interface of a classical network device such as a server,
switch, or router. The first OID will be graphed in green
(download) and the second in blue (upload). The application
retrieves the SNMP data with SNMPv2c.

SNMP Trap Agent2 is a commercial product developed by
Maildover LLC that provides a limited monitoring of Android
phone's performance (percentage of busy CPU), usage (battery
charge level, percentage of free memory), and location (latitude
and longitude). It uses SNMP traps to send the selected
information to the management stations. Even if it allows some
flexibility for administration, it is not an SNMP agent since it is
restricted to SNMP traps and cannot respond to SNMP get- and
set-requests (GetRequest, GetNextRequest, and SetRequest).

As reported in this section, most of the development done
so far is limited to SNMP managers, i.e., applications to
monitor network devices. Unlike this previous work, our work
bring the first implementation of an SNMP agent to Android.

III. SIMPLE NETWORK MANAGMENT PROTOCOL

Simple Network Management Protocol [10][11] (SNMP) is
a protocol for network management defined by the Internet
Engineering Task Force (IETF) that is widely used since it is
simple and easy to implement. SNMP is an application layer
protocol that facilitates the exchange of management
information between agents (managed devices) and Network
Management Systems (NMSs). NMSs are also called
managers. It is part of the TCP/IP protocol suite and uses User
Datagram Protocol (UDP) as a transport protocol. Agents listen
to queries on UDP port 161, while NMSs received traps on
UDP port 162.

SNMPv1 specifies five core Protocol Data Units (PDUs):
GetRequest, GetNextRequest, SetRequest, GetResponse and

1
 http://www.eznetscan.net

2
 http://www.maildover.com/eurotrap.html

Trap. GetRequest is sent by a manager to retrieve the value of
some objects managed by an agent. GetNextRequest is used
iteratively by a manager to get tables or subtrees from
administrated systems such as the Address Resolution Protocol
(ARP) cache, or the routing table. SetRequest is used by a
manager to modify an object in a managed device.
GetResponse is sent by agents to respond with data to get-
requests (GetRequest, GetNextRequest) and set-requests
(SetRequest). Trap is used by agents to report an alert or other
asynchronous events to managers. SNMPv1 does not allow
manager-to-manager interactions as SNMPv2c and SNMPv3
do.

SNMPv2c is a revised version of SNMPv1 and includes
improvements in the areas of performance, manager-to-
manager communications, and error-handling. Three new
PDUs were added in SNMPv2c: GetBulkRequest,
InformRequest, and Report. The purpose of GetBulkRequest is
to request the transfer of a potentially large amount of data
including, but not limited to, the efficient and rapid retrieval of
large tables. Compared to GetNextRequest, GetBulkRequest
minimizes the number of requests and responses necessary to
complete the transfer. InformRequest is sent by a manager to
provide management information to a remote manager. Usage
and precise semantics of Report are not specified in [2];
therefore, any SNMP administrative framework making use of
this PDU must define it. The SNMPv2c improved error-
handling includes expanded error codes that distinguish
different kinds of error conditions; these conditions are
reported through a single error code in SNMPv1.

A Management Information Base [11] (MIB) is a formal
description of a set of network objects that can be managed
using SNMP. Standard minimal MIBs have been defined
(MIB-I, MIB-II, Host Resources MIB, etc), and vendors often
have private enterprise MIBs. MIB-I [12] was defined to
manage TCP/IP-based internets. MIB-II, defined in [13], is
basically an update of MIB-I. Another fundamental concept of
SNMP is the notion of Object Identifiers (OIDs). An OID is a
tag that allows a management entity to refer unambiguously to
a particular object. OIDs are allocated in a tree fashion and
described in the MIB. The value of the OID is a sequence of
integers that refers to a particular traversal of the object tree.

IV. ANDROID OPERATING SYSTEM

Android Inc. was founded in Palo Alto, California in
October 2003 to initially develop an advanced operating
system for digital cameras. However, with the goal of reaching
a bigger market, Android Inc. diverted its efforts to produce a
smartphone OS to rival those of Nokia, BlackBerry Limited,
Apple, and Microsoft. The first version of Android was
unveiled in November 2007. It is based on the Linux kernel,
and designed primarily for touchscreen mobile devices such as
smartphones and tablets. It is also used in televisions, games
consoles, digital cameras, and many other electronic devices.

On August 2005, Google acquired Android Inc. Part of the
success of Android is due to its license. Android source code is
released by Google under the Apache License, which allows
the software to be freely modified and distributed by device
manufacturers, wireless carriers, and the community.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

3 | P a g e
www.ijacsa.thesai.org

The user interface of Android is based on direct
manipulation, using touch inputs that loosely correspond to
real-world actions, like swiping, tapping, pinching and reverse
pinching to manipulate on-screen objects. Internal hardware
such as accelerometers, gyroscopes and proximity sensors are
used by some applications to respond to additional user actions,
for example adjusting the screen from portrait to landscape
depending on how the device is oriented.

As of May 2011, Android has become the leader of the
market for mobile OSs, having the largest installed base in
almost all the countries of the world. More than one million
applications for Android are available to be downloaded from
Google Play. Also, it is by far the most popular platform for
mobile OSs developers. For all the previous reasons, we
decided to develop an SNMP agent for this well accepted
architecture.

V. SNMP AGENT FOR ANDROID

Our SNMP agent runs in background and was developed by
extending class Services from the Android Application
Programming Interface (API). It is configured through a GUI
(Activity) and some of the parameters that can be set include:
the version of SNMP, the read-only community, the read-write
community, and the UDP port where the agent is listening (see
Figure 1). Users can start and stop the service through a simple
switch in the GUI.

Fig. 1. Interface to Configure the Android SNMP Agent

For the implementation of SNMP, we used a Java package
called SNMP Package3 . Our agent supports both, SNMPv1
and SNMPv2c. We implemented all the SNMP messages:
GetRequest, GetNextRequest, GetBulkRequest, SetRequest,
GetResponse, Trapv1, and Trapv2c. We also added a module
for the configuration of some important OIDs of the System
Group, such as sysContact, sysLocation, and sysName
(see Figure 2).

We implemented all the OIDs of MIB-II in our agent. It
also supports part of Host Resources MIB [14], such as the
Installed Software Group (hrSWInstalledTable), allowing the

3
 http://jsevy.com/snmp

Fig. 2. Interface to Configure Important Objects of the System Group

monitoring of the actual version of the installed applications or
the installation of new software. The storage of read-write
OIDs is done in a database kept in the system.

We made exhaustive tests to validate our SNMP agent for
Android using SNMP JManager [15], a famous Java based
manager that we developed a few years ago, and freely
available from SourceForge4. We also captured the traffic with
Wireshark [16] to validate the PDUs generated by our agent.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our SNMP agent for
Android, we decided to test its capacity over different Android
based devices. Two metrics are important when evaluating the
performance of an SNMP agent: response time and Reply
Request Ratio (RRR). Response time is the time elapsed
between sending an SNMP request (GetRequest,
GetNextRequest, or SetRequest) and receiving the
corresponding reply (GetResponse). RRR is the ratio between
the number of replies received and the number of requests sent.
This last metric is very useful when evaluating the number of
requests that can be handled in one second or to study the
behavior of the agent in stressed conditions. To the best of our
knowledge, there is no tool developed so far to evaluate the
performance of an SNMP agent. Hence, we developed our own
benchmarking tool.

For the response time, it is important to report a meaningful
time, i.e., a time that is not based on the sending of a unique
SNMP request and the reception of its associated reply. A
response time based on a unique SNMP request will have an
important error, due to (1) clock precision and (2) the
possibility of heavy OS processes being executed during the
test, such as disk swapping, which will alter significantly the
final results. Hence, our benchmark to measure the response
time is based on the client/server model. Basically, an SNMP
request (GetRequest, GetNextRequest, or SetRequest) with a
fixed number of OIDs is sent from the benchmarking tool
(client) to the agent (server) a number of times.

4
 http://sourceforge.net/projects/snmpjmanager

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

4 | P a g e
www.ijacsa.thesai.org

As soon as the reply arrives to the benchmarking tool, the
next request is sent, so there is no idle time introduced by the
benchmarking tool between two consecutive requests. We take
a timestamp before and after the interchange. The difference of
the timestamps is divided by the number of time the SNMP
request is done, to get the average response time. For the
response time test, our benchmarking tool has two parameters:
(1) the list of OIDs to be fetched or modified, and (2) the
number of time the request must be done before obtained the
total response time.

In the case of the RRR test, our benchmarking tool has
three parameters: (1) the list of OIDs to be fetched or modified,
(2) the frequency of the requests or the number of requests that
must be done in a second, and (3) the duration of the
experiment.

For a better explanation, let say that the frequency is 5 and
the duration is 30 seconds. Therefore, the benchmarking tool
will be sending 5 requests every second, during 30 seconds,
i.e., a total of 150 requests will be sent during the experiment.
The benchmarking tool will also count the number of received
replies, which must be less than or equal to 150. At the end of
the experiment, the RRR is computed by dividing the number
of replies received by the number of requests sent.

We tested the performance of our agent with two different
Android devices: (1) a Galaxy Nexus i9250 phone and (2) a
Galaxy Tab 8.9 tablet. We chose these devices since they are
widely spread all over the world. We also used some PCs to
run the benchmarking tools. The specifications of the devices
are in Table I. We developed our benchmarking tool with Java,
so we can run it in all the platforms that have a Java Virtual
Machine (JVM).

TABLE I. SPECIFICATIONS OF DEVICES USED IN EXPERIMENTS

Device

Phone Tablet PC

Brand Samsung Samsung Hewlett Packard

Model Nexus i9250 Tab 8.9 HP xw4600

Processor
Dual-Core

1.2 GHz

Dual-Core

1.0 GHz

Core 2 Duo

2.6 GHz

RAM 1 GB 1 GB 4 GB

OS Android v4.3 Android v3.0 Windows 7 Pro

A. Results for the Response Time

Fig. 3 depicts the response time obtained with the Nexus
i9250 phone. We have three curves representing the response
time for GetRequest, GetNextRequest, and SetRequest
messages.

We varied the number of OIDs in the requests from 1 to 10.
As expected, the response time of the GetRequest is the
smallest, since we only fetch the value of the OIDs in the
Android device. GetNextRequest messages first search for the
next OID and then fetch its value. SetRequest messages modify
the value of the OID, and modifying is usually longer than
fetching.

The SetRequest experiments have a better performance than
the GetNextRequest when the SNMP messages have a small
number of OIDs, and the behavior is inverted for higher
number of OIDs. Also note that all the three curves are
increasing with the number of OIDs as expected, with
SetRequest increasing with the fastest rate.

Fig. 3. Response Time for Different SNMP Messages in the Nexus i9250 Phone

Fig. 4 shows the response time obtained with the Tab 8.9
tablet. We have three curves representing the response time for
GetRequest, GetNextRequest, and SetRequest messages. We

varied the number of OIDs in the requests from 1 to 10. The
results obtained are similar to the one of the Nexus i9250
phone (see Fig. 3). However, the response time is a little

0

100

200

300

400

500

600

700

800

900

1,000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e

(M
ill

is
e

co
n

d
s)

Number of OIDs per Message

GetRequest GetNextRequest SetRequest

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

5 | P a g e
www.ijacsa.thesai.org

smallest (better in this case) for the phone since it has a better processor than the tablet.

Fig. 4. Response Time for Different SNMP Messages in the Tab 8.9 Tablet

Results for the Reply Request Ratio

Fig. 5, Fig. 6, and Fig. 7 show the results obtained for the
RRR, for GetRequest messages with 1, 3, and 6 OIDs,
respectively. We varied the number of GetRequest messages
sent by second according to the following values: 1, 2, 4, 6, 8,
10, 12, 14, and 16.

For each value of the number of GetRequest messages sent
by second, we have six bars. The first two bars represent the
RRR for the Nexus i9250 phone and the Tab 8.9 tablet,
respectively, with one PC sending GetRequest messages. The
following two bars (third and fourth) represent the RRR for the
Nexus i9250 phone and the Tab 8.9 tablet, respectively, with

two PCs sending GetRequest messages at the same time. In
other words, the Android device receives twice the number of
requests in one second, from two different sources. The last
two bars (fifth and sixth) represent the RRR for the Nexus
i9250 phone and the Tab 8.9 tablet, respectively, with three
PCs sending GetRequest messages at the same time. In other
words, the Android device receives three times the number of
requests in one second, from three different sources. We can
observe from these figures than the Nexus i9250 phone has a
better RRR than the Tab 8.9 tablet, as expected, since it has a
better processor. The idea of these experiments is to stress the
Android devices and to see how much SNMP GetRequest
traffic can be handled by our agent before getting saturated.

Fig. 5. RRR for GetRequest Messages with 1 OID

0

100

200

300

400

500

600

700

800

900

1,000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e

(M
ill

is
e

co
n

d
s)

Number of OIDs per Message

GetRequest GetNextRequest SetRequest

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

s
t

R

a
t
io

Messages per Second

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

6 | P a g e
www.ijacsa.thesai.org

Fig. 6. RRR for GetRequest Messages with 3 OIDs

Fig. 7. RRR for GetRequest Messages with 6 OIDs

Fig. 8, Fig. 9, and Fig. 10 show the results obtained for the
RRR, for GetNextRequest messages with 1, 3, and 6 OIDs,
respectively. We varied the number of GetNextRequest
messages sent by second according to the following values: 1,
2, 4, 6, 8, 10, 12, 14, and 16. Similarly to the GetRequest

experiments, we can observe from these figures than the Nexus
i9250 phone has a better RRR than the Tab 8.9 tablet, as
expected, since it has a better processor. That is, the Nexus
i9250 phone can handle a bigger number of SNMP requests
before been saturated.

Fig. 8. RRR for GetNextRequest Messages with 1 OID

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

st

R

a
ti

o

Messages per Second

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

st

R

a
ti

o

Messages per Second

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

st

R

a
ti

o

Messages per Second

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

7 | P a g e
www.ijacsa.thesai.org

Fig. 9. RRR for GetNextRequest Messages with 3 OIDs

Fig. 10. RRR for GetNextRequest Messages with 6 OIDs

Fig. 11 shows the result of the RRR when varying the
number of SNMP requests sent by second to the Nexus i9250
phone from 3 PCs, by using the following values: 1, 2, 4. 6, 8,
10, 12, 14, and 16 requests per seconds. We have 3 curves for

GetRequest, GetNextRequest, and SetRequest messages. As
expected, GetRequest has the best performance of the requests.
GetNextRequest and SetRequest are showing similar results.

Fig. 11. RRR for GetRequest, GetNextRequest, and SetRequest Messages Sent to the Nexus i9250 Phone with 3PCs and 6 OIDs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

st

R

a
ti

o

Messages per Second

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

R

e
q

u
e

st

R

a
ti

o

Messages per Send

Galaxy Nexus with 1 PC Galaxy Tab with 1 PC Galaxy Nexus with 2 PCs Galaxy Tab with 2 PCs Galaxy Nexus with 3 PCs Galaxy Tab with 3 PCs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

Re
pl

y
 R

eq
ue

st
 R

at
io

Messages per Second

GetRequest GetNextRequest SetRequest

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

8 | P a g e
www.ijacsa.thesai.org

Fig. 12 shows the results of the RRR when varying the
number of SNMP requests sent by second to the Tab 8.9 tablet
from 3 PCs, by using the following values: 1, 2, 4. 6, 8, 10, 12,
14, and 16 requests per seconds. We have 3 curves for
GetRequest, GetNextRequest, and SetRequest messages. The

results are similar to the ones obtained for the Nexus i9250
phone (see Fig. 11). However, the RRR is better in the case of
the Nexus i9250 phone, due to the better processor. These
results also show that common Android devices can manage a
high volume of SNMP request in a short period of time.

Fig. 12. RRR for GetRequest, GetNextRequest, and SetRequest Messages Sent to the Tab 8.9 Tablet with 3PCs and 6 OIDs

VII. CONCLUSIONS AND FUTURE WORK

Million of Android devices have been sold all over the
world, making Android the favorite mobile OS. Due to the
growing interest in these devices, changes in network
administration to integrate them in NMSs are required. Since
SNMP is wildly spread in NMSs, an SNMP agent for Android
is the first step for the inclusion of Android devices in
monitoring systems. In this paper, we presented the first
implementation of an SNMP agent for Android. Our agent has
support for SNMPv1 and SNMPv2c. With our agent, users can
retrieve almost all the OIDs of MIB-I, MIB-II, and Host
Resources MIB.

To validate the agent and to show that the actual Android
mobile devices have enough power to be integrated in a
management system, we also proposed a performance
benchmarking tool for SNMP. Our tests showed that common
Android devices (Nexus i9250 phone and Tab 8.9 tablet) can
be integrated in NMSs, since they can handle a high number of
SNMP request in one second.

As future work, we plan to extend our agent to support
SNMPv3 [9]. Today, authentication and privacy are important
due to the numerous security threads in networks, especially in
wireless networks where the radio waves spread in all
directions.

ACKNOWLEDGMENT

We want to thank the CDCH-UCV (Consejo de Desarrollo
Científico y Humanístico) which partially supported this
research under grant number: PG 03-8066-2011/1.

REFERENCES

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, A Simple Network

Management Protocol (SNMP), RFC 1157, May 1990.

[2] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, Introduction to
Community-based SNMPv2, RFC 1901, January 1996.

[3] M. Wilcox, Porting to the Symbian Platform: Open Mobile

Development in C/C++, 1st Edition, Wiley, November 2009.

[4] A. Ludin, Learn BlackBerry 10 App Development: A Cascades-Driven
Approach, Apress, 1st Edition, March 2014.

[5] J. Conway, A. Hillegass, C. Keur, iOS Programming: The Big Nerd

Ranch Guide, 4th Edition, Big Nerd Ranch Guides, February 2014.

[6] A. Whitechapel and S. McKenna, Windows Phone 8 Development
Internals, Microsoft Press, July 2013.

[7] R. Meier, Professional Android 4 Application Development, Wrox, 3rd
Edition, May 2012.

[8] P. Deitel, H. Deitel, and A. Deitel, Android for Programmers: An App-

Driven Approach, Prentice Hall, 2nd Edition, January 2014

[9] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison-
Wesley Professional, 3rd Edition, October 2013.

[10] J. Gateau, Extending Simple Network Management Protocol (SNMP)

Beyond Network Management: A MIB Architecture for Network-
Centric Service, Naval Postgraduate School, Monterey, California,

March 2007.

[11] L. Walsh, SNMP MIB Handbook, Wyndham Press, March 2008.

[12] K. McCloghrie and M. Rose, Management Information Base for
Network Management of TCP/IP-Based Internets, RFC 1156, May

1990.

[13] K. McCloghrie and M. Rose, Management Information Base for

Network Management of TCP/IP-based Internets: MIB-II, RFC 1213,
March 1991.

[14] S. Waldbusser and P. Grillo, Host Resources MIB, RFC 2790, March

2000.

[15] G. Ayala, P. Poskal, and E. Gamess, SNMP JManager: An Open Source
Didactic Application for Teaching and Learning SNMP v1/2c/3 with

Support for IPv4 and IPv6, In proceedings of the seventh Latin
American and Caribbean Conference for Engineering and Technology

(LACCEI’2009), San Cristóbal, Venezuela, June 2009.

[16] L. Chappell and G. Combs, Wireshark Network Analysis: The Official
Wireshark Certified Network Analyst Study Guide, 2nd Edition, Laura

Chappell University, March 2012.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

R
e

p
ly

 R
e

q
u

e
st

 R
at

io

Messages per Second

GetRequest GetNextRequest SetRequest

