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Abstract—In this paper, we consider the extended linear 

complementarity problem on supply chain management 

optimization model. We first give a global error bound for the 

extended linear complementarity problem, and then propose a 

new type of algorithm based on the error bound estimation.  Both 

the global and quadratic rate of convergence are established. 

These conclusions can be viewed as extensions of previously 
known results. 

Keywords—supply chain management optimization model; the 

extended linear complementarity problem; error bound; algorithm; 

quadratical convergence 

I. INTRODUCTION  

We consider a solution method for the extended linear 
complementarity problem on supply chain management 

optimization model. Letting ( )F x Mx p  , ( )G x Nx q  , 

the extended linear complementarity problem, abbreviated as 

ELCP, is to find a vector * nx R  such that 

* * 0 * *( ) , ( ) , ( ) ( ) 0,TF x K G x K F x G x        (1) 

where ,M N
m nR  , , mp q R , ,s mA R  t mB R  , and  

{ | 0, 0},mK v R Av Bv   

 

0

1 2 1 2{ | , , }.m T T s tK u R u A B R R          

The solution set of the ELCP is denoted by *X , which is 
assumed to be nonempty throughout this paper.  

As is well-known, the extended linear complementarity 
problem (ELCP) is a special case of the extended nonlinear 
complementarity (ENCP) which plays a significant role in 
supply chain management. The topics of supply chain 
modeling, analysis, computation, and management are of great 
interests, both from practical and research perspectives. 
Research in this area is interdisciplinary by nature since it 
involves manufacturing, transportation, logistics, and 
retailing/marketing.  

A lot of literatures have paid much attention to this area. 
See [1,2,3] for a recent surveys.  Nagurney et al. ([4]) 
developed a variational inequality based supply chain network 
equilibrium model consisting of three tiers of decision-makers 
in the network. They established some governing equilibrium 
conditions based on the optimality conditions of the decision-

makers along with the market equilibrium conditions. Dong et 
al.([5]) establish the finite-dimensional variational inequality 
formulation for a supply chain network model consisting of 
manufacturers and retailers in which the demands associated 
with the retail outlets are random. Nagurney et al. ([6]) 
establish the finite-dimensional variational inequality 
formulation for a supply chain network model in which both 
physical and electronic transactions are allowed and in which 
supply side risk as well as demand side risk are included in the 
formulation. The model consists of three tiers of decision-
makers: the manufacturers, the distributors, and the retailers, 
with the demands associated with the retail outlets being 
random.  

In recent years, many efficient solution methods have been 
proposed for solving it ([7, 8]). The basic idea of these methods 
is to reformulate the problem as an unconstrained or simply 
constrained optimization problem ([7,8]).  

It is well-known that nonsingularity of Jacobian at a 
solution guarantees that the famous Levenberg-Marquardt (L-
M) method for ELCP has a quadratic rate of convergence ([8]). 
Recently, Yamashita and Fukushima showed that the L-M 
method has a quadratic rate of convergence under the 
assumption of local error bound, which is much weaker than 
the nonsingularity of Jacobian([9]). This motivates us to 
consider the error bound estimation for the ELCP.  

The paper is organized as follows. In Section 2, we recall 
the error bound for the ELCP. In Section 3, using the obtained 
result of error bound, the famousL-M algorithm is employed 
for obtaining solution of the ELCP,   and we establish its the 
global and quadratic convergence  based on the established 
error bound. Section 4 concludes this paper. Moreover, we do 

not require M and N  to be square, and compared with the 
algorithm converges in [8], our conditions are weaker. These 
conclusions can be viewed as extensions of results in [8]. 

Some notations used in this paper are in order. Use 
nR  to 

denote the nonnegative orthant in nR ; x and x  denote the 

orthogonal projections of vector nx R  onto 
nR , that is,

( ) : max{ ,0},( ) : max{ ,0},1 ;i i i ix x x x i n       the norm 

|| ||  denotes the Euclidean 2-norm, the transpose of a matrix 

M  be denoted by TM . Without of making confusion, we 

denote a nonnegative vector nx R by  0x  . 
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II. PRELIMINARY 

In this section, we mainly quote some known results on the 
error bound from [10] for ELCP. First, we give the needed 
assumptions. 

Assumption 1  For , ,A M N  are the matrices defined in (1). 

(A1) The matrix TM N  is semi-definite (not necessarily 
symmetric); 

(A2) The matrix TA  is column-full rank. 

Under Assumption (A2), we can establish the following 
equivalent formulation of the ELCP([4]). 

( ) 0,

( ) 0,

( ( )) ( ) 0,

( ) 0,

( ) 0,

AF x

BF x

F x G x

UG x

VG x








 




• 

where  

1 1 1 1

1 1 1 1

1 1

{ [( ) ] [ ] },

{ { [( ) ] [ ] }

  [( ) ] [ ] }.

L L L L

L L L L

L L

U A B A A I B A A I A

V A A B A A I B A A I A

B A A I B A A I I

    

    

  

    

    

   

• • • •

• • • • •

• • • •

 

The following result from Ref.4 mainly discusses the error 
bound for ELCP which will be applied to convergence of 
algorithm in next section. 

Assumption 2 For system (2), there exists point ˆ ,x  

such that  ˆ ˆ( ) 0, ( ) 0,AF x UG x   

   ( ) 0, ( ) 0 .|nx R BF x VG x      

Theorem 1 Suppose that that Assumption 1(A1) and (A2) 

hold, and matrix  ( ) , ( )
T

T TAM UN  is of column full rank. 

Then there exists constant 1 0   such that 

*

1( , ) { ( ) ( )

                          

dist

    ( )}, ,n

x X B Mx p V Nx q

r x x R

   

  

‖ ‖‖ ‖
             

where  ( ) || min{ ), }|| .r x Mx p Nx q    

III. ALGORITHM AND CONVERGENCE  

In this section, we propose a new type of solution method 
to solve the ELCP based on the error bound results in Theorem 
1, and the global and quadratic rate of convergence is also 
established, which was introduced first by Wang ([8]) for 
ENCP, but result of it was not given. 

We now formulate the ELCP as a system of equations via 

the Fischer function ([11]) 
2 1: R R   defined by 

2 2( , ) , , .a b a b a b a b R       

A basic property of this function is that  

( , ) 0 0, 0, 0.a b a b ab       

For arbitrary vectors , na b R , we define a vector-valued 

function as follows 

1 1

2 2

( , )

( , )
( , ) ,

( , )n n

a b

a b
a b

a b







 
 
  
     
 
 

（）

where 1 2 1 2( , , , ) , ( , , , ) .T T

n na a a a b b b b    Obviously,

( , ) 0 0, 0, 0.Ta b a b a b       

Using (4), we define a vector-valued function  

: n s m tR R    

and a real-valued function : nf R R  as follows: 

( ( ), )( )

( )

( )

( ) ,

UG x

BF

AF

x x

x

VG x

 
 

   
 
 

（） 

21 1
( ) ( ) ( ) || ( ) || ,

2 2

Tf x x x x     （） 

then the following result is straightforward. 

Theorem 2  *x  is a solution of the ELCP if and only if 
*( ) 0.x   

In this following, allows us to extend above error bound in 

Theorem 1 to another residual function ( )x . First, we give the 

following result in which Tseng ([12]) showed. 

Lemma 1  For any 
2( , )a b R , we have 

(2 2) | min{ , }| | ( , ) | ( 2 2) | min{ , }| .a b a b a b    

By Lemma 1 and Theorem 1, we have the following result. 

Theorem 3 Suppose that the conditions of Theorem 1 hold, 

then there exists a constant 2 0   such that  

*

2( , ) || ( ) ||, .ndist x X x x R    

Proof  Using Theorem 1, we have

*

1

1 1 1

1 1

1 1 1

1

dist

(

( , ) { ( ) ( ) ( )}

                 { ( ) ( )

( ) }

                 max{1, }{ ( )

                     ( )

( ), )

( ( , ()

x X B Mx p V Nx q r x

B Mx p V Nx q

c UG x

c B Mx p

V Nx q U

AF x

AF Gx x











   

   

 

 

‖ ‖‖ ‖+

‖ ‖‖ ‖

               +

‖ ‖

‖ ‖+
1

)) }

 

1 1 1

1 1

                 max{1, }{ }

              

( )

   max{1, } 2 { },( )

xc

c t xm













‖ ‖

‖ ‖
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where the second inequality follows from Lemma 1 with 

constant 
1 0c  , the third inequality follows from the fact that 

1, ,nx x x R  ‖‖‖‖  the last inequality follows from the fact 

that  

1 , ,nx n x x R  ‖‖ ‖‖
 

by letting 
2 1 1max{1, } 2c m t   , then the desired result 

follows. 

Clearly, this bound is an extensions of Theorem 2.1 in 
Mangasarian and Ren ([13]), Lemma 1 in Pang ([14]), and 
Corollary 3.2 in Xiu and Zhang ([15]). 

Next, we review some definitions and basic results which 
will be used in the sequel. 

The function ( )x  is not differentiable everywhere with 

respect to nx R . However, it is locally Lipschitzian, and 
therefore has a nonempty generalized Jacobian in the sense of 
Clarke ([16]). In the following, for a locally Lipschitzian 

mapping : n mR R  , we let ( )x  to denote the Clarke's 

generalized Jacobian of ( )x  at nx R  which can be 

expressed as the convex hull of the set ( )B x  ([17]), where 

( ) { | lim '( ),

           ( ) is differentiable at  for all k}.

k

m n k

B
x

k

x V R V x

x x




     



 

Now, we recall some basic definitions about semi-
smoothness and strong semi-smoothness.  

A locally Lipschitz continuous vector valued function 

: n mR R   is said to be semi-smooth at nx R , if the limit 

( ')
' , 0

lim { '}
V x th
h h t

Vh
 
 

 

exists for any nh R .  

It is well known that the directional derivative, denoted by 

'( ; )x h , of   at x  in the direction h exists for any nh R  if 

  is semi-smooth at x . The following properties about the 
semi-smooth function are due to Qi and Sun in [18]. 

Lemma 2 Suppose that : n mR R   is a locally Lipschitz 
function and semi-smooth, then 

a) for any ( ), 0,V x h h    

'( ; ) (|| ||);Vh x h o h   

b) for any 0,h   

( ) ( ) '( ; ) (|| ||).x h x x h o h      

Semi-smooth functions lie between Lipschitz functions and 
continuously differentiable functions, and both continuously 
differentiable functions and convex functions are semi-smooth. 
A stronger notion than semi-smoothness is strong semi-
smoothness.  

The function : n mR R   is said to be strongly semi-

smooth at x  if   is semi-smooth at x  and for any 

( ), 0,V x h h    it holds that 

2'( ; ) (|| || ).Vh x h o h   

A favorable property of the function ( )f x  is that it is 

continuously differentiable on the whole space nR  although 

( )x is not in general. We summarize the differential 

properties of   and f defined by (5) and (6) in the following 

lemma ([19,20]). 

Lemma 3 For the vector-valued function   and real-

valued function f defined by (5) and (6), the following 

statements hold. 

(a)  is strongly semi-smooth. 

(b) f  is continuously differentiable, and its gradient at a 

point nx R  is given by ( ) ( )Tf x V x   , where V  is an 

arbitrary element belonging to ( ).V x  

From Lemma 3 and discussion above, we can obtain the 
following result. 

Theorem 4 For *x X , there exist constants (0,1)  and 

3 0  such that 

2

*

|| ( ) ( ) || || || ,

, { ||| || }.n

x h x Vh h

x h x x R x x 

    

    
 

In this following, a method for solving the ELCP is outlined. 
It is similar to that in [8, 9], But we consider method for ELCP 
with Armijo step size rule, and discuss its global convergence. 

Algorithm 1 

Step 1: Choose any point 0

nx R , parameters 

, , (0,1)     and 0  . Let 0.k  

Step 2:  If || ( ) ||kf x   , stop; Otherwise, go to Step 3. 

Step 3: Choose an element ( )k kV x . Let k nd R  be 

the solution of the linear system  

(( ) ) ( ) ( ).k T k k k T kV V I d V x     

If kd  satisfies  

|| ( ) || || ( ) ||,k k kx d x     

then 1k k kx x d   , : 1k k  , go to Step 5. Otherwise, go to 
Step 4. 

Step 4:  Let km  be the smallest non-negative integer m

such that  

( ) ( ) ( ) .k m k k m k T kf x d f x f x d      

Let 1 : .k k m kx x d     
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Step 5: Let 
1 1 2|| ( ) || ,k kx    : 1k k  , go to Step 2. 

For the above Algorithm 1, we assume that Algorithm 1 

generates an infinite sequence{ }kx . By Theorem 3, Theorem 4, 

combining the proof of Theorem 3.1 in [9], we can obtain the 
following global convergence theorem. 

Theorem 5 Let { }kx  be generated by Algorithm 1 for 

ELCP with line search, then any accumulation point of the 

sequence { }kx  is a stationary point of f . Moreover, if an 

accumulation point *x  of the sequence { }kx  is a solution of 

(5). Then 
*( , )kdist x X  converges to 0  quadratically.  

 In Theorem 5, we have showed that Algorithm 1 has a 
quadratic rate of convergence under local error bound, which is 
much weaker than the nonsingularity of Jacobian. it is an 
extensions of the algorithm converges conclusion in [8], which 
is a new result for ELCP. 

IV. CONCLUSION 

In this paper, we consider an algorithm for the extended 
linear complementarity problem on supply chain management 
optimization model. To this end, we first give the global error 
bound for the ELCP, and use the error bound estimation to 
establish the global and quadratic convergence of algorithm for 
solving the ELCP.  

Surely, under milder conditions, we may established global 
error bound for ELCP with the mapping being nonmonotone, 
and may use the error bound estimation to establish quick 
convergence rate of the Newton-type method for solving the 
ELCP instead of the nonsingular assumption just as was done 
for nonlinear equations in [9],  this is a topic for future research. 
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