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Abstract— The paper presents the novel design of a one-pass 

large vocabulary continuous-speech recognition decoder engine, 

named SPREAD. The decoder is based on a time-synchronous 

beam-search approach, including statically expanded cross-word 

triphone contexts. An approach using efficient tuple structures is 

proposed for the construction of the complete search-network. 

The foremost benefits are the important space savings and higher 

processing speed, and the compact and reduced size of the tuple 

structure, especially when exploiting the structure of the key. In 

this way, the time needed to load the ASR search-network into 

the memory is also significantly reduced. Further, the paper 

proposes and presents the complete methodology for compiling 

general ASR knowledge sources into a tuple structures. 

Additionally, the beam search is enhanced with the novel 

implementation of a bigram language model Look-Ahead 

technique, by using tuple structures and a caching scheme. The 

SPREAD LVCSR decoder is based on a token-passing algorithm, 

capable of restricting its search-space by several types of token 

pruning. By using the presented language model Look-Ahead 

technique, it is possible to increase the number of tokens that can 
be pruned without decoding precision loss. 

Keywords—LVCSR decoder; tuple structure; finite automata; 

perfect hashing; Look-Ahead; language models 

I. INTRODUCTION 

A LVCSR decoder represents a major component in the 
development of any continuous speech-recognition system. 
Since tasks’ and systems' complexities are constantly 
increasing, the decoder becomes an increasingly significant 
component within the overall development of compact and 
efficient speech-recognition systems. Therefore, more efficient 
designs can improve the trade-off between the needed decoding 
time and the recognition error rate. Furthermore, large 
knowledge sources are used in the LVCSR decoder, enabling 
estimation of the most likely word sequence from specific 
acoustic evidence. In general, these knowledge sources are: 
acoustic models (HMM - Hidden Markov Models), 
pronunciation lexicon, and N-gram language models. More and 
more new application areas require increase in the complexity 
of acoustic, lexicon and language models used in LVCSR 
decoders. Consequently, the requirements for time and space 
efficiency of LVCSR decoders are becoming greater and 
greater, despite the continuous growth of hardware 
performance, and GPU-like parallel processing. Therefore, 
efficient management of all these knowledge-sources, and 
efficient decoding of the acoustic input, still remains important 

issues and challenging tasks. Furthermore, in LVCSR decoders 
a lot of optimisation techniques, specific architectures, and 
heuristics have to be used and developed in order to achieve 
lower computational complexity and lower memory 
requirements. Progress regarding LVCSR decoding algorithms, 
together with the availability of ever increasing computing 
power and memory capacity, has also resulted in more accurate 
and close to real-time LVCSR decoders for tasks such as, e.g. 
broadcast news transcription, conversational telephone speech 
recognition systems etc. Technology based on weighted finite-
state machines (WFSM) has already shown that it is possible to 
efficiently encode all those knowledge sources present within a 
speech-recognition system, such as e.g. language models, 
pronunciation dictionaries, context decision-trees, etc. By using 
them, a LVCSR network is usually obtained by a composition 
of several WFSTs. After using minimisation algoritms, an 
LVCSR network can be directly used in a Viterbi-based 
LVCSR decoder. These decoders have already been shown to 
yield good performance when compared to the classic 
approaches. This results in the implementations of several 
Viterbi-based decoders using FSA technology [7, 16, 17, 18, 
19, 24]. Nevertheless, the complexity of acoustic and language 
models used in speech recognition tasks still imposes growing 
requirements for the efficiency and accuracy of LVCSR 
decoders, and fosters the development of new approaches and 
techniques such as, e.g. cross-word acoustic models and long-
span language models, already resulted in the development of 
several solutions for the speech-decoding problem [1, 2, 5, 6, 8, 
10, 21, 22]. 

II. RELATED WORK 

Nowadays, a lot of speech-decoding software packages 
exist that employ a number of different decoding techniques, 
based on time synchronous Viterbi search and many are also 
available for research purposes. CMU/Sphinx, released by 
Carnegie Mellon University (CMU) [26], contains less features 
and flexibility, but in contrast to HTK [27], focuses more on 
speed and was one of the first ASR systems to offer support for 
speaker-independent Large Vocabulary Continuous Speech 
Recognition (LVCSR) system. Latest versions, although less 
efficient than previously, are more flexible and enables faster 
and easier development and maintainance of different 
applications [17]. Further, the Julius LVCSR decoder is a high-
performance, two-pass decoder, focusing on performance, 
modularity, and availability [9]. The HTK framework is very 
flexible and comprises a lot of state-of-the-art ASR features, 
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e.g. vocal tract length normalization (VTLN), heteroscedastic 
linear discriminant analysis (HLDA) and discriminative 
training with maximum mutual information (MMI), and 
minimum phone error (MPE) criteria [15,27]. Some of the 
decoder implementations have shifted from dynamic search to 
static graphs in the form of probabilistic weighted finite-state 
transducers (WFSTs) [4, 7, 18]. Architectures based on the 
theory of weighted finite-state transducers represent flexible 
and efficient decoder architectures. The advantages of this 
implementation can be seen in the simplicity of LVCSR 
decoders and the seamless composition of lexicon, acoustic, 
and language models. One of the most efficient solutions for 
search-network optimization is the WFST framework from 
[12]. In these architectures, all the knowledge sources are 
combined together statically. Furthermore, the search network 
can be optimised for maximal efficiency. In such LVCSR 
systems the decoding network is usually compiled 
independently of the LVCSR decoder itself, in this way 
representing also more flexible solutions for e.g. the 
incorporation of several application-specific knowledge 
sources. Nevertheless, Mohri's approach can restrict the 
complexity of the knowledge sources, and prevent some on-
the-fly adaptation [22]. A drawback can also be seen in the 
memory requirements for the compilation of very large static 
decoding networks for LVCSR systems, although today this 
issue has become less crucial because of the availability of 64-
bit systems, and a lot of available RAM memory. Another 
approach from [25] expands the search network dynamically. 
This approach, on the other hand, can be computationally too 
expensive for efficient decoding regarding larger LVCSR 
tasks. Recently, the Juicer WFST decoder has become a 
popular WFST-based alternative to the tree-based dynamic 
decoders, as provided with the HTK and Sphinx toolkits. The 
T3 WFST decoder is a system that performs favorably against 
several established decoders in the field, including the Juicer, 
Sphinx, and HDecode [27] in terms of RTF versus Word 
Accuracy [17]. In the case of the T3 WFST decoder, in 
addition to the existing HTK conversion tool, a tool has also 
been developed for converting arbitrary Sphinx format acoustic 
models into a format suitable for use with the T3 WFST 
decoder [4]. Juicer provides similar functionality to the T3 
WFST decoder in terms of the model inputs it accepts. It is 
capable of performing decoding on both static cascades, as well 
as on-the-fly composition, and it has been developed to read in 
HTK-based acoustic models in native format [13].  

This paper proposes a novel LVCSR decoder named 
SPREAD that is implemented by using efficient perfect-hash 
automata and tuple structures. The complete search network is 
compiled independently of the LVCSR decoder (off-line), 
including the needed pronunciation lexicon, language models 
and Look-Ahead structures, and can be fast loaded by the 
runtime system. The language model information is, in this 
way, dynamically obtained during the search within the 
LVCSR decoding engine. Furthermore, the proposed off-line 
compilation methodology of large static networks is simple and 
fast, even on 32-bit machines with less available RAM 
memory. In this LVCSR decoder, the novel implementation of 
the language model Look-Ahead technique (used to enhance 
the beam search results), based on tuple structures, is further 
integrated. In this way, the proposed LVCSR decoder 

incorporates several novel design strategies, which have not 
been used earlier in conventional decoders of HMM-based 
large vocabulary speech recognition systems. The paper starts 
with a motivation for using tuple structures in speech-
technology-related applications, and for developing a LVCSR 
decoder, based on tuple structures. Firstly, the formalism 
behind tuple structures is presented, regarding their form and 
representation. Then the presentation of the LVCSR decoder 
technology used within the LVCSR SPREAD decoder follows. 
Next, the proprietary FSM tools are discussed and their 
application for the construction of tuple structures when 
developing LVCSR decoders. The main part of the paper 
represents the proposed compilation methodology of all the 
tuple structures used within a general LVCSR decoder. 
Additionally, the implementation of a large-scale search-
network using tuple structures is described in detail. The 
proposed work is based on real implementation of the LVCSR 
decoder based on tuple structures, as used for 64k broadcast 
news transcription speech-recognition task for the Slovenian 
language. Statistics and achieved compactness of the proposed 
implementation are, therefore, presented in Section 8. In this 
way, the paper familiarizes the readers with the design 
solutions encountered, when building a tuple-based LVCSR 
decoders. The conclusion is drawn at the end. 

III. MOTIVATION 

The general practical issue in LVCSR speech-recognition 
applications concerns the size of the knowledge sources, and 
the size of the complete search-network. This issue can be even 
more crucial when the knowledge sources are consulted 
frequently and must, therefore, be loaded into the memory. 
Perfect hashing techniques based on finite-state automata can 
be very efficient when solving these problems [3, 23]. Namely, 
as will be shown, they enable compact representations without 
sacrificing the lookup time. In the case of LVCSR speech-
recognition applications, large dictionaries are not the only 
space-consuming resources. Namely, several types of language 
models containing statistical information about the co-
occurrence of words, require even more memory space, and 
also at the same time as fast lookup operations as possible – 
LVCSR systems need to be capable of working with e.g. 
bigram, trigram, fourgram models etc. Therefore, for speech-
recognition applications, the achievable size and compactness 
of language models and other knowledge sources within the 
runtime system represent an important practical 
implementation issue, and also motivation for the work 
presented in this paper. The Slovenian language is a highly 
inflectional language. Therefore, the number of distinct word 
forms in everyday use is very large, resulting in large 
knowledge sources for general LVCSR speech recognition 
tasks. When considering this, efficient management of the data 
structures’ size when representing knowledge sources, and the 
lookup efficiency, are general requirements. In this respect a 
very compact representation of knowledge sources and the 
search-network is needed, and a highly-optimized LVCSR 
ASR decoder must be implemented. In order to better cope 
with this problem, it was decided to work on a new design 
approach for the development of an LVCSR decoder that is 
based completely on perfect hash automata and the so-called 
tuple structures, by following the established theory on tuples 
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in [3]. In general, the needed knowledge sources for LVCSR 
ASR decoder can be represented in the form of a simple data 
structure that defines a mapping from some strings to some 
value. These data structures can be easily generalized, in which 
the keys are n-tuples of strings, for a fixed n. Such data 
structure is called tuple structure, and apart from the N-gram 
language models, it can also be used for the creation of large 
ASR search-networks including LMLA (language model look-
ahead) info, as presented in the following sections. Although 
operations on tuple structures, like insertion and deletion, are 
not well supported, they can be ignored in the case of LVCSR 
decoders, since tuple structures can be constructed once from a 
given data-set (off-line), and then only loaded and used within 
the runtime system. At the end, also compact representation of 
the tuple structure is very important. Namely, by compact 
representation of knowledge sources using tuple structures, the 
time needed to load the structures into the memory is 
significantly reduced. The techniques used in the presented 
work, can be seen as applications and extensions of perfect 
hashing based on finite-state automata. Therefore, the proposed 
implementation yields to flexible and compact representation 
of large scale knowledge sources and also LVCSR search-
networks in practice. The following section presents the basic 
formalism behind tuple structures. 

IV. TUPLE STRUCTURES 

A tuple structure 
jiT ,

is a finite function

  j

i ZWW ...1
. In this finite function, 

iWW ...1
 are 

simple sets of strings, and Z are the integers [3]. This finite 
function can map to a tuple of integers, or to a tuple of real 
numbers. The so-called word columns contain words (e.g. 
lexicon words, pronunciations, diphones, triphones, language 
models’ pairs, Look-Ahead pairs etc.). And the so-called 
number columns contain one or several integer numbers, or real 
numbers (e.g. N-gram probabilities, N-gram backoff-weights). 
Figure 1 presents part of the table forms used for the 
construction of tuple structures for a bigram language model, 
and for one of the layers within the LVCSR search network. In 
the first case, the word columns contain word sequences, and 
the number columns the bigram probabilities and backoff-
weights. In the second case, the word columns contain 
triphones and diphones, and the number columns contain the 
next layer ID and the next node type (context or model node). 
Perfect hash finite automata are needed for the tuple structures. 
The perfect hash finite automaton for a finite set of words W is 
such minimal deterministic acyclic finite automaton N that 
accepts each word in W. And each transition within the 
automaton has an assigned integer number j. Let some word w 
represents the i-th word of W. Then the sum of the integers 
along an accepting path in N is i. If N(w) refers to the hash key 
assigned to w by N, then the time spent for its computation  is 

 w  [3]. The perfect hash automata are needed in order to 

represent all the words in the word columns with hash keys. 
Furthermore, they can be used within the LVCSR decoder, 
when translation from the hash keys back into words is needed 
(e.g. ASR output results etc.). When there is enough overlap 
between the words from several word columns within the table 
forms, the same perfect hash automaton for all those columns 
can be used. Although, the tuple structures are able to take 

advantage of such shared dictionaries, it is not required that the 
dictionaries for different word columns are the same. 

 

Fig. 1. Table forms consisting of word and number columns. 

In general, several hash automata are used (one for each 
word column). Nevertheless, in the first case more space 
savings can be achieved. Figure 2 then shows the 
representation of word columns by the corresponding hash 
keys for the bigram language model and for one of the layers 
used in the ASR search-network. 

 

Fig. 2. Representation of word columns in table forms by using the hash 
keys. 

A. A Table Form for Compact Representation of Tuple 

structures 

The tuple structure   j

i

ji ZWWT ...: 1

,  is in general 

represented by maximal i perfect hash automata (when each 
word column has its own perfect hash automaton). Then, for 
each tuple structure a table form consisting of i+j rows is 
constructed (Figure 2). The table forms are constructed for each 

sequence 
iww ...1

in the domain of T. For T we have the 

following transformation    
ji zzwwT ...... 11  . The sequences 

of words 
nww  ...1

are converted into their hash-keys 

   nwNwN  ...1
 by using perfect hash automata. In this way, 

each word sequence is represented by a row in the table, 

consisting of     ji zzwNwN ,...,,,..., 11
[3]. As can be seen in 

Figure 2, all the cells in the table contain numbers at the end. 
For compact representation it is, therefore, important that each 
hash-key is represented with as few bytes as are required by the 
largest number within individual column. An additional benefit 
is the machine-independency of such representation. The tables 
also have to be sorted in order to guarantee sorted and unique 
entries. At the end, the tuple structure is represented by a table 
of packed numbers and i perfect hash automata that can be used 
for translating words into corresponding hash-keys and vice 
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versa. In order to access value(s) for a given sequence, a query 
string is needed, consisting of hash-keys. A binary search is 
used to find the corresponding entry within the table. The data 
for a given sequence can be obtained after an unpacking of the 
values found in the table is performed. The time needed for 
calculating the hash-keys is proportional to the combined 
length of words within the table’s entry. The binary search 

takes 
 jiTO ,log

 time and is proportional to the logarithm of 

the number of tuples. Tuple structures 
jiT ,

can also be 
constructed when i=1 (there is only one word column, e.g. 
unigrams for language model). In this case, the words in the 
word column are unique, therefore, their hash keys are also 

unique numbers from 
1...0 1 W

. Consequently, there is no 
need to store the hash keys of the words within the table.  
Instead, the hash-keys just serve as an index within the table. 
Also the lookup function is different. After the hash-key is 
obtained, it is used as the address of the numerical tuple.  

B. Tree representation 

The hash-key in the first column of the table can be the 
same for many rows (e.g. in Figure 2). On the other hand, a 

particular instance of initial words nkww k ,...1  
within a 

tuple may appear several times. The so-called trie structure is 
obtained when representing them only once, and providing a 
pointer towards the remaining part, and performing the same 
steps recursively for all the remaining columns. The 
corresponding edges from the root are labelled with all the 
hash-keys used in the first column. These edges then point 
towards the following vertices with outgoing edges, thus 
representing tuples that have the same two words at the 
beginning etc. In order to economize the storage space, only 
one copy of the hash-keys from the first few columns is kept. 
Additional memory for the pointers is also needed. Each vertex 
is represented as a vector of edges. Each edge then consists of 
the label (hash-key) and a pointer that always points to the first 
son of the vertex. In this way, the number of sons for a specific 
vertex can be defined as the difference between the pointer for 
the current vertex, and the pointer for the next one. Such 
representation works best if the table is dense, and if it has very 
few columns.  

According to [3], it is necessary to only construct the trie 
from the word columns. Namely, the numerical columns are 
the corresponding output, and can be kept intact. Furthermore, 
the overall size of the trie structure must be minimal. 
Therefore, the sizes of the used pointers should be as small as 
possible. Each level of the trie structure corresponds to a word 
column of a table, and is kept separate from other word 
columns. Next, each word column has a separate address. 
Pointers only point to the next column. In this way, they 
represent an index within the next column (is the ordinal 
number of the entry within the column that they point to), and 
not an index in all nodes of the trie. At all trie levels (except for 
the last one) all vertices have at least one son. Therefore, it is 
possible to store a given pointer again as a difference between 
the index of the item it points to, and the index of the current 
(pointing) item. The difference will always be non-negative. 
The size of the pointer is defined as the smallest number of 
bytes needed to represent the difference between the number of 

items within the next column and the number of items within 
the current one. We don’t need pointers for the last column. 
Namely, its indexes are the same as those in the numerical part 

of the tuple. Let’s e.g. try to access entry  iwwT ...1
. First, the 

value  1wN  is calculated, and then follows the search for it 

within the first column. When the value is not found, then the 

searched entry  iwwT ...1
 is not stored in the tuple. On the 

other hand, if the value  1wN  is found, the next value  2wN

has to be calculated and then searched in the specific portion of 
the second column. This portion is defined by the pointer found 

by  1wN . The portion end is defined by the pointer at the next 

hash-key value in the first column. The process continues into 
the next columns in the same way until reaching the hash key 
of the last word (or fail). The index of the hash-key for the 
word in the last column also represents the index in the 
numerical part of the tuple. Binary search is best to use to find 
the appropriate keys in specific portions of the word columns.  

A special case are those tuple structures
jiT ,
, where i=1. In 

this case there is no need to store the hash-keys of the words in 
the first word column. As the first word column is also the last 
one, there are also no pointers. Each hash-key of the first word 
column is just an index to the numerical part of the tuples. 

C. Representation of real numbers 

Especially in the case of N-gram language models, the 
number columns containing the N-gram probabilities and the 
backoff-weights, that demand most space. Therefore, their 
compact representation is even more important. Further, 
different computer platforms represent real numbers in a 
different way, using various precision. Therefore, porting 
numbers from one computer to another many times also results 
in loss of precision. The precision of a representation can be 
increased when we use more bytes. But in this case, the goal is 
also to achieve as compact a representation as possible (in the 
case of real numbers). Knowledge sources for the LVCSR 
decoder, in general, contain N-gram language models with real 
numbers that are frequently represented in textual form (e.g. 
ARPA language model). Obviously, loss of precision in this 
case has already happened and the precision of the 
representation as used in the LVCSR decoder cannot be any 
higher. When considering this, it is possible to specify the 
precision of the real numbers within the tuple data, based on 
the number of digits in the mantissa. In the case of ARPA 
language models, it is assumed that only the digits presented in 
the textual form of a number are significant. Then, each real 
number in a specific number column is decomposed into a 

normalized mantissa m and an exponent t, such that tmr 2 , 

5.0m or 0.0m . Let 
naaam .... 10


 be a representation of 

a mantissa m, where  


n

i

i

iam
0

2


. The precision  is then 

12 n
(the biggest number, where mm


). In this way, at 

least   18/ n bytes are needed to represent the mantissa with 

precision . The number of needed bytes for the exponent is 
also calculated, but in all practical applications it is one [3]. In 
the following sections, the SPREAD LVCSR decoder is 
presented in detail, especially by describing the implementation 
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of knowledge sources and the ASR search-network when using 
tuples. 

V. LVCSR DECODER – SPREAD – 

The SPREAD LVCSR decoder has been designed with a 
high degree of modularity. Figure 3 presents the high-level 
architecture of the decoder. The decoder architecture consists 
of four main blocks that are defined, or controlled depending 
on the specific application in mind. The code within each 
module is modularly and flexibly structured, thus enabling 
flexible configurations of the decoder engine.  

 
Fig. 3. Architecture of the SPREAD LVCSR decoder, based on the tuple 

structures. 

By using tuple structures, the language-dependent 
knowledge sources are separated from the decoder. 
Furthermore, the proposed methodology of constructing one 
compact tuple structure (large ASR search-network, with an N-
gram language model and LMLA information included), is 
performed off-line. Within the runtime decoder, the tuple 
structure is then loaded and used within the Viterbi-based 
search engine. Since the loading of the compact tuple structure 
is fast, even for large knowledge sources, the decoder is able to 
switch between several knowledge sources quickly and 
efficiently - even within a runtime system. All LVCSR decoder 
modules are written in C++ programming language. The off-
line methodology for constructing a tuple structure from 
knowledge sources is performed by set of Perl1 scripts, using 
several proprietary C++ FSM tools, as presented in the next 
sections.  

Specific application defines the knowledge sources that, in 
general, consist of lexical, phonetic, and acoustic knowledge. 
The lexical knowledge consists of known words, along with 
their corresponding pronunciations. Additionally, multiple 
pronunciations can be included with a prior probability for each 
pronunciation variant. The phonetic knowledge consists of 
fundamental units within the pronunciation lexicons that are 
modelled in the context of their neighbours. In this way they 
account for the systematic and contextual variations that can be 
found in natural spoken speech across word boundaries. The 
acoustic knowledge is described by way of the state emission 
probability density functions (PDF) associated with each state 
of each context-dependent phoneme. Several parameters tying 
schemes can be used in estimation of emission PDF. The 
frontend module takes care for acoustic pre-processing, and the 
parameterisation of the speech data. The SPREAD LVCSR 

                                                        
1
 http://www.perl.org/ 

decoder-block then performs the recognition. The decoding 
problem within the system is to find the most likely word 

sequence
n

n wwwW ,...,, 211  , given a sequence of acoustic 

observation vectors 
T

T oooO ,...,, 211  , obtained from the 

speech signal. According to the theory in [14], this can be 
described by the following equation: 

        












 
Tnn

S

nTTn

W

nTn

W

WSOPWPWOPWPW

111

1111111 ,maxargmaxargˆ  (1) 

where nW1  
stands for the sequence of words, 

T

T wssS ,....,, 211  represents any state sequence of length T, 

and  nWP 1
 comprises the language model (LM) representing 

prior linguistic knowledge independently of the observed 
acoustic information. In the SPREAD LVCSR decoder, this is 
carried out by using a stochastic N-gram, where word 
probabilities are only dependent on the N-1 predecessor, and 

 nT WOP 11
 represents the model of the lexical, phonetic, and 

acoustic knowledge. A complete search through such a space is 
still practically infeasible. Therefore, a number of approaches 
exist that try to solve this decoding problem. In the SPREAD 
LVCSR decoder, a time-synchronous search approximates the 
solution of the previous equation, by searching only for the 
most probable state sequence:  

   






  nTT

S

n

W

WSOPWPW
T

n
1111 ,maxmaxargˆ

1
1

        (2) 

Decoding within the SPREAD LVCSR decoder performs a 
time-synchronous search of a network of hypotheses. At each 
time-step only the best hypotheses arriving at each state are 
retained and, in order to improve the efficiency, only the most 
likely hypotheses are extended to the next time-step. As already 
mentioned, the decoder block does not construct the ASR 
search-network within the runtime system. Namely, it is 
constructed off-line in the form of one common tuple structure 
that is loaded into the system during initialisation, or changed 
any time during the on-line process. The final tuple structure 
combines a standard N-gram language model, pronunciation 
dictionary, Look-Ahead information, and seen/unseen 
triphones mapping info. The decoder block is based on the 
token-passing algorithm with beam-search, and histogram 
pruning. At run time, the decoder expands the model-level 
tuple structure-based network into a state-level network that is 
suitable for finding the best state-level path. The search module 
requires likelihood scores for any current feature vector, in 
order to generate the active list. The likelihoods are computed 
by the state probability computation module that has access to 
the feature vectors.  

VI. FSM TOOLS FOR THE CONSTRUCTION OF TUPLE 

STRUCTURES 

An important advantage when using tuples for speech 
decoding is that they enable the integration and optimisation of 
several knowledge sources under the same generic 
representation. The proposed methodology for compiling 
knowledge sources into common tuple structure is performed 
by using proprietarily developed FSM tools, based on the 
theory and tuple technology as proposed in [3]. In Figure 4, the 
fsmbuild, fsmhash, and fsmtuple are those tools needed for 
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compiling ASR knowledge sources into a corresponding tuple 
structures. Each ASR knowledge source can be split into N 
word columns, and M data columns. Further, the input data has 
to be sorted. Then perfect hash automata are built for word 
columns (by using the fsmbuild tool). In this way, a finite-state 
automaton is obtained that recognizes all words within 
individual word column (representing e.g. the triphones, 
diphones etc.) of the given knowledge source.  

 
Fig. 4. FSM tools used for compiling ASR knowledge sources. 

The perfect hash automata provide the mapping between 
words and a range of integer numbers – hash-keys. The exact 
numbering of the words is important for the tuple construction 
process. The perfect hash-automaton is at the end written into 
the file in binary form: a table of structures corresponding to 
arcs, with each arc containing a label, the number of arcs that 
lead from the node the arcs point to, and the index of the first 
arc that leads from the node the given arc points to. The 
fsmhash tool is used for translating words in specific word 
columns of the given knowledge source (e.g., diphones, 
triphones, words, etc.) into unique hash-keys. The input to the 
tool represents N built perfect hash automata and the 
corresponding N word columns’ lists created beforehand. The 
outputs are N hash lists. In any step within the SPREAD 
LVCSR decoder, the mappings from hash numbers back into 
strings, and vice versa, can be easily and efficiently performed 
using these perfect hash automata. The N hash lists and 
additional data columns (containing integer or real numbers) 
are stored as table forms. At the end, the fsmtuple tool creates a 
compact structure, named the tuple structure. As can be seen 
from Figure 5, the input for the tuple construction process is 
represented in table form (*.llist), consisting of N columns 
representing words (as hash-keys), and several numbers’ 
(integer or real) columns M+Y, representing tuple’s data. The 
number of all columns n has to be specified, and the number of 
word columns w in a table. Furthermore, the size of the 
mantissa s can be specified (or calculated). The hash-keys for 
words have already been computed before, using the fsmhash 
tool. Therefore, the first step is to find the sizes of these hash-
keys for each word column. Then the size of numbers in the 
numerical part is determined. The numerical part can contain 
integer or real numbers. The mantissa and exponent are 
calculated in the case of real numbers. The size of the whole 
number is, in this case, the sum of the mantissa size and the 
exponent size. In the case of integer numbers, the size of the 
numbers is just calculated. All these sizes are calculated as the 

number of needed bytes for storing the numbers within a 
specific column. In this way, only so many bytes as needed are 
used, to correctly represent any float or integer number within 
the columns of the table. Next, the tuple is constructed from the 
input table and written into the file. All data are written as 
bytes. Therefore, dedicated functions for converting numbers 
into bytes are used. Their input arguments are corresponding 
number and the calculated number of bytes that has to be used 
for its representation in bytes. As shown in Figure 6, the header 
is first written into tuple, containing e.g. the version, the 
word/number structure as described in the table, etc. Then, the 
sizes of the numbers for each column and sign vector (columns 
can also contain negative numbers) are written. Next, the 
calculated mantissa size is written for each column in the 
numerical part. 

 
Fig. 5. The steps used during the tuple-structure construction process. 

All data stored in the tuple structure is needed in order to 
correctly restore any number from bytes. Then, follows the 
construction of the tree structure: creation of the root node, 
with a list of pointers (1 for each child). These pointers point to 
records (ordered lists) of several fields e.g. hash-key, reference 
to a subtree etc. At the end, the indexes for the whole tree are 
calculated. Namely, the individual nodes of the tree are 
accessible via pointers from their parents. Nevertheless, in the 
tuple the pointers are replaced with indexes, being the ordinal 
numbers of the nodes within the corresponding layers. Then, 
the size of the whole tree is calculated (in bytes) and written 
into the file. Based on the indexes calculated and stored before, 
it is now possible to calculate and store addresses (at the byte 
level) of all columns in the tuple. This step is only needed 
when there is more than one word column in the table. At the 
end, the tree is also written into the tuple file (tree node’s IDs, 
corresponding numerical part as data etc.). In this way, the tree 
and the corresponding numerical data are represented in the 
form of bytes. Such a structure is also easily stored as a binary 
file. In fsmtuple tool's configuration file, only the number of all 
columns has to be defined, and a number of word columns 
within the table. Additionally, the developer can optionally 
specify the size of the mantissa (can also be calculated), the 
desired separator between the columns in the table, the desired 
precision for the real numbers, the tuple’s output file name, etc. 
All FSM tools are written in C++ programming language. 

 

 
Fig. 6. Binary representation of the tuple structure. 
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VII. APPLICATION OF TUPLES TO THE SPREAD LVCSR 

DECODER 

In this section we propose a novel design for a one-pass 
LVCSR decoder engine SPREAD, based on tuple structures. 
The application’s specific knowledge sources and ASR search-
network are represented in the form of tuple structures that are 
combined within compact tuple-based decoding network. All 
these steps can be performed off-line. The detailed architecture 
of the LVCSR decoder SPREAD is presented in Figure 7. 

 
Fig. 7. The architecture of the tuple-based LVCSR decoder SPREAD. 

The Viterbi search of the decoder is implemented using the 
token passing paradigm [27]. Hidden Markov Models (HMM) 
applying Gaussian Mixture Models (GMM) and the n-gram 
back-off language models are used to calculate the acoustic 
likelihoods of the context-dependent phones, and to calculate 
the language probabilities, respectively. The HMMs are 
organized within a static pronunciation prefix tree (PPT), as 
described in [8]. Each token contains a pointer to its LM 
history. Tokens coming from the leaves of the PPT are fed 
back into the root node of the tree after their n-gram history is 
updated. Token collisions will only occur for tokens with the 
same LM history. This means that each HMM state of each 
node in the PPT can contain a list of tokens with unique n-gram 
histories. These lists are sorted in descending order of the token 
probability scores.   

Furthermore, decoders that make use of token-passing, 
restrict their search-space by various types of token pruning. In 
PPT-based decoders the global pruning and word-end pruning 
are commonly used [8]. Within the LVCSR decoder SPREAD 
both beam pruning methods are supported. In the case of beam 
pruning, tokens with a probability value between the best found 
probability and the best probability minus a constant beam are 
retained at each time-frame. All those tokens that do not fall 
within this beam are deleted.  

During global beam pruning all tokens of the entire PPT are 
also compared to the best scoring token, and pruned if 
necessary. Word-end beam pruning is performed on all tokens 
that are at the leaves of the PPT, and for which the LM 

probabilities are incorporated into their probability scores. This 
pruning method is used to limit the number of tokens that are 
fed back into the root node of the PPT. Histogram pruning can 
also be used in the LVCSR decoder. Here, only the best N 
tokens are retained, when the number of tokens exceeds the 
maximum N (we significantly restrict required memory). 
Similar to beam pruning, histogram pruning can be performed 
both globally (global histogram pruning), and also in the leaves 
of the tree (word-end histogram pruning).   

By using the proposed language model look-ahead (LMLA) 
technique based on tuple structures, it is possible to increase 
the number of tokens that can be pruned without any loss of 
decoding precision. It is well-known that, in the case of token-
passing decoders that use PPT, full n-gram LMLA 
considerably increases the needed number of language model 
probability calculations. The SPREAD LVCSR decoder uses a 
full n-gram LMLA with a single static PPT, which is based on 
the tuple structures and efficient caching mechanism. 
Additionally, an LMLA index is assigned to each PPT's node, 
and an index to an LMLA field is added to each token list. The 
N-gram language model is also implemented in the form of a 
tuple structure. The language model knowledge is added to the 
hypothesis score at the PPT leaf nodes, and used by the LMLA 
mechanism.  

In the following subsections the proposed methodology for 
constructing a compact ASR search-network based on tuple 
structures for a LVCSR decoder SPREAD, is presented in 
detail. 

A. Compiling N-gram language models 

Compiling N-gram language models (LM) into a tuple 
structure is also performed off-line. In the presented LVCSR 
decoder configuration, the input represents the LM N-gram 
language model stored in ARPA format, as shown in Figure 8. 
The separation into 1-gram and 2-gram data is performed first. 
Each file consists of word and number columns, representing 
unigram/bigram probabilities, and backoff weights. Next, each 
file is split into separate word columns and number columns, 
since different tasks have to be performed on each of them. 
Pre-processing has to be performed, in order to obtain unique 
and sorted lists for each word column.  

The sorted word lists are then fed into the fsmbuild tool, 
and the corresponding perfect hash automata are built. In the 
next step the fsmhash tool is used, in order to translate all the 
words in the word columns into the corresponding lists, using 
hash-keys. Namely, for a final LM table form, hash keys are 
needed instead of words.  

Furthermore, by using perfect hash automata, it is possible 
to translate hash-keys back into words effectively and 
efficiently, and vice versa, when needed. The obtained hash 
lists and number (data) columns are then merged into the table, 
by specifying the desired separator between the columns, and 
given to the fsmtuple tool. Its output then represents a LM tuple 
structure that has an efficient and compact trie structure. 
Basically, two separate tuple structures are built, and then 
merged into one. One structure is constructed for unigrams, and 
the other for bigrams. 
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Fig. 8. Compilation process for N-gram language models. 

B. Compiling the LVCSR search network 

The main step within the proposed methodology for 
compiling ASR knowledge sources into a tuple structure 
represents the tuple-based construction of the ASR search-
network. This structure can be constructed off-line, and is 
based on the idea of static PPT, and the work done in [27]. The 
traditional phone-level tree can be made more efficient by 
utilizing HMM level state tying, which has also been 
implemented. Cross-word triphone contexts are handled by 
compiling several tuple structures, with which the PPT tuple 
structure is merged at the end of the procedure. The obtained 
tuple-based network structure is in this way very compact. A 
general search network consists of nodes that are linked to each 
other with arcs.  

These nodes can either correspond to one HMM state, or be 
dummy nodes without any acoustic probabilities associated 
with them. During decoding, the dummy nodes are passed 
immediately. They only mediate the tokens used to present the 
active search-network.  A node can also have a word identity 
associated with it, which leads to the insertion of the word into 
the word history of the token passing that node. The proposed 
procedure of compiling such a LVCSR search-network into a 
tuple structure, assumes triphone models, where every triphone 
is defined in the acoustic models, and they are not tied at the 
triphone level. Instead, each triphone has a set of HMM states 
(three states in a left-to-right topology), and these states are 
shared amongst all triphones.  

The state tying is performed using a decision tree. In this 
way the SPREAD LVCSR decoder is based on tuple-based 
network topology, including cross-word triphone models. The 
proposed methodology of compiling a search-network into a 
tuple structure follows the classical network topology idea, 
which is described with nodes and transition links, where the 
nodes are ordered in several layers [27].  

Such a network also uses application specific vocabulary, 
and a HMM model set. The goal was to build a compact tuple 
representation of such a network topology, and integrate within 
it all the needed knowledge sources, like tuple-based N-gram 
language models, and tuple-based LMLA info. Construction of 
the LVCSR search-network to be used by the SPREAD 
LVCSR decoder is performed off-line, and can be repeated for 
any other ASR knowledge source available for application. The 
proposed methodology is presented in Figure 9.  

 
Fig. 9. The construction of the tuple-based LVCSR search network (first 

step). 

The input represents a large dictionary. Firstly, the outsym 
and phonetic lexicons are built. A phonetic lexicon can be 
viewed as a list of word entries, where each entry contains 
orthography for the word and a corresponding list of 
pronunciations. A phonetic pronunciation in the dictionary can 
also contain a so-called output symbol. It is optional, but when 
present, the recognition output can use the specified output 
symbol rather than the word itself.  

Therefore, an additional outsym lexicon can be built when 
this info is available. Additionally, a phonetic transcription list 
is built, containing only phonetic transcriptions for all the 
words. This list is then used for the construction of three phone 
sets, named P (all 1- phoneme transcriptions), A (first 
phonemes of all transcriptions), and Z (last phoneme of all 
transcriptions). All these sets are used in the next step for the 
construction of nodes within all layers of the network topology, 
here numbered from 0 to 8.  

Layers 0, 2, 4, and 6 are those layers with model nodes, the 
other layers are used for context nodes. This step includes 
creation of the word final nodes (layer 0), silence (sil/sp) nodes, 
sentence start node (layer 3) and sentence end node (layer 5), 
word initial nodes (layer 4),  PPT nodes (layer 6), word end 
nodes (layer 7), and other context nodes in layers 1, 3, 5, and 8. 
1-phoneme words are represented with corresponding nodes in 
layer 3. The model nodes are actually triphones, and other 
nodes are diphones. All the model nodes are firstly represented 
by linguistic triphones (using linguistic phonetic transcriptions 
from the dictionary), and then replaced by acoustic ones using 
seen/unseen mapping lists.  
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Fig. 10. The construction of the tuple-based LVCSR search network (second 

step). 

In this way there is direct access from each model node to 
the corresponding HMM model stored within the HMM 
models’ array in the runtime decoder. Context nodes are 
represented as diphones, and word end nodes with unique node 
names (layer 7). PPT (layer 6) consists of several sublayers of 
triphone model nodes, depending on the length of the word. As 
seen in Figure 9, then follows the creation of links between all 
these nodes in layers from 0 to 8. In this way, the last nodes 
within the PPT structure (layer 6) are linked with the 
corresponding word end nodes in layer 7. The 1-phoneme 
nodes in layer 3 are linked with the corresponding word end 
nodes in layer 7. Furthermore, the context nodes in layer 5 are 
linked with the starting nodes of the PPT structure, and the 
model nodes in layer 4 are linked with the context nodes in 
layer 5. All the word end nodes are further linked with the 
nodes in layer 8. The final layer 8 is linked back to the 
corresponding model nodes in layer 0, and the model nodes in 
layer 0 with the corresponding context nodes in layer 1, and 
with the silence models in layer 2. Additionally, the context 
nodes in layer 1 are linked with the silence models. And the 
silence models in layer 1 are linked with the context nodes in 
layer 3. It is clear that each of such layers can be represented in 
the form of “word” and “number” columns. Namely, here word 
columns represent a node column, and a link column. 
Additional data (on transitions) can be added in the form of 
number columns, when needed. Since all layers can be 
represented in such a way, they can also be compiled into tuple 
structures. Therefore, all the constructed layers and lexicons are 
first split into word columns (actually diphones, triphones, 
ortographic, phonetic transcriptions, output symbols etc.) and 
translated into corresponding hash-keys (Figure 10). This is 
performed by using the fsmbuild and fsmhash tools. 
Additionally, in layers 0, 3, 4, 5, and 6, phonetic and LM 
information has to be added in the form of additional data 
columns (number columns). Next, a table form for each layer is 
constructed, consisting of several word and number columns 
(data). Finally, all the tuple structures are constructed and 

merged by using the fsmtuple tool. Additionally, LMLA 
indexing of all the nodes is performed. In this step all those 
nodes are numbered, where LMLA calculation has to be 
performed (the LMLA technique will be presented in the next 
subsection). The value 0 is assigned only to unique successors 
in the PPT, since in this case no LMLA calculation is needed. 
All nodes’ LMLA indices are stored as a binary file. Within the 
runtime system they are loaded, and then directly accessible via 
hash-keys.  

C. Compiling Language Model Look-Ahead Data 

Calculating all the possible LM probabilities for all the 
tokens takes a lot of time and consumes a lot of computational 
resources. When the lexical network is constructed as a static 
tuple-based PPT, as described in the previous subsection, word 
identities can be determined only after there are no more 
branches in the tree structure. Thus, any inclusion of the 
language model (LM) probability is delayed until the final 
nodes are reached. It is well-known that by using LM 
probabilities in such structure as early as possible, enhances the 
beam pruning and, therefore, decreases the size of the search-
space. This can be achieved by applying so-called language 
model Look-Ahead techniques. In the literature a number of 
methods are proposed for managing these calculations [8,16]. 
The least complex way for reducing the needed number of LM 
lookups whilst applying LMLA, is to use for the Look-Ahead 
only unigram probabilities. By using unigrams, the 
approximation of the best final LM score is less precise, but it 
becomes possible to integrate the corresponding Look-Ahead 
scores directly within the PPT. In this case, each node stores a 
single value: the difference between the best LM score from 
before and after entering the particular node. In the case of 
unigrams, these Look-Ahead values can be applied for all 
tokens, without regard to their n-gram history. However, it has 
been shown that unigram Look-Ahead is outperformed by 
higher order Look-Ahead systems [8]. A method that can be 
used for reducing the number of LM lookups has been 
proposed in [20]. In this case, all those PPT nodes with only 
one successor node are skipped when calculating the LMLA 
values. Their decoder used tree copies in order to incorporate 
the LM probabilities. Furthermore, whenever a new copy is 
required, the LMLA is performed on demand. In [11] at each 
PPT node, a special list is stored with all those words that are 
still reachable from that node. In the cases of small word lists, 
the Look-Ahead value is calculated exactly (each trigram 
probability is calculated, and the best one selected). Larger 
word lists at the PPT root node, are skipped. For all remaining 
lists, the intersection with the n-gram lists is calculated, before 
computing the corresponding LMLA values. This approach can 
save a considerable amount of search-time, especially for those 
words that do not have a trigram or bigram LM value. The 
proposed LMLA technique is based on tuple structures. In this 
approach, Look-Ahead structures are tuples that are constructed 
off-line. The LVCSR decoder SPREAD does not make tree 
copies. Instead, LM histories are stored in the tokens and the 
PPT tuple is shared by all the tokens. In this decoder, the 
language model knowledge is added to the hypothesis score at 
the PPT tuple’s leaf nodes. Incorporating the LM model at an 
early stage into the tuple structure, makes it possible to 
compare and prune the hypotheses based on both linguistic and 
acoustic evidence.  
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Fig. 11. Compiling LM Look-Ahead tuples for layers 4, 5, and 6. 

In the SPREAD LVCSR decoder, the LMLA tuple-based 
mechanism in the runtime system performs calculations for 
each token in the tuple, the LM probabilities for all words that 
are reachable from that token, and temporarily adds the best 
one to the token's score. When the token reaches a PPT tuple’s 
leaf node, the temporary LM probability is replaced by the 
probability of the word represented by the PPT tuple’s leaf 
node. Following this procedure, sharper beams can be applied 
during the pruning so that fewer tokens need to be processed 
and, consequently, the decoding is speeded up considerably. 
Each node within the PPT tuple that has more than one 
successor, or that is a leaf node, is assigned a unique LMLA 
index. These indices are found in the binary file ‘LMLA 
indices’ (Figure 10). The LM Look-Ahead score is computed 
by finding the maximum of the LM scores over the words in 
the specific node's list, only when the node’s LMLA index 
value is not 0. The words and the corresponding LM 
probabilities are accessed via LMLA tuple structures. 
Nevertheless, in order to minimize the significant amount of 
redundant computations involved in the LM Look-Ahead, a 
caching structure is also part of the LMLA process within a 
runtime system. The caching structure contains the Look-
Ahead values for those tokens with a particular language model 
history. In this way, for each node the maximum LM scores of 
the possible follow-up words are stored for specific word 
histories. The LMLA index of a specific node then points to 
these corresponding LMLA probabilities in cache. Using this 
method, each node’s LMLA probability is exactly calculated 
once. Therefore, in the case of a cache miss, the probabilities of 
all the words in the LM for the given word history are 
computed and stored to the cache. The LM Look-Ahead is 
applied only in those nodes where the list of possible word 
identities has changed from that of the previous nodes. 
Reducing the number of nodes in which LM Look-Ahead is 
applied also helps to save memory when node level caching is 
involved. Figure 11 illustrates the compiling of LMLA tuple 
structures to be used in the decoder. The input represents the 

seen/unseen triphones’ info, the dictionary, and the nodes from 
layers 4, 5, and 6, where LMLA has to be performed. 
Seen/unseen triphones’ info is needed in order to link the 
acoustic triphones’ nodes in these layers with the dictionary 
entries, as used in unigrams, and bigrams. After the LVCSR 
search-network (Figure 10) has been built, the node lists for 
layers 4, 5, and 6 can be created (consisting of diphones and 
triphones). The next step is the mapping. Based on the 
seen/unseen triphones’ info, the dictionary, and the node lists, 
for each layer corresponding maps are constructed, containing 
all the word identities that are reachable from each node in 
those layers. These maps are actually tables consisting of 
diphones or triphones in the first column, and corresponding 
possible words in the second. The next step is to split each map 
file into M separate word columns (one column contains layers’ 
nodes, and the other corresponding words from dictionary). 
Next, perfect hash automata are constructed for the M separate 
word columns, using the fsmbuild tool. Then all the entries in 
the M word columns are translated into hash-keys by using the 
fsmhash tool. Since the LM Look-Ahead structures are 
constructed off-line, LMLA values cannot already be stored 
directly within the LMLA tuple structure. Instead, N data 
columns are created, containing hash-keys for the 
corresponding N-grams, by using N-grams perfect hash 
automata and the fsmhash tool. In this way, direct access to LM 
scores is possible in the online LVCSR decoder, when the LM 
histories are also known. Now, the corresponding tables for all 
layers can be constructed, containing M separated word 
columns, and N number columns (unigram and bigram hash 
keys). Finally, the tables are compiled into tuple structures. In 
this way, three tuple structures are obtained. Within the runtime 
system they are accessed in layers 4, 5, and 6.  

VIII. RESULTS 

The LVCSR decoders used today employ acoustic models, 
pronunciation lexicon, N-gram language models, and other 
linguistic sources. An approach using efficient and compact 
tuple structures was proposed in the paper, for a construction of 
the LVCSR search network. As presented, tuple structures can 
be implemented as ordinary dictionaries. Namely, the elements 
within the tuple structures of a given key are concatenated with 
a selected separator symbol. This also means that a standard 
implementation of dictionaries can be employed based on 
perfect hash. The benefits are foremost, the important space 
savings and higher processing speed (automata), and the 
compact and reduced size of the tuple structure, especially 
when the structure of the key can be exploited (depending on 
the used knowledge sources). In this way, the time needed to 
load LVCSR search network into the memory is practically 
instantaneous. Furthermore, fast switching between several 
applications' specific knowledge sources is possible, since the 
LVCSR search network is already constructed off-line, and just 
loaded within the runtime system.  

As presented in this paper in detail, application specific 
ASR knowledge sources can be compiled into tuple-based 
LVCSR search-network. All the needed steps are accomplished 
by using several Perl scripts, with proprietary FSM tools, 
developed in the C++ programming language. The whole 
procedure is completed within a matter of minutes on a PC 
with Intel Core 2 Quad CPU, 2.83 GHz, with a 4 GB RAM. 
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The largest part is spent compiling the N-gram language model 
into the tuple structure. Overall, the whole compiling procedure 
is simple, fast, without a large memory, or processor 
requirements. In the experiment, the following ASR knowledge 
sources were used: context-dependent acoustic models 
(triphones), a dictionary, and an interpolated bigram language 
model. The dictionary contained 64K words, and the bigram 
language model consisted of 64K unigrams, and of approx. 7M 
bigrams. The proposed methodology for compiling ASR 
knowledge sources into a tuple structure, can also be used in 
the same way for higher-order language models (if available), 
and for other application specific knowledge sources, and 
languages.  

Table 1 presents the statistics about the layers’ nodes of the 
tuple-based LVCSR search network for this speech recognition 
task. Table 2 then presents statistics about the nodes of the 
tuple-based language models, and Table 3 presents statistics 
about the nodes in the tuple-based LMLA structures. These 
data are based on table forms constructed by using available 
knowledge sources. 

TABLE I.  THE LAYERS’ NODES IN THE TUPLE-BASED LVCSR SEARCH 

NETWORK 

Laye

r 

0 1 2 3 4 5 6 7 8 

Node

s 

8,15

5 

65

0 

65

1 

65

1 

7,22

1 

49

7 

1,254,73

9 

64,87

4 

65

0 

TABLE II.  THE NODES IN THE TUPLE-BASED LM MODEL 

N-gram 1-grams 2-grams 

Nodes 64,000 127,696 

TABLE III.  THE NODES IN THE TUPLE-BASED LMLA STRUCTURES 

LMLA LMLA – layer 4 LMLA – layer 5 LMLA – layer 6 

Nodes 71,183 64,457 66,645 

TABLE IV.  THE COMPACT SIZES OF TUPLES USED FOR LVCSR SEARCH 

NETWORK 

Layer 0 1 2 3 4 5 

Tuple 304kB 3.93kB 11.2kB 274kB 182kB 81.8kB 

Layer 6 7 8 

Tuple 5.87MB 380kB 47.1kB 

TABLE V.  THE COMPACT SIZES OF TUPLES USED FOR LM MODEL 

N-gram 1-grams 2-grams 

Tuple 812kB 63.4MB 

TABLE VI.  THE COMPACT SIZES FOR TUPLES FOR LMLA DATA 

LMLA LMLA – layer 4 LMLA – layer 5 LMLA – layer 6 

Tuple 9.43MB 438kB 440kB 

 
All the table forms additionally contain several data 

columns (number columns) that are used within the ASR 
system. The tables 4-6 then represent the achieved compact 
sizes of the tuples after compiling constructed table forms. The 
sizes reported in the tables are the sizes of the final compiled 
files. The overall size of the merged tuple structure loaded for 
the specific task by the SPREAD LVCSR decoder is 81.234 
MB for the 64k LVCSR task.  

The same task was also tested by HDecode [27]. In the case 
of HDecode, the loading of knowledge sources prepared in 
their format and construction of internal ASR structures, took 
50 times longer (since all the structures for the LM, LMLA and 
LVCSR search-network has to be constructed during 
initialisation). Furthermore, a set of 100 audio files was 
recognized by using both decoders in order to evaluate whether 
the tuple-based decoder also showed any benefits regarding the 
processing speed. In both systems the same configuration was 
performed in order to compare the obtained results. In the case 
of the SPREAD LVCSR decoder, approx. 20% higher 
processing speed was achieved, without loss of recognition 
accuracy. All the experiments were performed on a PC with 
Intel Core 2 Quad CPU, 2.83 GHz, with a 4 GB RAM. 

IX. CONCLUSION 

This paper presented the novel design of a LVCSR decoder 
engine, named SPREAD. This LVCSR decoder is based on a 
time-synchronous beam search approach. The ASR search 
network includes statically expanded cross-word triphone 
contexts. An approach using efficient tuple structures was 
proposed and presented, for constructing a complete ASR 
search-network. These data structures were motivated by 
practical applications in speech and language processing. The 
used technique for compact representation of tuple structures 
can be seen as an application and extension of perfect hashing 
by means of finite-state automata. Therefore, the benefits are 
foremost the important space savings and higher processing 
speed. Furthermore, the advantage of the proposed LVCSR 
decoder implementation based on tuple structures is the 
compact and reduced size of the tuple structure, especially 
when exploiting the structure of the key (n-tuples of strings). 
Therefore, the time needed to load an ASR search-network into 
the memory is also significantly reduced. Further, in the paper 
the complete methodology of compiling general ASR 
knowledge sources into a tuple structure (representing an ASR 
search-network) was proposed and presented. It has been 
shown that ASR knowledge sources can be implemented by 
ordinary dictionaries, where the elements in the tuple of a given 
key are concatenated with a specific separator symbol of our 
choice. Therefore, a standard implementation of dictionaries 
can be employed, typically a hash table or perfect hash.  

Furthermore, the beam search was enhanced with a novel 
implementation of bigram language model Look-Ahead 
technique, by using a tuple structure and a caching scheme. The 
SPREAD LVCSR decoder is based on a token-passing 
algorithm and is able to restrict search-space by several types 
of token pruning. By using the presented language model look-
ahead (LMLA) technique, it is possible to increase the number 
of tokens that can be pruned without any decoding precision 
loss. 
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