
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

23 | P a g e
www.ijacsa.thesai.org

Novel LVCSR Decoder Based on Perfect Hash

Automata and Tuple Structures – SPREAD –

Matej Rojc

Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia

Kačič Zdravko

Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia

Abstract— The paper presents the novel design of a one-pass

large vocabulary continuous-speech recognition decoder engine,

named SPREAD. The decoder is based on a time-synchronous

beam-search approach, including statically expanded cross-word

triphone contexts. An approach using efficient tuple structures is

proposed for the construction of the complete search-network.

The foremost benefits are the important space savings and higher

processing speed, and the compact and reduced size of the tuple

structure, especially when exploiting the structure of the key. In

this way, the time needed to load the ASR search-network into

the memory is also significantly reduced. Further, the paper

proposes and presents the complete methodology for compiling

general ASR knowledge sources into a tuple structures.

Additionally, the beam search is enhanced with the novel

implementation of a bigram language model Look-Ahead

technique, by using tuple structures and a caching scheme. The

SPREAD LVCSR decoder is based on a token-passing algorithm,

capable of restricting its search-space by several types of token

pruning. By using the presented language model Look-Ahead

technique, it is possible to increase the number of tokens that can
be pruned without decoding precision loss.

Keywords—LVCSR decoder; tuple structure; finite automata;

perfect hashing; Look-Ahead; language models

I. INTRODUCTION

A LVCSR decoder represents a major component in the
development of any continuous speech-recognition system.
Since tasks’ and systems' complexities are constantly
increasing, the decoder becomes an increasingly significant
component within the overall development of compact and
efficient speech-recognition systems. Therefore, more efficient
designs can improve the trade-off between the needed decoding
time and the recognition error rate. Furthermore, large
knowledge sources are used in the LVCSR decoder, enabling
estimation of the most likely word sequence from specific
acoustic evidence. In general, these knowledge sources are:
acoustic models (HMM - Hidden Markov Models),
pronunciation lexicon, and N-gram language models. More and
more new application areas require increase in the complexity
of acoustic, lexicon and language models used in LVCSR
decoders. Consequently, the requirements for time and space
efficiency of LVCSR decoders are becoming greater and
greater, despite the continuous growth of hardware
performance, and GPU-like parallel processing. Therefore,
efficient management of all these knowledge-sources, and
efficient decoding of the acoustic input, still remains important

issues and challenging tasks. Furthermore, in LVCSR decoders
a lot of optimisation techniques, specific architectures, and
heuristics have to be used and developed in order to achieve
lower computational complexity and lower memory
requirements. Progress regarding LVCSR decoding algorithms,
together with the availability of ever increasing computing
power and memory capacity, has also resulted in more accurate
and close to real-time LVCSR decoders for tasks such as, e.g.
broadcast news transcription, conversational telephone speech
recognition systems etc. Technology based on weighted finite-
state machines (WFSM) has already shown that it is possible to
efficiently encode all those knowledge sources present within a
speech-recognition system, such as e.g. language models,
pronunciation dictionaries, context decision-trees, etc. By using
them, a LVCSR network is usually obtained by a composition
of several WFSTs. After using minimisation algoritms, an
LVCSR network can be directly used in a Viterbi-based
LVCSR decoder. These decoders have already been shown to
yield good performance when compared to the classic
approaches. This results in the implementations of several
Viterbi-based decoders using FSA technology [7, 16, 17, 18,
19, 24]. Nevertheless, the complexity of acoustic and language
models used in speech recognition tasks still imposes growing
requirements for the efficiency and accuracy of LVCSR
decoders, and fosters the development of new approaches and
techniques such as, e.g. cross-word acoustic models and long-
span language models, already resulted in the development of
several solutions for the speech-decoding problem [1, 2, 5, 6, 8,
10, 21, 22].

II. RELATED WORK

Nowadays, a lot of speech-decoding software packages
exist that employ a number of different decoding techniques,
based on time synchronous Viterbi search and many are also
available for research purposes. CMU/Sphinx, released by
Carnegie Mellon University (CMU) [26], contains less features
and flexibility, but in contrast to HTK [27], focuses more on
speed and was one of the first ASR systems to offer support for
speaker-independent Large Vocabulary Continuous Speech
Recognition (LVCSR) system. Latest versions, although less
efficient than previously, are more flexible and enables faster
and easier development and maintainance of different
applications [17]. Further, the Julius LVCSR decoder is a high-
performance, two-pass decoder, focusing on performance,
modularity, and availability [9]. The HTK framework is very
flexible and comprises a lot of state-of-the-art ASR features,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

24 | P a g e
www.ijacsa.thesai.org

e.g. vocal tract length normalization (VTLN), heteroscedastic
linear discriminant analysis (HLDA) and discriminative
training with maximum mutual information (MMI), and
minimum phone error (MPE) criteria [15,27]. Some of the
decoder implementations have shifted from dynamic search to
static graphs in the form of probabilistic weighted finite-state
transducers (WFSTs) [4, 7, 18]. Architectures based on the
theory of weighted finite-state transducers represent flexible
and efficient decoder architectures. The advantages of this
implementation can be seen in the simplicity of LVCSR
decoders and the seamless composition of lexicon, acoustic,
and language models. One of the most efficient solutions for
search-network optimization is the WFST framework from
[12]. In these architectures, all the knowledge sources are
combined together statically. Furthermore, the search network
can be optimised for maximal efficiency. In such LVCSR
systems the decoding network is usually compiled
independently of the LVCSR decoder itself, in this way
representing also more flexible solutions for e.g. the
incorporation of several application-specific knowledge
sources. Nevertheless, Mohri's approach can restrict the
complexity of the knowledge sources, and prevent some on-
the-fly adaptation [22]. A drawback can also be seen in the
memory requirements for the compilation of very large static
decoding networks for LVCSR systems, although today this
issue has become less crucial because of the availability of 64-
bit systems, and a lot of available RAM memory. Another
approach from [25] expands the search network dynamically.
This approach, on the other hand, can be computationally too
expensive for efficient decoding regarding larger LVCSR
tasks. Recently, the Juicer WFST decoder has become a
popular WFST-based alternative to the tree-based dynamic
decoders, as provided with the HTK and Sphinx toolkits. The
T3 WFST decoder is a system that performs favorably against
several established decoders in the field, including the Juicer,
Sphinx, and HDecode [27] in terms of RTF versus Word
Accuracy [17]. In the case of the T3 WFST decoder, in
addition to the existing HTK conversion tool, a tool has also
been developed for converting arbitrary Sphinx format acoustic
models into a format suitable for use with the T3 WFST
decoder [4]. Juicer provides similar functionality to the T3
WFST decoder in terms of the model inputs it accepts. It is
capable of performing decoding on both static cascades, as well
as on-the-fly composition, and it has been developed to read in
HTK-based acoustic models in native format [13].

This paper proposes a novel LVCSR decoder named
SPREAD that is implemented by using efficient perfect-hash
automata and tuple structures. The complete search network is
compiled independently of the LVCSR decoder (off-line),
including the needed pronunciation lexicon, language models
and Look-Ahead structures, and can be fast loaded by the
runtime system. The language model information is, in this
way, dynamically obtained during the search within the
LVCSR decoding engine. Furthermore, the proposed off-line
compilation methodology of large static networks is simple and
fast, even on 32-bit machines with less available RAM
memory. In this LVCSR decoder, the novel implementation of
the language model Look-Ahead technique (used to enhance
the beam search results), based on tuple structures, is further
integrated. In this way, the proposed LVCSR decoder

incorporates several novel design strategies, which have not
been used earlier in conventional decoders of HMM-based
large vocabulary speech recognition systems. The paper starts
with a motivation for using tuple structures in speech-
technology-related applications, and for developing a LVCSR
decoder, based on tuple structures. Firstly, the formalism
behind tuple structures is presented, regarding their form and
representation. Then the presentation of the LVCSR decoder
technology used within the LVCSR SPREAD decoder follows.
Next, the proprietary FSM tools are discussed and their
application for the construction of tuple structures when
developing LVCSR decoders. The main part of the paper
represents the proposed compilation methodology of all the
tuple structures used within a general LVCSR decoder.
Additionally, the implementation of a large-scale search-
network using tuple structures is described in detail. The
proposed work is based on real implementation of the LVCSR
decoder based on tuple structures, as used for 64k broadcast
news transcription speech-recognition task for the Slovenian
language. Statistics and achieved compactness of the proposed
implementation are, therefore, presented in Section 8. In this
way, the paper familiarizes the readers with the design
solutions encountered, when building a tuple-based LVCSR
decoders. The conclusion is drawn at the end.

III. MOTIVATION

The general practical issue in LVCSR speech-recognition
applications concerns the size of the knowledge sources, and
the size of the complete search-network. This issue can be even
more crucial when the knowledge sources are consulted
frequently and must, therefore, be loaded into the memory.
Perfect hashing techniques based on finite-state automata can
be very efficient when solving these problems [3, 23]. Namely,
as will be shown, they enable compact representations without
sacrificing the lookup time. In the case of LVCSR speech-
recognition applications, large dictionaries are not the only
space-consuming resources. Namely, several types of language
models containing statistical information about the co-
occurrence of words, require even more memory space, and
also at the same time as fast lookup operations as possible –
LVCSR systems need to be capable of working with e.g.
bigram, trigram, fourgram models etc. Therefore, for speech-
recognition applications, the achievable size and compactness
of language models and other knowledge sources within the
runtime system represent an important practical
implementation issue, and also motivation for the work
presented in this paper. The Slovenian language is a highly
inflectional language. Therefore, the number of distinct word
forms in everyday use is very large, resulting in large
knowledge sources for general LVCSR speech recognition
tasks. When considering this, efficient management of the data
structures’ size when representing knowledge sources, and the
lookup efficiency, are general requirements. In this respect a
very compact representation of knowledge sources and the
search-network is needed, and a highly-optimized LVCSR
ASR decoder must be implemented. In order to better cope
with this problem, it was decided to work on a new design
approach for the development of an LVCSR decoder that is
based completely on perfect hash automata and the so-called
tuple structures, by following the established theory on tuples

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

25 | P a g e
www.ijacsa.thesai.org

in [3]. In general, the needed knowledge sources for LVCSR
ASR decoder can be represented in the form of a simple data
structure that defines a mapping from some strings to some
value. These data structures can be easily generalized, in which
the keys are n-tuples of strings, for a fixed n. Such data
structure is called tuple structure, and apart from the N-gram
language models, it can also be used for the creation of large
ASR search-networks including LMLA (language model look-
ahead) info, as presented in the following sections. Although
operations on tuple structures, like insertion and deletion, are
not well supported, they can be ignored in the case of LVCSR
decoders, since tuple structures can be constructed once from a
given data-set (off-line), and then only loaded and used within
the runtime system. At the end, also compact representation of
the tuple structure is very important. Namely, by compact
representation of knowledge sources using tuple structures, the
time needed to load the structures into the memory is
significantly reduced. The techniques used in the presented
work, can be seen as applications and extensions of perfect
hashing based on finite-state automata. Therefore, the proposed
implementation yields to flexible and compact representation
of large scale knowledge sources and also LVCSR search-
networks in practice. The following section presents the basic
formalism behind tuple structures.

IV. TUPLE STRUCTURES

A tuple structure
jiT ,

is a finite function

  j

i ZWW ...1
. In this finite function,

iWW ...1
 are

simple sets of strings, and Z are the integers [3]. This finite
function can map to a tuple of integers, or to a tuple of real
numbers. The so-called word columns contain words (e.g.
lexicon words, pronunciations, diphones, triphones, language
models’ pairs, Look-Ahead pairs etc.). And the so-called
number columns contain one or several integer numbers, or real
numbers (e.g. N-gram probabilities, N-gram backoff-weights).
Figure 1 presents part of the table forms used for the
construction of tuple structures for a bigram language model,
and for one of the layers within the LVCSR search network. In
the first case, the word columns contain word sequences, and
the number columns the bigram probabilities and backoff-
weights. In the second case, the word columns contain
triphones and diphones, and the number columns contain the
next layer ID and the next node type (context or model node).
Perfect hash finite automata are needed for the tuple structures.
The perfect hash finite automaton for a finite set of words W is
such minimal deterministic acyclic finite automaton N that
accepts each word in W. And each transition within the
automaton has an assigned integer number j. Let some word w
represents the i-th word of W. Then the sum of the integers
along an accepting path in N is i. If N(w) refers to the hash key
assigned to w by N, then the time spent for its computation is

 w [3]. The perfect hash automata are needed in order to

represent all the words in the word columns with hash keys.
Furthermore, they can be used within the LVCSR decoder,
when translation from the hash keys back into words is needed
(e.g. ASR output results etc.). When there is enough overlap
between the words from several word columns within the table
forms, the same perfect hash automaton for all those columns
can be used. Although, the tuple structures are able to take

advantage of such shared dictionaries, it is not required that the
dictionaries for different word columns are the same.

Fig. 1. Table forms consisting of word and number columns.

In general, several hash automata are used (one for each
word column). Nevertheless, in the first case more space
savings can be achieved. Figure 2 then shows the
representation of word columns by the corresponding hash
keys for the bigram language model and for one of the layers
used in the ASR search-network.

Fig. 2. Representation of word columns in table forms by using the hash
keys.

A. A Table Form for Compact Representation of Tuple

structures

The tuple structure   j

i

ji ZWWT ...: 1

, is in general

represented by maximal i perfect hash automata (when each
word column has its own perfect hash automaton). Then, for
each tuple structure a table form consisting of i+j rows is
constructed (Figure 2). The table forms are constructed for each

sequence
iww ...1

in the domain of T. For T we have the

following transformation    
ji zzwwT 11  . The sequences

of words
nww ...1

are converted into their hash-keys

   nwNwN ...1
 by using perfect hash automata. In this way,

each word sequence is represented by a row in the table,

consisting of     ji zzwNwN ,...,,,..., 11
[3]. As can be seen in

Figure 2, all the cells in the table contain numbers at the end.
For compact representation it is, therefore, important that each
hash-key is represented with as few bytes as are required by the
largest number within individual column. An additional benefit
is the machine-independency of such representation. The tables
also have to be sorted in order to guarantee sorted and unique
entries. At the end, the tuple structure is represented by a table
of packed numbers and i perfect hash automata that can be used
for translating words into corresponding hash-keys and vice

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

26 | P a g e
www.ijacsa.thesai.org

versa. In order to access value(s) for a given sequence, a query
string is needed, consisting of hash-keys. A binary search is
used to find the corresponding entry within the table. The data
for a given sequence can be obtained after an unpacking of the
values found in the table is performed. The time needed for
calculating the hash-keys is proportional to the combined
length of words within the table’s entry. The binary search

takes
 jiTO ,log

 time and is proportional to the logarithm of

the number of tuples. Tuple structures
jiT ,

can also be
constructed when i=1 (there is only one word column, e.g.
unigrams for language model). In this case, the words in the
word column are unique, therefore, their hash keys are also

unique numbers from
1...0 1 W

. Consequently, there is no
need to store the hash keys of the words within the table.
Instead, the hash-keys just serve as an index within the table.
Also the lookup function is different. After the hash-key is
obtained, it is used as the address of the numerical tuple.

B. Tree representation

The hash-key in the first column of the table can be the
same for many rows (e.g. in Figure 2). On the other hand, a

particular instance of initial words nkww k ,...1
within a

tuple may appear several times. The so-called trie structure is
obtained when representing them only once, and providing a
pointer towards the remaining part, and performing the same
steps recursively for all the remaining columns. The
corresponding edges from the root are labelled with all the
hash-keys used in the first column. These edges then point
towards the following vertices with outgoing edges, thus
representing tuples that have the same two words at the
beginning etc. In order to economize the storage space, only
one copy of the hash-keys from the first few columns is kept.
Additional memory for the pointers is also needed. Each vertex
is represented as a vector of edges. Each edge then consists of
the label (hash-key) and a pointer that always points to the first
son of the vertex. In this way, the number of sons for a specific
vertex can be defined as the difference between the pointer for
the current vertex, and the pointer for the next one. Such
representation works best if the table is dense, and if it has very
few columns.

According to [3], it is necessary to only construct the trie
from the word columns. Namely, the numerical columns are
the corresponding output, and can be kept intact. Furthermore,
the overall size of the trie structure must be minimal.
Therefore, the sizes of the used pointers should be as small as
possible. Each level of the trie structure corresponds to a word
column of a table, and is kept separate from other word
columns. Next, each word column has a separate address.
Pointers only point to the next column. In this way, they
represent an index within the next column (is the ordinal
number of the entry within the column that they point to), and
not an index in all nodes of the trie. At all trie levels (except for
the last one) all vertices have at least one son. Therefore, it is
possible to store a given pointer again as a difference between
the index of the item it points to, and the index of the current
(pointing) item. The difference will always be non-negative.
The size of the pointer is defined as the smallest number of
bytes needed to represent the difference between the number of

items within the next column and the number of items within
the current one. We don’t need pointers for the last column.
Namely, its indexes are the same as those in the numerical part

of the tuple. Let’s e.g. try to access entry  iwwT ...1
. First, the

value  1wN is calculated, and then follows the search for it

within the first column. When the value is not found, then the

searched entry  iwwT ...1
 is not stored in the tuple. On the

other hand, if the value  1wN is found, the next value  2wN

has to be calculated and then searched in the specific portion of
the second column. This portion is defined by the pointer found

by  1wN . The portion end is defined by the pointer at the next

hash-key value in the first column. The process continues into
the next columns in the same way until reaching the hash key
of the last word (or fail). The index of the hash-key for the
word in the last column also represents the index in the
numerical part of the tuple. Binary search is best to use to find
the appropriate keys in specific portions of the word columns.

A special case are those tuple structures
jiT ,
, where i=1. In

this case there is no need to store the hash-keys of the words in
the first word column. As the first word column is also the last
one, there are also no pointers. Each hash-key of the first word
column is just an index to the numerical part of the tuples.

C. Representation of real numbers

Especially in the case of N-gram language models, the
number columns containing the N-gram probabilities and the
backoff-weights, that demand most space. Therefore, their
compact representation is even more important. Further,
different computer platforms represent real numbers in a
different way, using various precision. Therefore, porting
numbers from one computer to another many times also results
in loss of precision. The precision of a representation can be
increased when we use more bytes. But in this case, the goal is
also to achieve as compact a representation as possible (in the
case of real numbers). Knowledge sources for the LVCSR
decoder, in general, contain N-gram language models with real
numbers that are frequently represented in textual form (e.g.
ARPA language model). Obviously, loss of precision in this
case has already happened and the precision of the
representation as used in the LVCSR decoder cannot be any
higher. When considering this, it is possible to specify the
precision of the real numbers within the tuple data, based on
the number of digits in the mantissa. In the case of ARPA
language models, it is assumed that only the digits presented in
the textual form of a number are significant. Then, each real
number in a specific number column is decomposed into a

normalized mantissa m and an exponent t, such that tmr 2 ,

5.0m or 0.0m . Let
naaam 10


 be a representation of

a mantissa m, where  


n

i

i

iam
0

2


. The precision  is then

12 n
(the biggest number, where mm


). In this way, at

least   18/ n bytes are needed to represent the mantissa with

precision . The number of needed bytes for the exponent is
also calculated, but in all practical applications it is one [3]. In
the following sections, the SPREAD LVCSR decoder is
presented in detail, especially by describing the implementation

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

27 | P a g e
www.ijacsa.thesai.org

of knowledge sources and the ASR search-network when using
tuples.

V. LVCSR DECODER – SPREAD –

The SPREAD LVCSR decoder has been designed with a
high degree of modularity. Figure 3 presents the high-level
architecture of the decoder. The decoder architecture consists
of four main blocks that are defined, or controlled depending
on the specific application in mind. The code within each
module is modularly and flexibly structured, thus enabling
flexible configurations of the decoder engine.

Fig. 3. Architecture of the SPREAD LVCSR decoder, based on the tuple

structures.

By using tuple structures, the language-dependent
knowledge sources are separated from the decoder.
Furthermore, the proposed methodology of constructing one
compact tuple structure (large ASR search-network, with an N-
gram language model and LMLA information included), is
performed off-line. Within the runtime decoder, the tuple
structure is then loaded and used within the Viterbi-based
search engine. Since the loading of the compact tuple structure
is fast, even for large knowledge sources, the decoder is able to
switch between several knowledge sources quickly and
efficiently - even within a runtime system. All LVCSR decoder
modules are written in C++ programming language. The off-
line methodology for constructing a tuple structure from
knowledge sources is performed by set of Perl1 scripts, using
several proprietary C++ FSM tools, as presented in the next
sections.

Specific application defines the knowledge sources that, in
general, consist of lexical, phonetic, and acoustic knowledge.
The lexical knowledge consists of known words, along with
their corresponding pronunciations. Additionally, multiple
pronunciations can be included with a prior probability for each
pronunciation variant. The phonetic knowledge consists of
fundamental units within the pronunciation lexicons that are
modelled in the context of their neighbours. In this way they
account for the systematic and contextual variations that can be
found in natural spoken speech across word boundaries. The
acoustic knowledge is described by way of the state emission
probability density functions (PDF) associated with each state
of each context-dependent phoneme. Several parameters tying
schemes can be used in estimation of emission PDF. The
frontend module takes care for acoustic pre-processing, and the
parameterisation of the speech data. The SPREAD LVCSR

1
 http://www.perl.org/

decoder-block then performs the recognition. The decoding
problem within the system is to find the most likely word

sequence
n

n wwwW ,...,, 211  , given a sequence of acoustic

observation vectors
T

T oooO ,...,, 211  , obtained from the

speech signal. According to the theory in [14], this can be
described by the following equation:

        












 
Tnn

S

nTTn

W

nTn

W

WSOPWPWOPWPW

111

1111111 ,maxargmaxargˆ (1)

where nW1
stands for the sequence of words,

T

T wssS ,....,, 211  represents any state sequence of length T,

and  nWP 1
 comprises the language model (LM) representing

prior linguistic knowledge independently of the observed
acoustic information. In the SPREAD LVCSR decoder, this is
carried out by using a stochastic N-gram, where word
probabilities are only dependent on the N-1 predecessor, and

 nT WOP 11
 represents the model of the lexical, phonetic, and

acoustic knowledge. A complete search through such a space is
still practically infeasible. Therefore, a number of approaches
exist that try to solve this decoding problem. In the SPREAD
LVCSR decoder, a time-synchronous search approximates the
solution of the previous equation, by searching only for the
most probable state sequence:

   






  nTT

S

n

W

WSOPWPW
T

n
1111 ,maxmaxargˆ

1
1

 (2)

Decoding within the SPREAD LVCSR decoder performs a
time-synchronous search of a network of hypotheses. At each
time-step only the best hypotheses arriving at each state are
retained and, in order to improve the efficiency, only the most
likely hypotheses are extended to the next time-step. As already
mentioned, the decoder block does not construct the ASR
search-network within the runtime system. Namely, it is
constructed off-line in the form of one common tuple structure
that is loaded into the system during initialisation, or changed
any time during the on-line process. The final tuple structure
combines a standard N-gram language model, pronunciation
dictionary, Look-Ahead information, and seen/unseen
triphones mapping info. The decoder block is based on the
token-passing algorithm with beam-search, and histogram
pruning. At run time, the decoder expands the model-level
tuple structure-based network into a state-level network that is
suitable for finding the best state-level path. The search module
requires likelihood scores for any current feature vector, in
order to generate the active list. The likelihoods are computed
by the state probability computation module that has access to
the feature vectors.

VI. FSM TOOLS FOR THE CONSTRUCTION OF TUPLE

STRUCTURES

An important advantage when using tuples for speech
decoding is that they enable the integration and optimisation of
several knowledge sources under the same generic
representation. The proposed methodology for compiling
knowledge sources into common tuple structure is performed
by using proprietarily developed FSM tools, based on the
theory and tuple technology as proposed in [3]. In Figure 4, the
fsmbuild, fsmhash, and fsmtuple are those tools needed for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

28 | P a g e
www.ijacsa.thesai.org

compiling ASR knowledge sources into a corresponding tuple
structures. Each ASR knowledge source can be split into N
word columns, and M data columns. Further, the input data has
to be sorted. Then perfect hash automata are built for word
columns (by using the fsmbuild tool). In this way, a finite-state
automaton is obtained that recognizes all words within
individual word column (representing e.g. the triphones,
diphones etc.) of the given knowledge source.

Fig. 4. FSM tools used for compiling ASR knowledge sources.

The perfect hash automata provide the mapping between
words and a range of integer numbers – hash-keys. The exact
numbering of the words is important for the tuple construction
process. The perfect hash-automaton is at the end written into
the file in binary form: a table of structures corresponding to
arcs, with each arc containing a label, the number of arcs that
lead from the node the arcs point to, and the index of the first
arc that leads from the node the given arc points to. The
fsmhash tool is used for translating words in specific word
columns of the given knowledge source (e.g., diphones,
triphones, words, etc.) into unique hash-keys. The input to the
tool represents N built perfect hash automata and the
corresponding N word columns’ lists created beforehand. The
outputs are N hash lists. In any step within the SPREAD
LVCSR decoder, the mappings from hash numbers back into
strings, and vice versa, can be easily and efficiently performed
using these perfect hash automata. The N hash lists and
additional data columns (containing integer or real numbers)
are stored as table forms. At the end, the fsmtuple tool creates a
compact structure, named the tuple structure. As can be seen
from Figure 5, the input for the tuple construction process is
represented in table form (*.llist), consisting of N columns
representing words (as hash-keys), and several numbers’
(integer or real) columns M+Y, representing tuple’s data. The
number of all columns n has to be specified, and the number of
word columns w in a table. Furthermore, the size of the
mantissa s can be specified (or calculated). The hash-keys for
words have already been computed before, using the fsmhash
tool. Therefore, the first step is to find the sizes of these hash-
keys for each word column. Then the size of numbers in the
numerical part is determined. The numerical part can contain
integer or real numbers. The mantissa and exponent are
calculated in the case of real numbers. The size of the whole
number is, in this case, the sum of the mantissa size and the
exponent size. In the case of integer numbers, the size of the
numbers is just calculated. All these sizes are calculated as the

number of needed bytes for storing the numbers within a
specific column. In this way, only so many bytes as needed are
used, to correctly represent any float or integer number within
the columns of the table. Next, the tuple is constructed from the
input table and written into the file. All data are written as
bytes. Therefore, dedicated functions for converting numbers
into bytes are used. Their input arguments are corresponding
number and the calculated number of bytes that has to be used
for its representation in bytes. As shown in Figure 6, the header
is first written into tuple, containing e.g. the version, the
word/number structure as described in the table, etc. Then, the
sizes of the numbers for each column and sign vector (columns
can also contain negative numbers) are written. Next, the
calculated mantissa size is written for each column in the
numerical part.

Fig. 5. The steps used during the tuple-structure construction process.

All data stored in the tuple structure is needed in order to
correctly restore any number from bytes. Then, follows the
construction of the tree structure: creation of the root node,
with a list of pointers (1 for each child). These pointers point to
records (ordered lists) of several fields e.g. hash-key, reference
to a subtree etc. At the end, the indexes for the whole tree are
calculated. Namely, the individual nodes of the tree are
accessible via pointers from their parents. Nevertheless, in the
tuple the pointers are replaced with indexes, being the ordinal
numbers of the nodes within the corresponding layers. Then,
the size of the whole tree is calculated (in bytes) and written
into the file. Based on the indexes calculated and stored before,
it is now possible to calculate and store addresses (at the byte
level) of all columns in the tuple. This step is only needed
when there is more than one word column in the table. At the
end, the tree is also written into the tuple file (tree node’s IDs,
corresponding numerical part as data etc.). In this way, the tree
and the corresponding numerical data are represented in the
form of bytes. Such a structure is also easily stored as a binary
file. In fsmtuple tool's configuration file, only the number of all
columns has to be defined, and a number of word columns
within the table. Additionally, the developer can optionally
specify the size of the mantissa (can also be calculated), the
desired separator between the columns in the table, the desired
precision for the real numbers, the tuple’s output file name, etc.
All FSM tools are written in C++ programming language.

Fig. 6. Binary representation of the tuple structure.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

29 | P a g e
www.ijacsa.thesai.org

VII. APPLICATION OF TUPLES TO THE SPREAD LVCSR

DECODER

In this section we propose a novel design for a one-pass
LVCSR decoder engine SPREAD, based on tuple structures.
The application’s specific knowledge sources and ASR search-
network are represented in the form of tuple structures that are
combined within compact tuple-based decoding network. All
these steps can be performed off-line. The detailed architecture
of the LVCSR decoder SPREAD is presented in Figure 7.

Fig. 7. The architecture of the tuple-based LVCSR decoder SPREAD.

The Viterbi search of the decoder is implemented using the
token passing paradigm [27]. Hidden Markov Models (HMM)
applying Gaussian Mixture Models (GMM) and the n-gram
back-off language models are used to calculate the acoustic
likelihoods of the context-dependent phones, and to calculate
the language probabilities, respectively. The HMMs are
organized within a static pronunciation prefix tree (PPT), as
described in [8]. Each token contains a pointer to its LM
history. Tokens coming from the leaves of the PPT are fed
back into the root node of the tree after their n-gram history is
updated. Token collisions will only occur for tokens with the
same LM history. This means that each HMM state of each
node in the PPT can contain a list of tokens with unique n-gram
histories. These lists are sorted in descending order of the token
probability scores.

Furthermore, decoders that make use of token-passing,
restrict their search-space by various types of token pruning. In
PPT-based decoders the global pruning and word-end pruning
are commonly used [8]. Within the LVCSR decoder SPREAD
both beam pruning methods are supported. In the case of beam
pruning, tokens with a probability value between the best found
probability and the best probability minus a constant beam are
retained at each time-frame. All those tokens that do not fall
within this beam are deleted.

During global beam pruning all tokens of the entire PPT are
also compared to the best scoring token, and pruned if
necessary. Word-end beam pruning is performed on all tokens
that are at the leaves of the PPT, and for which the LM

probabilities are incorporated into their probability scores. This
pruning method is used to limit the number of tokens that are
fed back into the root node of the PPT. Histogram pruning can
also be used in the LVCSR decoder. Here, only the best N
tokens are retained, when the number of tokens exceeds the
maximum N (we significantly restrict required memory).
Similar to beam pruning, histogram pruning can be performed
both globally (global histogram pruning), and also in the leaves
of the tree (word-end histogram pruning).

By using the proposed language model look-ahead (LMLA)
technique based on tuple structures, it is possible to increase
the number of tokens that can be pruned without any loss of
decoding precision. It is well-known that, in the case of token-
passing decoders that use PPT, full n-gram LMLA
considerably increases the needed number of language model
probability calculations. The SPREAD LVCSR decoder uses a
full n-gram LMLA with a single static PPT, which is based on
the tuple structures and efficient caching mechanism.
Additionally, an LMLA index is assigned to each PPT's node,
and an index to an LMLA field is added to each token list. The
N-gram language model is also implemented in the form of a
tuple structure. The language model knowledge is added to the
hypothesis score at the PPT leaf nodes, and used by the LMLA
mechanism.

In the following subsections the proposed methodology for
constructing a compact ASR search-network based on tuple
structures for a LVCSR decoder SPREAD, is presented in
detail.

A. Compiling N-gram language models

Compiling N-gram language models (LM) into a tuple
structure is also performed off-line. In the presented LVCSR
decoder configuration, the input represents the LM N-gram
language model stored in ARPA format, as shown in Figure 8.
The separation into 1-gram and 2-gram data is performed first.
Each file consists of word and number columns, representing
unigram/bigram probabilities, and backoff weights. Next, each
file is split into separate word columns and number columns,
since different tasks have to be performed on each of them.
Pre-processing has to be performed, in order to obtain unique
and sorted lists for each word column.

The sorted word lists are then fed into the fsmbuild tool,
and the corresponding perfect hash automata are built. In the
next step the fsmhash tool is used, in order to translate all the
words in the word columns into the corresponding lists, using
hash-keys. Namely, for a final LM table form, hash keys are
needed instead of words.

Furthermore, by using perfect hash automata, it is possible
to translate hash-keys back into words effectively and
efficiently, and vice versa, when needed. The obtained hash
lists and number (data) columns are then merged into the table,
by specifying the desired separator between the columns, and
given to the fsmtuple tool. Its output then represents a LM tuple
structure that has an efficient and compact trie structure.
Basically, two separate tuple structures are built, and then
merged into one. One structure is constructed for unigrams, and
the other for bigrams.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

30 | P a g e
www.ijacsa.thesai.org

Fig. 8. Compilation process for N-gram language models.

B. Compiling the LVCSR search network

The main step within the proposed methodology for
compiling ASR knowledge sources into a tuple structure
represents the tuple-based construction of the ASR search-
network. This structure can be constructed off-line, and is
based on the idea of static PPT, and the work done in [27]. The
traditional phone-level tree can be made more efficient by
utilizing HMM level state tying, which has also been
implemented. Cross-word triphone contexts are handled by
compiling several tuple structures, with which the PPT tuple
structure is merged at the end of the procedure. The obtained
tuple-based network structure is in this way very compact. A
general search network consists of nodes that are linked to each
other with arcs.

These nodes can either correspond to one HMM state, or be
dummy nodes without any acoustic probabilities associated
with them. During decoding, the dummy nodes are passed
immediately. They only mediate the tokens used to present the
active search-network. A node can also have a word identity
associated with it, which leads to the insertion of the word into
the word history of the token passing that node. The proposed
procedure of compiling such a LVCSR search-network into a
tuple structure, assumes triphone models, where every triphone
is defined in the acoustic models, and they are not tied at the
triphone level. Instead, each triphone has a set of HMM states
(three states in a left-to-right topology), and these states are
shared amongst all triphones.

The state tying is performed using a decision tree. In this
way the SPREAD LVCSR decoder is based on tuple-based
network topology, including cross-word triphone models. The
proposed methodology of compiling a search-network into a
tuple structure follows the classical network topology idea,
which is described with nodes and transition links, where the
nodes are ordered in several layers [27].

Such a network also uses application specific vocabulary,
and a HMM model set. The goal was to build a compact tuple
representation of such a network topology, and integrate within
it all the needed knowledge sources, like tuple-based N-gram
language models, and tuple-based LMLA info. Construction of
the LVCSR search-network to be used by the SPREAD
LVCSR decoder is performed off-line, and can be repeated for
any other ASR knowledge source available for application. The
proposed methodology is presented in Figure 9.

Fig. 9. The construction of the tuple-based LVCSR search network (first

step).

The input represents a large dictionary. Firstly, the outsym
and phonetic lexicons are built. A phonetic lexicon can be
viewed as a list of word entries, where each entry contains
orthography for the word and a corresponding list of
pronunciations. A phonetic pronunciation in the dictionary can
also contain a so-called output symbol. It is optional, but when
present, the recognition output can use the specified output
symbol rather than the word itself.

Therefore, an additional outsym lexicon can be built when
this info is available. Additionally, a phonetic transcription list
is built, containing only phonetic transcriptions for all the
words. This list is then used for the construction of three phone
sets, named P (all 1- phoneme transcriptions), A (first
phonemes of all transcriptions), and Z (last phoneme of all
transcriptions). All these sets are used in the next step for the
construction of nodes within all layers of the network topology,
here numbered from 0 to 8.

Layers 0, 2, 4, and 6 are those layers with model nodes, the
other layers are used for context nodes. This step includes
creation of the word final nodes (layer 0), silence (sil/sp) nodes,
sentence start node (layer 3) and sentence end node (layer 5),
word initial nodes (layer 4), PPT nodes (layer 6), word end
nodes (layer 7), and other context nodes in layers 1, 3, 5, and 8.
1-phoneme words are represented with corresponding nodes in
layer 3. The model nodes are actually triphones, and other
nodes are diphones. All the model nodes are firstly represented
by linguistic triphones (using linguistic phonetic transcriptions
from the dictionary), and then replaced by acoustic ones using
seen/unseen mapping lists.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

31 | P a g e
www.ijacsa.thesai.org

Fig. 10. The construction of the tuple-based LVCSR search network (second

step).

In this way there is direct access from each model node to
the corresponding HMM model stored within the HMM
models’ array in the runtime decoder. Context nodes are
represented as diphones, and word end nodes with unique node
names (layer 7). PPT (layer 6) consists of several sublayers of
triphone model nodes, depending on the length of the word. As
seen in Figure 9, then follows the creation of links between all
these nodes in layers from 0 to 8. In this way, the last nodes
within the PPT structure (layer 6) are linked with the
corresponding word end nodes in layer 7. The 1-phoneme
nodes in layer 3 are linked with the corresponding word end
nodes in layer 7. Furthermore, the context nodes in layer 5 are
linked with the starting nodes of the PPT structure, and the
model nodes in layer 4 are linked with the context nodes in
layer 5. All the word end nodes are further linked with the
nodes in layer 8. The final layer 8 is linked back to the
corresponding model nodes in layer 0, and the model nodes in
layer 0 with the corresponding context nodes in layer 1, and
with the silence models in layer 2. Additionally, the context
nodes in layer 1 are linked with the silence models. And the
silence models in layer 1 are linked with the context nodes in
layer 3. It is clear that each of such layers can be represented in
the form of “word” and “number” columns. Namely, here word
columns represent a node column, and a link column.
Additional data (on transitions) can be added in the form of
number columns, when needed. Since all layers can be
represented in such a way, they can also be compiled into tuple
structures. Therefore, all the constructed layers and lexicons are
first split into word columns (actually diphones, triphones,
ortographic, phonetic transcriptions, output symbols etc.) and
translated into corresponding hash-keys (Figure 10). This is
performed by using the fsmbuild and fsmhash tools.
Additionally, in layers 0, 3, 4, 5, and 6, phonetic and LM
information has to be added in the form of additional data
columns (number columns). Next, a table form for each layer is
constructed, consisting of several word and number columns
(data). Finally, all the tuple structures are constructed and

merged by using the fsmtuple tool. Additionally, LMLA
indexing of all the nodes is performed. In this step all those
nodes are numbered, where LMLA calculation has to be
performed (the LMLA technique will be presented in the next
subsection). The value 0 is assigned only to unique successors
in the PPT, since in this case no LMLA calculation is needed.
All nodes’ LMLA indices are stored as a binary file. Within the
runtime system they are loaded, and then directly accessible via
hash-keys.

C. Compiling Language Model Look-Ahead Data

Calculating all the possible LM probabilities for all the
tokens takes a lot of time and consumes a lot of computational
resources. When the lexical network is constructed as a static
tuple-based PPT, as described in the previous subsection, word
identities can be determined only after there are no more
branches in the tree structure. Thus, any inclusion of the
language model (LM) probability is delayed until the final
nodes are reached. It is well-known that by using LM
probabilities in such structure as early as possible, enhances the
beam pruning and, therefore, decreases the size of the search-
space. This can be achieved by applying so-called language
model Look-Ahead techniques. In the literature a number of
methods are proposed for managing these calculations [8,16].
The least complex way for reducing the needed number of LM
lookups whilst applying LMLA, is to use for the Look-Ahead
only unigram probabilities. By using unigrams, the
approximation of the best final LM score is less precise, but it
becomes possible to integrate the corresponding Look-Ahead
scores directly within the PPT. In this case, each node stores a
single value: the difference between the best LM score from
before and after entering the particular node. In the case of
unigrams, these Look-Ahead values can be applied for all
tokens, without regard to their n-gram history. However, it has
been shown that unigram Look-Ahead is outperformed by
higher order Look-Ahead systems [8]. A method that can be
used for reducing the number of LM lookups has been
proposed in [20]. In this case, all those PPT nodes with only
one successor node are skipped when calculating the LMLA
values. Their decoder used tree copies in order to incorporate
the LM probabilities. Furthermore, whenever a new copy is
required, the LMLA is performed on demand. In [11] at each
PPT node, a special list is stored with all those words that are
still reachable from that node. In the cases of small word lists,
the Look-Ahead value is calculated exactly (each trigram
probability is calculated, and the best one selected). Larger
word lists at the PPT root node, are skipped. For all remaining
lists, the intersection with the n-gram lists is calculated, before
computing the corresponding LMLA values. This approach can
save a considerable amount of search-time, especially for those
words that do not have a trigram or bigram LM value. The
proposed LMLA technique is based on tuple structures. In this
approach, Look-Ahead structures are tuples that are constructed
off-line. The LVCSR decoder SPREAD does not make tree
copies. Instead, LM histories are stored in the tokens and the
PPT tuple is shared by all the tokens. In this decoder, the
language model knowledge is added to the hypothesis score at
the PPT tuple’s leaf nodes. Incorporating the LM model at an
early stage into the tuple structure, makes it possible to
compare and prune the hypotheses based on both linguistic and
acoustic evidence.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

32 | P a g e
www.ijacsa.thesai.org

Fig. 11. Compiling LM Look-Ahead tuples for layers 4, 5, and 6.

In the SPREAD LVCSR decoder, the LMLA tuple-based
mechanism in the runtime system performs calculations for
each token in the tuple, the LM probabilities for all words that
are reachable from that token, and temporarily adds the best
one to the token's score. When the token reaches a PPT tuple’s
leaf node, the temporary LM probability is replaced by the
probability of the word represented by the PPT tuple’s leaf
node. Following this procedure, sharper beams can be applied
during the pruning so that fewer tokens need to be processed
and, consequently, the decoding is speeded up considerably.
Each node within the PPT tuple that has more than one
successor, or that is a leaf node, is assigned a unique LMLA
index. These indices are found in the binary file ‘LMLA
indices’ (Figure 10). The LM Look-Ahead score is computed
by finding the maximum of the LM scores over the words in
the specific node's list, only when the node’s LMLA index
value is not 0. The words and the corresponding LM
probabilities are accessed via LMLA tuple structures.
Nevertheless, in order to minimize the significant amount of
redundant computations involved in the LM Look-Ahead, a
caching structure is also part of the LMLA process within a
runtime system. The caching structure contains the Look-
Ahead values for those tokens with a particular language model
history. In this way, for each node the maximum LM scores of
the possible follow-up words are stored for specific word
histories. The LMLA index of a specific node then points to
these corresponding LMLA probabilities in cache. Using this
method, each node’s LMLA probability is exactly calculated
once. Therefore, in the case of a cache miss, the probabilities of
all the words in the LM for the given word history are
computed and stored to the cache. The LM Look-Ahead is
applied only in those nodes where the list of possible word
identities has changed from that of the previous nodes.
Reducing the number of nodes in which LM Look-Ahead is
applied also helps to save memory when node level caching is
involved. Figure 11 illustrates the compiling of LMLA tuple
structures to be used in the decoder. The input represents the

seen/unseen triphones’ info, the dictionary, and the nodes from
layers 4, 5, and 6, where LMLA has to be performed.
Seen/unseen triphones’ info is needed in order to link the
acoustic triphones’ nodes in these layers with the dictionary
entries, as used in unigrams, and bigrams. After the LVCSR
search-network (Figure 10) has been built, the node lists for
layers 4, 5, and 6 can be created (consisting of diphones and
triphones). The next step is the mapping. Based on the
seen/unseen triphones’ info, the dictionary, and the node lists,
for each layer corresponding maps are constructed, containing
all the word identities that are reachable from each node in
those layers. These maps are actually tables consisting of
diphones or triphones in the first column, and corresponding
possible words in the second. The next step is to split each map
file into M separate word columns (one column contains layers’
nodes, and the other corresponding words from dictionary).
Next, perfect hash automata are constructed for the M separate
word columns, using the fsmbuild tool. Then all the entries in
the M word columns are translated into hash-keys by using the
fsmhash tool. Since the LM Look-Ahead structures are
constructed off-line, LMLA values cannot already be stored
directly within the LMLA tuple structure. Instead, N data
columns are created, containing hash-keys for the
corresponding N-grams, by using N-grams perfect hash
automata and the fsmhash tool. In this way, direct access to LM
scores is possible in the online LVCSR decoder, when the LM
histories are also known. Now, the corresponding tables for all
layers can be constructed, containing M separated word
columns, and N number columns (unigram and bigram hash
keys). Finally, the tables are compiled into tuple structures. In
this way, three tuple structures are obtained. Within the runtime
system they are accessed in layers 4, 5, and 6.

VIII. RESULTS

The LVCSR decoders used today employ acoustic models,
pronunciation lexicon, N-gram language models, and other
linguistic sources. An approach using efficient and compact
tuple structures was proposed in the paper, for a construction of
the LVCSR search network. As presented, tuple structures can
be implemented as ordinary dictionaries. Namely, the elements
within the tuple structures of a given key are concatenated with
a selected separator symbol. This also means that a standard
implementation of dictionaries can be employed based on
perfect hash. The benefits are foremost, the important space
savings and higher processing speed (automata), and the
compact and reduced size of the tuple structure, especially
when the structure of the key can be exploited (depending on
the used knowledge sources). In this way, the time needed to
load LVCSR search network into the memory is practically
instantaneous. Furthermore, fast switching between several
applications' specific knowledge sources is possible, since the
LVCSR search network is already constructed off-line, and just
loaded within the runtime system.

As presented in this paper in detail, application specific
ASR knowledge sources can be compiled into tuple-based
LVCSR search-network. All the needed steps are accomplished
by using several Perl scripts, with proprietary FSM tools,
developed in the C++ programming language. The whole
procedure is completed within a matter of minutes on a PC
with Intel Core 2 Quad CPU, 2.83 GHz, with a 4 GB RAM.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

33 | P a g e
www.ijacsa.thesai.org

The largest part is spent compiling the N-gram language model
into the tuple structure. Overall, the whole compiling procedure
is simple, fast, without a large memory, or processor
requirements. In the experiment, the following ASR knowledge
sources were used: context-dependent acoustic models
(triphones), a dictionary, and an interpolated bigram language
model. The dictionary contained 64K words, and the bigram
language model consisted of 64K unigrams, and of approx. 7M
bigrams. The proposed methodology for compiling ASR
knowledge sources into a tuple structure, can also be used in
the same way for higher-order language models (if available),
and for other application specific knowledge sources, and
languages.

Table 1 presents the statistics about the layers’ nodes of the
tuple-based LVCSR search network for this speech recognition
task. Table 2 then presents statistics about the nodes of the
tuple-based language models, and Table 3 presents statistics
about the nodes in the tuple-based LMLA structures. These
data are based on table forms constructed by using available
knowledge sources.

TABLE I. THE LAYERS’ NODES IN THE TUPLE-BASED LVCSR SEARCH

NETWORK

Laye

r

0 1 2 3 4 5 6 7 8

Node

s

8,15

5

65

0

65

1

65

1

7,22

1

49

7

1,254,73

9

64,87

4

65

0

TABLE II. THE NODES IN THE TUPLE-BASED LM MODEL

N-gram 1-grams 2-grams

Nodes 64,000 127,696

TABLE III. THE NODES IN THE TUPLE-BASED LMLA STRUCTURES

LMLA LMLA – layer 4 LMLA – layer 5 LMLA – layer 6

Nodes 71,183 64,457 66,645

TABLE IV. THE COMPACT SIZES OF TUPLES USED FOR LVCSR SEARCH

NETWORK

Layer 0 1 2 3 4 5

Tuple 304kB 3.93kB 11.2kB 274kB 182kB 81.8kB

Layer 6 7 8

Tuple 5.87MB 380kB 47.1kB

TABLE V. THE COMPACT SIZES OF TUPLES USED FOR LM MODEL

N-gram 1-grams 2-grams

Tuple 812kB 63.4MB

TABLE VI. THE COMPACT SIZES FOR TUPLES FOR LMLA DATA

LMLA LMLA – layer 4 LMLA – layer 5 LMLA – layer 6

Tuple 9.43MB 438kB 440kB

All the table forms additionally contain several data

columns (number columns) that are used within the ASR
system. The tables 4-6 then represent the achieved compact
sizes of the tuples after compiling constructed table forms. The
sizes reported in the tables are the sizes of the final compiled
files. The overall size of the merged tuple structure loaded for
the specific task by the SPREAD LVCSR decoder is 81.234
MB for the 64k LVCSR task.

The same task was also tested by HDecode [27]. In the case
of HDecode, the loading of knowledge sources prepared in
their format and construction of internal ASR structures, took
50 times longer (since all the structures for the LM, LMLA and
LVCSR search-network has to be constructed during
initialisation). Furthermore, a set of 100 audio files was
recognized by using both decoders in order to evaluate whether
the tuple-based decoder also showed any benefits regarding the
processing speed. In both systems the same configuration was
performed in order to compare the obtained results. In the case
of the SPREAD LVCSR decoder, approx. 20% higher
processing speed was achieved, without loss of recognition
accuracy. All the experiments were performed on a PC with
Intel Core 2 Quad CPU, 2.83 GHz, with a 4 GB RAM.

IX. CONCLUSION

This paper presented the novel design of a LVCSR decoder
engine, named SPREAD. This LVCSR decoder is based on a
time-synchronous beam search approach. The ASR search
network includes statically expanded cross-word triphone
contexts. An approach using efficient tuple structures was
proposed and presented, for constructing a complete ASR
search-network. These data structures were motivated by
practical applications in speech and language processing. The
used technique for compact representation of tuple structures
can be seen as an application and extension of perfect hashing
by means of finite-state automata. Therefore, the benefits are
foremost the important space savings and higher processing
speed. Furthermore, the advantage of the proposed LVCSR
decoder implementation based on tuple structures is the
compact and reduced size of the tuple structure, especially
when exploiting the structure of the key (n-tuples of strings).
Therefore, the time needed to load an ASR search-network into
the memory is also significantly reduced. Further, in the paper
the complete methodology of compiling general ASR
knowledge sources into a tuple structure (representing an ASR
search-network) was proposed and presented. It has been
shown that ASR knowledge sources can be implemented by
ordinary dictionaries, where the elements in the tuple of a given
key are concatenated with a specific separator symbol of our
choice. Therefore, a standard implementation of dictionaries
can be employed, typically a hash table or perfect hash.

Furthermore, the beam search was enhanced with a novel
implementation of bigram language model Look-Ahead
technique, by using a tuple structure and a caching scheme. The
SPREAD LVCSR decoder is based on a token-passing
algorithm and is able to restrict search-space by several types
of token pruning. By using the presented language model look-
ahead (LMLA) technique, it is possible to increase the number
of tokens that can be pruned without any decoding precision
loss.

REFERENCES

[1] Aubert, X. An overview of decoding techniques for large vocabulary
continuous speech recognition. Computer Speech & Language, Volume

16, issue 1, pp. 89-114, 2002.

[2] Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J.,
Siivola, V., Varjokallio, M., Arisoy, E., Saraçlar, M., Stolcke, A. Morph-

based speech recognition and modeling of out-of-vocabulary words
across languages. ACM Trans. Speech Lang. Process. Volume 5, issue 1,

Article 3 (December 2007), pp. 1-29, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

34 | P a g e
www.ijacsa.thesai.org

[3] Daciuk, J., van Noord, G. Finite automata for compact representation of

tuple dictionaries, Theoretical Computer Science, Volume 313, Issue 1,
pp. 45-56, 16 February 2004.

[4] Dixon, P., Caseiro, D., Oonishi, T., Furui, S. The Titech Large
Vocabulary WFST Speech Recognition System. In Proc. ASRU, pp.

1301-1304, 2007.

[5] Evermann, G., Woodland, P. C. Design of fast LVCSR systems. In Proc.
ASRU’03, 2003, pp. 7–12, 2003.

[6] Fujii, Y., Yamamoto, K., Nakagawa, S. Large vocabulary speech

recognition system: SPOJUS++. In Proceedings of the 11th WSEAS
international conference on robotics, control and manufacturing

technology, and 11th WSEAS international conference on Multimedia
systems & signal processing (ROCOM'11/MUSP'11). S. Chen, Nikos

Mastorakis, Francklin Rivas-Echeverria, and Valeri Mladenov (Eds.).
World Scientific and Engineering Academy and Society (WSEAS),

Stevens Point, Wisconsin, USA, pp.110-118, 2011.

[7] Hoffmeister, B., Heigold, G., Rybach, D., Schlüter, R., Ney, H. WFST
Enabled Solutions to ASR Problems: Beyond HMM Decoding. IEEE

Transactions on Audio, Speech, and Language Processing. Volume 20,
number 2, pp. 551-564, February 2012.

[8] Huijbregts, M., Ordelman, R., de Jong, F. Fast N-gram Language Model

Look-Ahead for Decoders with Static Pronunciation Prefix Trees. In
Interspeech 2008, 9th Annual Conference of the International Speech

Communication Association, pp. 1582-1585, Brisbane, Australia,
September 22-26, 2008.

[9] Lee, A., Kawahara, T., Shikano, K. Julius - an open source real-time

large vocabulary recognition engine. In proceedings of Eurospeech
2001, pp. 1691-1694, 2001.

[10] Liu, X., Gales, M. J. F., Woodland, P. C. Improving LVCSR system
combination using neural network language model cross adaptation. In

Interspeech 2011, pp. 2857-2860, Florence, Italy, August 2011.

[11] Massonie, D., Nocera, P., Linares, G. Scalable language model look-
ahead for LVCSR. In proceedings Interspeech 2005, Lisbon, Portugal,

pp. 569-572, 2005.

[12] Mohri, M., Pereira, F., Riley, M. Weighted finite-state transducers in
speech recognition. In: Computer Speech and Language 16, pp. 69-88,

2002.

[13] Moore, D., Dines, J., Magimai Doss, M., Vepa, O., Cheng, O., Hain, T.
Juicer: AWeighted Finite State Transducer Speech Decoder. In Proc.

Interspeech, pp. 241-244, 2005.

[14] Moore, D., Dines, J., Magimai-Doss, M., Vepa, J., Cheng, O., Hain, T.
Juicer: A Weighted Finite-State Transducer Speech Decoder. In

MLMI’06, 3
rd

 joint Workshop on Multimodal Interaction and Related
Machine Learning Algorithms, pp. 285-296, 2006.

[15] Nguyen, P. Techware: Speech recognition software and resources on the

web. IEEE signal processing magazine. Volume 26, number 3, pp. 102-
105, 2009.

[16] Nolden, D., Schlüter, R., Ney, H. Acoustic Look-Ahead for More
Efficient Decoding in LVCSR. In Interspeech 2011, pp. 893-896,

Florence, Italy, August 2011.

[17] Novak, J. R., Dixon, P. R., Furui, S. An empirical comparison of the t3,
juicer, HDecode and sphinx3 decoders. In Interspeech 2010, pp. 1890-

1893, 2010.

[18] Novak, J. R., Minematsu, N., Hirose, K. Painless WFST cascade
construction for LVCSR – transducersaurus. In Interspeech 2011, pp.

1537-1540, Florence, Italy, August 2011.

[19] Novak, J. R., Minematsu, N., Hirose, K. Open Source WFST Tools for
LVCSR Cascade Development. Finite-State Methods and Natural

Language Processing, 9th International Workshop, FSMNLP 2011, pp.
65-73, Bois, France, July 12-16, 2011.

[20] Ortmanns, S., Ney, H., Eiden, A., Coenen, N. Look-ahead techniques for

improved beam search. In proceedings of the CRIM-FORWISS
Workshop, Montreal, pp. 10-22, 1996.

[21] Parada, C., Dredze, M., Sethy, A., Rastrow, A. Learning Sub-Word

Units for Open Vocabulary Speech Recognition. Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, 2011.

[22] Pylkkönen, J. An Efficient One-pass Decoder for Finnish Large

Vocabulary Continuous Speech Recognition, Proceedings of the 2nd
Baltic Conference on Human Language Technologies (HLT'2005),

Tallinn, Estonia, pp. 167-172, April 4-5, 2005.

[23] Rojc, M., Kačič, Z. Time and Space-Efficient Architecture for a Corpus-
based Text-to-Speech Synthesis System, Speech Communication, Vol.

49 (3), pp. 230-249, 2007.

[24] Rybach, D., Hahn, S., Lehnen, P., Nolden, D., Sundermeyer, M., Tüske,
Z., Wiesler, S., Schlüter, R., Ney, H. RASR - The RWTH Aachen

University Open Source Speech Recognition Toolkit. In IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU),

Hawaii, USA, December 2011.

[25] Sixtus, A., Ney, H. From within-word model search to across-word
model search in large vocabulary continuous speech recognition. In:

Computer Speechamd Language 16, pp. 245-271, 2002.

[26] Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf,
P., Woelfel, K. Sphinx-4: A flexible open source framework for speech

recognition. Sun Microsystems Technical Report, No. TR-2004-139,
Sun Microsystems Laboratories, 2004.

[27] Young, S., Everman, G., Kershaw, D., Moore, G., Odell, J., Ollason, D.,

Valtchev, V.,Woodland, P. The HTK Book. Cambridge University
Engineering, 2006.

