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Abstract—To cope with sequential decision problems in non- fitness in XCS, and it is based on the difference between the
Markov environments, learning classifier systems using the in- predicted payoff and the actually received payoff.
ternal register have been proposed. Since, by utilizing the action
part of classifiers, these systems control the internal register in In this paper we deal with non-Markov environments or
the same way as choosing actions to the environment, they do not partially observable Markov decision processes. In Markov
always work well. In this paper, we develop an effective learning  environments where the probability of being in a given state
classifier system with two different rule sets for internal and  depends on the current state and action but not on any past
external actions. The first one is used for determining internal states or actions, agents can select the optimal policy by appro-
actions, that is, rules for controlling the internal register. It priately utilizing the information of the environment. If even
provides stable performance by separating control of the internal in a Markov environment an agent can obtain only .restrictive

register from the action part of classifiers, and it is represented . f . f th . h . led
by “If [ external statk& [ internal staté then [internal actior],” and ~ 'Nformation of the environment, such a process Is called a

we call a set of the first rules the internal action table. The second ~Partially observable Markov decision process (POMDP). In

one is for selecting external actions as in the classical classifier @ POMDP, different states can exist even if agents obtain
system, but its structure is slightly different with the classical the same information from the environment, and then the
one; it is represented by “If [external statg& [internal statg & agents are said to suffer from a perceptual aliasing problem.
[internal actior] then [external actiof” In the proposed system,  |n an aliased position or state, an agent cannot identify the
aliased states in the environment are identified by observing cyrrent situation only through the information obtained from

payoffs of a classifier gnq referring to thg internal action table. e environment by itself, and then it cannot select the next
To demonstrate the efficiency and effectiveness of the proposed ima) action. From this reason, one can understand that the

system, we apply it to woods environments which are used in the . . ) - .
related works, and compare the performance of it to those of the learning method of an agent in non-Markov environments is

existing classifier systems. similar to that of POMDPs.
Keywords—Learning classifier systems; Non-Markov environ- Since XCS determines an action by using the information
ments; XCS; Internal register. about the environment at the current period, it is difficult

to select an appropriate action in a non-Markov environment

involving aliased states which cannot be discriminated only by

| INTRODUCTION the information about the environment at the current period.

Although classifier systems with if-then rules which de- S€veral attempts using reinforcement learning and learning
velop through interaction with environments were initially con- classifier systems for finding optimal policies in a non-Markov

sidered as a computational model for cognition [12], [14], theyeUV|ronment or a POMDP have bee_n reported. For instance,
are now widely applied to many areas, including autonomou£inéau et al. [22] propose an algorithm based on reinforce-
robotics [8], [29], classification and data mining [33], [25], ment learning for POMDPs, and apply it to a robot domain

e : problem where an agent searches for and tags a moving
[15], traffic signal control [2], [4], and FPGA design [6]. opponent. Roy et al. [24] try to solve large scale POMDPs

A framework of classifier systems was initially proposed problems by reducing the dimensionality of the problem space.
by Holland [11], [12], and subsequently a wide variety of clas-Shani et al. [26] present a learning model for POMDP based
sifier systems have been developed [7], [31], [32]. Especiallypn reinforcement learning with memories of tree structure.
XCS developed by Wilson [32] has been attracting a lot ofMethods based on classifier systems such as ZCS [5] and
attention, and it is publicly recognized as one of the mostACS [27] have been also developed and applied to the grid-
successful learning classifier systems. Before XCS, the fitnedi&ke woods environments which are benchmark problems for
of a classifier was calculated by using the expected payofPOMDPs. Moreover, Lanzi and Wilson [20] develop XCSM
or the strength in the traditional learning classifier systemsand XCSMH which are extensions of XCS, and intends to
and therefore there was a problem that classifiers which havesolve environmental aliasing by incorporating the internal
low expected payoffs but are required to find optimal policiesregisters. In XCSM, both an external action which means an
are eliminated by the procedure of genetic algorithms. Taaction that the agent takes in the environment and an internal
overcome this difficulty, the degree of accuracy is used as thaction for controlling the internal register are specified in the
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action part of a classifier, and they are treated in the sameon-Markov environments or POMDPs where a mechanism
way. Although implementation for using the internal registerfor controlling the internal register is separated from classifiers
is simple and elegant, its performance is not always good aasnd aliased states are identified by detecting fluctuation of the
we will show the experimental result. Moreover, it is difficult payoffs received by classifiers. We call the proposed system
to determine an appropriate size of the internal register, andCSAT (XCS with an internal Action Table) because it is

if it is too large for a given problem, the space of explorationcharacterized by an internal action table which is a set of rules
becomes larger than necessary. Recently, Hamzeh et al. [1fi]r identifying aliased states. In XCSAT, after detecting the

develop the parallel specialized XCS (PSXCS), Zang et alfluctuation of payoffs which means the existence of aliased
[35] develop XCS with average reward (XCSAR) which the states, the environmental information and the corresponding
Q-learning employed by XCS is replaced to R-learning not taupdate of the internal register are recorded in the internal
limit the length of action chains. Preen and Bull [23] introduceaction table as a rule for updating the internal register. By
discrete and fuzzy dynamical system within XCSF learningcontrolling the internal register through the information from

classifier system [34]. the internal action table, more efficient and stable performance

In PSXCS, along the lines of the history window approachcan be expected in XCSAT.
[16] the information of the environments and the selected The remainder of this paper is organized as follows. After
actions are recorded and aliases states are identified by tldescribing non-Markov environments in section 2, we mention
condition part of classifiers corresponding to the history of thehe properties of XCSM and XCSMH developed by Lanzi and
environments and the selected actions. Wilson [20] in section 3. In section 4, we propose a learning
rglassiﬁer system with the internal action table, XCSAT, in

that an agent selects an action in an environment so as %hlch aliased states are identified by detecting fluctuation of

maximize the cumulated sum of reward function. The agenpayoffs and referring to the internal action table. The experi-

receives the reward from the environment after taking algental result of XCSAT is shown, compared with XCSM and

action, and by repeating this procedure it learns to take a CSMH in section 5, and finally, section 6 concludes with
appropriate policy so as to maximize the reward. In non->0Me comments.
Markov environments or POMDPs, the agent cannot always
obtain the optimal policy through the usual implementation
of reinforcement learning. By using some ideas such as Markov environments have memoryless property, that is,
referring to the history of actions which are taken by thein Markov environments the probability of being in a given
agent and the perceived information about the environmendtate depends on the current state and action but not on any
or reducing the dimensionality of the problem space, systemgast states or actions, and environments without such property
of reinforcement learning are improved [9], [22], [24], [26], are said to be non-Markov environments. Learning classifier
[30]. Since reinforcement learning acquires exhaustive rulesystems for non-Markov environments have been proposed,
for selecting appropriate actions to an intended problem angdnd to evaluate their performances, woods environments which
then it holds a sufficient number of rules to deal with possibleare grid-like non-Markov environments are used [1], [17], [18],
states of the problem, it works efficiently for relatively small- [20], [28].

scale problems. However, for large scale problems or problems

with many aliased states, it may perform poorly because First of all, to understand that it is difficult for learning
of explosive growth in the number of rules and the use ofc!assifier systems which are not developed specially for non-
memories. Markov environments to find an optimal policy in non-Markov

environments, we illustrate actions of an agent in a simple

In classifier systems the idea of reinforcement learningvoods environment terme@oods100[18], which is shown
is implemented in a sense that Q-learning-like payoff isin Fig. 1.
computed, and classifier systems are extended so as to cope
with non-Markov environments or POMDPs [1], [10], [17],
[18], [20], [28]. An agent in a classifier system holds rules 112[3|Gl4|5]6
in if-then type called classifiers, and it employs an action
specified in a classifier such that the condition of the classifier
matches the information from the environment. In particular, Fig. 1: Woods environmentoods100
don't care denoted by # is introduced in the condition part
of classifiers, and conditions corresponding to # match all
states. By this capability the rules represented by classifiers are In Woods10Q there are 7 cells which are cell 1 to cell 6 and
generalized, that is, the agent acquires the ability to hold claszell G meaning the goal, and the 7 cells are surrounded by the
sifiers matching multiple different states of the environmentwalls. Although the agent can generally move to 8 possible
Compared to reinforcement learning, it is thought that thedirections (N, S, E, W, NE, SE, NW, and SW) in a woods
number of rules is smaller and memories are efficiently used ienvironment. InVoods10Q the agent in any of the 7 cells can
classifier systems, and genetic algorithms can be applied toraove only to W (left) or E (right). The agent starts from cell
set of rules represented in if-then format without difficulty for 1 or cell 6, and it tries to reach cell G. Since the agent moves
evolving the rule set suitably. From these features of classifiegither to left or to right, the condition part of classifiers deals
systems, it is adequate to apply them to problems in nonwith states of cells located on only both sides of the agent.
Markov environments or POMDPs.

Reinforcement learning is a type of machine learning suc

II. NON-MARKOV ENVIRONMENTS

In Table I, classifiers which lead the agent in each cell
In this paper, we develop a learning classifier system foto the goal are enumerated, and “w” indicates the wall, “c”
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updated are added in the condition part and the action part
of classifiers, respectively, as seen in Table Il. For example,
in classifiera given in Table Il, a condition on the internal

TABLE I: Classifiers corresponding té/oods100and cells

o dwon cell register “if [internal register 0] (if the internal register is
w c right I 0)" is given in addition to a condition on the environmental
¢ w left 6 information “if [{left: w} and {right: c}] (if the left-side cell
c c right 2,5 . . K . K "
¢ c left 25 is the wall and the right-side cell is the corridor),” and an
é G rligfrtlt i action to the internal register itfternal action set 0] (set 0

C €

in the internal register)” is also given in addition to an action
to the environment ‘§xternal action move right].” Although

the information from the environment when being in cell 2 is
- _ . ) __ the same as that in cell 5 in XCS, since in XSCM the value
indicatesthe corridor, and “G” indicates the goal in the first ,¢ the internal register is changed from 0 to 1 by classifier
and second columns. Tgke a cla§_sifier in the first row of Tablgseq at cell 6 which is located on the right side of cell 5 but
| as an example. The first classifier means Hfeft: w} and i is not changed to cell 2, cells 2 and 5 can be distinguished.
{right: c}] then [external action move right]” Therefore, one 1 should be noted that a set of classifiers shown in Table Il is
fmds that th|§ classifier should be selected in cell 1, which is;, optimal policy, but there exist other sets of optimal policies
given in the rightmost column of Table I. such as an optimal policy of the reversed procedure.

Since there are 6 available cells except for the goal cell,
an optimal policy can be described by 6 classifiers as showBf

in Table I, and there are two classifiers with the conditionF The predictionp is a payoff that the system expects if the
parts matching both of the environmental states corresponding,, ision of the classifier conforms with the environmental
toer(églilvs e dZ bantdh eSé /zlrt_lfg(?:]Jgcf;"thzeiseg]v;rc;gmzn;asl thnat?rinmitel(ljln tate and the action of the classifier is performed. The predic-
per y the ag ; . ion errore estimates an error of the predictiprby using the
optimal actions in the two cells are different. From this fact, _learning-like payoff. The fitnes§ means the accuracy of
Fhese two cells are allased states fpr the agent, and the agq%g predictionp and it is a function of the prediction errer
informed of only the environmental information at the C“”entMoreover the learning process of XCSM is similar to that of

period cannot find the optimal policy. Thus, it follows that a S e . . .
woods environment such 3J0ods100is one of non-Markov ?(ecg:;iz’te?nd it is slightly modified for introducing the internal

environments.

(w: wall, c: corridor, G: goal)

A classifier in XCSM has the same parameter set as those
XCS: the predictiorp, the prediction erroe, and the fitness

Although XCSM can find an optimal policy as seen in
I1l. L EARNING CLASSIFIER SYSTEMS WITH INTERNAL Table I, depending on environments, the sequence of actions
MEMORY may not converge because actions to the environment and
to the internal register are determined according to received
rewards. We illustrate this difficulty by usiryoods100 Let
R denote the reward from the environment when the agent
reaches the goal, and any reward is not paid by arriving at
e‘?he other cells. When the sequence of actions converges, the
Ibayoffs received by the classifiers are shown in the rightmost
column of Table 2, where is a discount factor.

To cope with environmental aliasing, Lanzi and Wilson
[20] develop XCSM (XCS with internal memory) which is
an extension of XCS. In XCSM, a condition for the internal
register and an action for controlling the internal register ar
added to the condition part and the action part of a classifi
respectively.

TABLE II: Classifiers of XCSM and the related information Assu_me tha_t the following classm_e_r IS 'UCIUd.Gd in the .
system in addition to the set of classifiers given in Table II:

no. condition part aclonpat —  cel  payof (@) If [{left w} and {right: c}] & [internal register 0]
left  right  register direction  register then [xternal action move right] & [internal action set 1].
a w c 0 right 0 1 'yZR
b [ c 0 right 0 2,5 YR . ] -
c c G 0 right 0 3 R Classifiera’ is the same as classifiex except for the
¢ o 9 o 1 25 m internal action, which means the value of the internal register
f G c 1 left 1 4 R to be updated, in the action part of classifiers. Although, as a
g w é i rigm 8 1 +°R matter of course, using classifi@rinstead of classifiea is not
A 1 o 1 S 751?, optimal, the payoff of classifiea’ is 2R which is the same
j G c 0 left 1 4 R as that of classifiea if classifierse andb’ are used, wherb’

is the same as classifibrexcept for the internal action. Thus,
. . .. since the fithes$" is a function of the payoff, it is possible that
In Table I, we give an example of an optimal policy in ¢|assifiera’ is substituted for classifies, and therefore it is
XCSM to Woods10Q which can be obtained after enough giicyit to generate an optimal policy stably. Beside, it should
learning process. Since it is necessary for XCSM to discrimyg noted that when the size of the internal register becomes

inate the two aliased states Woods100 only the size of 546y the performance of XCSM grows worse due to increase
two is required for the internal register. Let the initial value 4¢ the search space.

of the internal register be 0. To utilize the internal register,
the value of the internal register and its new value to be To improve the performance of XCSM, XCSMH is also
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proposed as an extension of XCSM, and the following modi-external state, the internal state and the internal action which
fications are remarked. are observed and selected at period 2 into the internal
) ] ) ) _action table. By referring to the internal action table with the
(i)  The value of the internal register is changed only if information about the aliased states each period, XCSAT can

the environmental information perceived by the agenigentify each aliased state and select an appropriate action for
changes as a result of the executed action to th¢ne gliased state.

environment.
(i)  The actions to the environment and to the internal 5
register are performed in a stepwise fashion. After ~
the value of the internal register is determined by In the proposed method, states of the environment are
the greedy method, the action to the environment igdentified by observing the payoffs received by classifies and
selected by the-greedy method. referring to the internal action table. To do so, the system
stores rules for updating the internal register in the internal

For example, by reason of (i), it is not possible that theaction table. Unlike XCSM and XSCMH, XCSAT does not
direction to move to a cell of wall is chosen and the value of theuse classifiers to control the internal register, but to this end
internal register is updated at the same time. The modification uses the internal action table in which the history of use of

of (ii) facilitates the combination of actions to the environmentthe internal register is stored.

and treatment of the internal register, and then it is thought that
the performance is improved.

Rule representation and the internal action table

To describe the learning procedure of XCSAT, we define
the following technical terms. Let “aexternal staté be an
However, XCSMH does not resolve the above mentionedgnvironmental state, “ainternal staté be the value of the
difficulty essentially, and we need some solution to effectivelyinternal register, “arexternal actiofi be an action taken by
manage the internal register. In this paper, focusing on fluctuahe agent to the environment, and “amernal actiori be the
tion of payoffs of classifiers used in aliased states, we proposgalue of the internal register to be updated.
an effective learning classifier system with an internal action , e
table providing stable performances by separating the contrg] YSing these terms, we represent a classifier in XCSM or
of the internal register from the action part of classifiers. ~XCSMH by the following if-then rule:

If [external statg& [ internal staté
IV. CLASSIFIER SYSTEM WITH AN INTERNAL ACTION then fexternal actioh & [ internal actior.

TABLE

As we pointed out before, in non-Markov environmentslt should be noted that aimternal actionis specified in the
or POMDPs, although XCSM can find an optimal policy, action part of a classifier in XCSM or XCSMH. In contrast, a
depending on environments, its performance is not alwayslassifier in XCSAT is expressed as
stable because actions to the environment and to the intern
register are determined according to received rewards.
will show this fact by some computational experiments in the
following section. In this paper, we develop a learning classifier
system called XCSAT (XCS with an internal Action Table) Where, in the action part, there does not existiaternal
for non-Markov environments or POMDPs where controllingaction but it is in the condition part. Thiaternal actionin the
the internal registers is separated from classifiers and aliasg@ndition part is utilized to update the parameters of a classifier
positions or states are identified by detecting the fluctuation otvhen the classifier is selected to activate to the environment.
the payoffs received by classifiers. In XCSAT, after detectingApart from classifiers, rules for updating the internal register
the fluctuation of payoffs, the corresponding environmentapre stored in the internal action table in the following form:
information and the updated value of the internal register are . .
recorded into the internal action table as a rule for updating’ [€xternal statp& [internal statg then [internal actior].
the internal register. By introducing the above mentioned two
features simultaneously, XCSAT works efficiently for non-
Markov environments or POMDPs.

I . . .
[external statg& [internal statg & [internal actior
then [external actioi,

If the environmental state and the value of the internal
register coincide with the values of thexternal stateand
internal stateof a rule in the internal action table, respectively,
To check whether or not a position that the agent havéhe value of the internal register is updated by using the value
arrived is an aliased one, XCSAT focuses on the fluctuatio®f theinternal actionof the rule in the internal action table for
of payoffs received by classifiers. The maximum and theupdating the internal register. Since the value of the internal
minimum payoffs are recorded together with the correspondingegister is determined as just described, classifiers in XCSAT
periods of time. If the difference between the maximum andhave no information abouhternal actionsin the action part.
the minimum is larger than the threshold after a given amount
of periods had elapsed, XCSAT judges that the payoffs of th®. Update and usage of the internal action table

classifier fluctuate. UsingWoods100shown in Fig. 1 and Table Il, we illustrate

If the payoffs of the classifier executed at the presenthe fluctuation of payoffs received by classifiers used in
moment, say period, does not fluctuate and the payoff aliased states. Assume that the sequence of actions of the
fluctuation is observed at perigd- 1, XCSAT judges that the agent converges through enough learning process. A payoff of
environment at period — 1 is an aliased state. To utilize the classifierc which is used at cell 3 and leads to the goal, &Il
information about such aliased states, the system records tlaad that of classifief which is used at cell 4 and also leads to
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cell G are the same valuA. If classifierb is instantly used at - tag) £ 1)1 Classifiers of XCSAT for woods100 and the related
cell 2 and then classifieris used at cell 3, classifiérreceives

the payoff of YR, where~ is a discount factor. However, if, information

after classifiee, which should be used ideally at cell 5, is used _ _

at cell 2, the agent returns to cell 2, classifigis used at cell , —swmase o e P el payof
2 and then finally classifiet is used at cell 3, then classifier left  right  register  action action

b receives the payoff of®R. If classifiere is used at cell 2 2 W G " . noht s 7215
repeatedly, the payoff of classifier becomes smaller. Thus, o ¢ o 3 ¥ fioht P 4
the payoff of classifieb ranges fromy3 R to some small value, d ¢ w # # left 6 R
and as for classifiee, a similar fluctuation of the payoff can ¢ ¢ ¢ p 9 o A

be observed. Moreover, since the payoffs of classiieaadd,

which should be used ideally at cells 1 and 6, respectively, are TABLE IV: Internal action table of XCSAT for woods100
calculated from those of classifidisande, they also fluctuate.

R ; H 3 condition part action part
From this observation, if the payoff of a cla55|f|er used at a o —STETAl S ] o cell
certain cell, say cel, fluctuates and cel is adjacent to a cell left  right  register action
such that the payoff of the corresponding classifier does not a w c (13 é (15
(o w

fluctuate, it can be inferred that an environmental state when
being in cellx is an aliased state. To utilize such information,
rules for identifying aliased states are stored in the internal
action table. t — 1 is observed, it is judged that the environment at period
] ] o . t—1is an aliased state. To execute this procedure successfully,
Although, in XCSAT, an external action which is an action xcSAT records the external state, the internal state and the
taken by the agent to the environment is selected amongternal action which are observed and selected at perio2!
classifiers matching the environmental state, an internal actio, the internal action table. Thereafter, by referring to the
for updating the internal register is determined by finding &nternal action table, it acquires ability to distinguish such
rule conforming with the external state and the internal stat@tates of the environment. The data insertion of the internal

in the internal action table. As we mentioned above, the formyction table and the generation of the corresponding classifier
of rules in the internal action table is “Ifekternal state  zre summarized as follows.

---] & [ internal state - - -] then [internal action ---],” and a
rule conforming with the external state and the internal state Step 1 Refer to the internal action table, and then if

perceived by the agent is searched in the internal action table. XCSAT finds a rule with the condition matching
An internal action of the rule selected from the internal action the current environment and the internal register,
table is performed. By doing so, XCSAT can identify aliased update the internal register to the value specified
states and select appropriate external actions. Eventually, the by the rule.

fluctuation of classifiers’ payoffs disappears and an optimal Step 2 Execute an action specified by a selected classifier.
policy can be found. If the payoff fluctuation of classifiers is  Step 3 If the payoff fluctuation is observed, set the flag

still observed, it follows that there exist aliased states which for update on and return to Step 1. Otherwise, go
are not identified by the system yet. to Step 4.
_ . . Step 4 If the flag is on, go to Step 5. Otherwise, return
We demonstrate a process of updating the internal register to Step 1.
by usingWoods 100shown in Fig. 1. Examples of classifiers Step 5 Add the information of the external state, the
and the internal action table of XCSAT are given in Tables internal state and the internal action which are
[l and IV. In the course of repetition of trials iWoods10Q observed and selected at the period before last in
suppose that the fluctuation of payoffs received by a classifier the form of

is observed and it is revealed that an environmental state
when being in cell 2 is an aliased state. At this point, a
rule for the internal register “If {left: w} and {right: c}] &

If [external state- - -] & [internal state - - -] then
[internal action - - -],

[internal register 0] then finternal action set 1]” is recorded into the internal action table. Moreover, add a
in the internal action table, and this rule for the internal new classifier consisting of the information from

register corresponds to cell 1. Moreover, at the same time, the environment, the value of the internal register,
a new classifier corresponding to the same external state the updated value of the internal register and the
and the internal state that the value of the internal register executed external action at the last period in the
is 1 ([internal register 1]) is added into the system. More form of

specifically, the following classifier is generated: {fdft: w} If [external state---] & [internal state ---] &

and {right: c}] & [internal register 1] & [internal action set [internal action - - -] then [external action - - -].

1] then fexternal action move right]. Then, after setting the flag off, return to Step 1.

In general, if XCSAT finds an aliased position or state,  gome explanatory remarks on this procedure follows.
a rule for identifying the aliased state is recorded in the

internal action table. By referring to the internal action table, e After the elapse od the given periods, s@00 peri-

XCSAT can efficiently distinguish positions of the agent. More ods, XCSAT starts to refer the internal action table
precisely, if the payoffs received by the classifier executed at because it needs enough learning time for external
periodt¢ does not fluctuate and the payoff fluctuation at period environments except aliased states.
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e In Step 3, if the difference between the maximum predictioncl;.p, the prediction erroel;.¢, and the fitnessl;. F'.
and the minimum of the payoffs received by the These parameters are updated based on the p&yadteived
selected classifier is larger than the threshold, XCSATby a classifier and the other parameters. A classifier in the
concludes that the payoff fluctuation of the classifieraction setA] receives the following Q-learning-like payoff:

is observed. . — "
when reaching the termination position

e The rules for the internal register are not deleted?” = {P’l 1 ymax PA, otherwise
unless the number of rules exceeds the capacity for the ’ 1)
internal action table, and if it exceeds the capacity, thyhereR is the reward from the environmerf, ; is the payoff
rule with the lowest use is replaced with a new rule 4t the previous period? A is the prediction array at the current
for the internal register. period, andy is a discount factor. For a given external action

e If two or more aliased states adjoin and there existti» @n element ofP A is calculated as follows:

multiple such adjoining aliased states, the fluctuation _
of the payoffs could not be always suppressed. When PA(ai) = Z cli-p- Clk'F/ Z cle.F, (2)
the payoff fluctuation cannot be suppressed within a clk €[M]m,a; clk €M, a;

given amount of periods after the last update of th&ynere [11],, . is a set of classifiers ifiM] such that an
internal action table, even if the condition of Step 4 iSiyternal action is the executed internal actior: and an

not satisfied, with a given probability a new rule for gyiarnal actionis a;. In Step 3, by using the prediction array
the internal register is added into the internal actionp 4 a1 external action is determined.

table.
The predictioncl;.p and the prediction erroel;.c are
C. Algorithm of XCSAT updated as follows:
The algorithm of XCSAT is summarized as follows. clip = clip+ B(P = cl;.p), 3

o ) cli.e = clj.e + B(|P — cl;.p| — cl;.e€), (4)
Step 1 After perceiving the current external and internal

states, XCSAT finds all the classifiers satisfying Where 3 is the learning rate. The smaller the prediction error
these conditions. A set of these classifiers arecli-¢, the larger the fitnessl;.F" becomes. To this end, the

called the match set\/]. accuracycl; . is defined as

Step 2* If a rule matching the perceived external and 1 it clic<e
internal states is found in the internal action table, ol p— { . i 0 (5)
an internal action specified by the rule is executed. ! o ((i—of) otherwise,

Otherwise, reset the internal register, i.e., set 0 at

the internal register. wherea, v, ande, are parameters, the fitness. F' is calcu-
Step 3 For classifiers with the executed internal actiorfated as follows:

in [M], a prediction array is calculated by using o p

the prediction and the fitness. From the prediction cli.F' = cli.F' + f(cls.k" — cli.F), 6)

array, an external action is determined by thewherecl;.x’ = cl;.k/ Y

greedy or the-greedy method. A set of classifiers ] ) . ) ]
with the selected external action /] is called As for the genetic operations described in Step 4, if the

the action sefA. average elapsed time periods of classifiers in the action set

Step 4 After updating the parameters of each classifietA] after the last genetic operations for them is larger than
in [4], the genetic operations of reproduction, & given time perioddc4 in advance, the genetic algorithm
crossover and mutation are performed to the conare executed to the parts of classifiers describing the external

dition part of the classifiers. conditions. Overgeneral rules in XCSAT are removed in the
Step 5* If the condition based on the payoff fluctuation for Same way as in XCS. That is, since the prediction errors of
updating the internal action table is satisfied, theovergeneralized classifiers become large and then their fitness

corresponding external state, internal state, and? the genetic algorithm described in Step 4 degrades, such
internal action are recorded in the internal actionclassifiers are not reproduced eventually. Two classifiers are

cli€[A] Clk.fi.

table. chosen by using the roulette wheel selection, and the one-point
Step 6 If the agent reaches the terminal position, th&rossover is applied to them. If a gene chosen for mutation is
algorithm stops. Otherwise, go to Step 1, #, which means “don’t care,” the perceived external state is

filled in the gene. Otherwise, it is exchanged for #.

It should be noted that as mentioned in the previous
subsection, to find appropriate actions for non-aliased state§ﬁ imal fol. d th inimal L
for the given initial ceratin periods, XCSAT does not refer the"'@XIMmal payoficl;.pmax and the minimal payoftl; pmin are
internal action table, and therefore Steps 2 and 5 marked WitF?Corded together with the correspo_n_dmg perioiis:,.x and
an asterisk, which involve reference and update to the internﬁf'tmi“' Let P be the payoff of classifiesl;. If P > cli.pmax,

action table, are skipped in the initial certain periods, namel e maximal p"?‘y.owi'pmax is updated, and similarly i <
it performs the same procedure as that of XCS. cli-pmin, the minimal payoffcl; pmin is updated. Letl;.cxp
be the number of updating, ar®} and §, be parameters. If

Let theith classifier be denoted hy,. Similarly to those  c¢l;.pmax — cli-pmin < 8, and cl;.exp > 60;, XCSAT judges
of XCS [3], [20], the main parameters of classifi¢y are the that the payoff of classifiet/; does not fluctuate. Otherwise, it

To judge the fluctuation of the payoffs in Step 5, the
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judges that the payoff of the classifier fluctuates. Furthermore,
let 6. be a parameter. If the elapsed time periods after the
last update of eithetl;.pyax OF cl;.pmin IS larger tharp,., the

TABLE V: Parameters

learningrate 3 = 0.2 discount factor v = 0.71
not yet updated parameter and the update COU]M@’LEp are periods for GA  0ga = 25 crossover probability p. = 0.75
initialized. mutation probability p,, = 0.025  accuracy parameters o = 0.1, v =5
payoff range 6, =5 updating counter 6; = 30
periods for updating 6, = 10

V. COMPUTATIONAL EXPERIMENT

To demonstrate the effectiveness of XCSAT, we perform
a computational experiment by using a woods environmentorvergence in Fig. 3 is the percentage of success in the 30
Woodle%, and compare XCSAT with XCSM and XCSMH. trials, and the success means that the agent exactly takes a
Furthermore, with another eight woods environments [1], [17]shortest route and reaches the goal in the last 1000 episodes

[20], [21], [28], we examine the performance of XCSAT. in the test periods. Aside from this, the rate of convergence
in Fig. 4 is the percentage in the 30 trials that the agent takes
A. Woodle% the same fixed route including the shortest route in the last

1000 episodes. Therefore, the term “the convergence” means

_ In XCSAT, the agent perceives substances of the adjacefa; the agent takes the same route for a given starting point
eight cells (N, S, E, W, NE, SE, NW, and SW), and it 4 the |ast 1000 episodes.

distinguishes among “wall,” “corridor,” and “the goal” of

substance of each of the cells. As seen in FigNﬁodle]%

is a separated symmetric woods environment, and the ager — ';;T/

tries to move from any cell labeled as S to one of the cells

labeled as G in the shortest possible route.

GTW

A3 A4\

A & N
o B [s] [s] s
- I

Fig. 2: Woods environmentoods10%} 0 —wl . . TE . XégM
0 0.2 0.4 0.6 0.8 1
Exploration rate ¢

o
)

Rate of convergence at optimum
=3 =}
S [=}

o
)

Since, in the cells labeled as A Ay, Az, and A, sub-
stances of the eight cells that the agent perceives are the same,
the agent cannot distinguish these states of the environment.
In cells A, Az, Az, and A;, “move upper right,” “move
upper left,” “move lower right,” and “move lower left” are
appropriate actions, respectively.

! XCSAT '\‘\
An episode is defined as a process from starting at cell g

to reaching cell G. Let one trial be 8000 episodes; the period:z 3 R "
until episode 6000 are served for exploring or learning, and theg R S
remaining 2000 episodes are used for test of the performancez 0.6 —¥ ‘
While thee-greedy method which includes stochastic selection™ R A
of actions is employed in the learning periods, the greedy 4 d DL N
method in which an action with the largest prediction is chosen L XCsSMH W
with certainty is used in the test periods. To examine the re A
performances of XSCAT, XCSM and XCSMH, data from 02
the last 1000 episodes are used for each trial, and thei LN
performances are evaluated by the average of 30 trials. Th 0
parameters used in the computational experiment are show 0 02 0.4 0.6 08 1
in Table V. In the experiment, we use XCSM and XCSMH Exploration rate ¢
programs of our own making according to the procedure given ) i
in Lanzi and Wilson [20]. The sizes of the internal registers Fig. 4: Convergence on fixed routes
in three programs, XCSAT, XCSM and XCSMH, are all 4 for
the seven problems in sections 5.1 and 5.2, and they are 6 and
8 for the two problemd,.abl andLargeMaze, in section 5.3.,
respectively.

Fig. 3: Convergence on the shortest routes

ence
]

As seen in Fig. 3 and Fig. 4, while XCSM and XCSMH can
hardly find the shortest routes, the agent in XCSAT pursues
the shortest routes with great accuracy. Although the rate of
In Fig. 3 and Fig. 4, we compare the performances ofconvergence on the shortest routes in XCSMH is slightly larger
XCSAT, XCSM, and XCSMH, varying the exploration rate than that of XCSM, for the convergence on another fixed route,
e in the e-greedy method in the learning periods. The rate ofthe rate of XCSM is larger than that of XCSMH. The number

" . 168 Page
www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,
\ol. 5,

of steps taken from the starts to the goals in XCSM an
XCSMH is larger than 12 on an average, and thus it follow
that the routes taken by the agent in these systems converge

No. 6, 2014

STABLE VII: Results of the computational experiment (steps)

X K . . . average of
some fixed routes including unnecessary actions because th&oods environment XCSAT ~ XCSMH  XCSM shones? steps
number of steps for the shortest routes is 4. mean 2.70 2238 319

woods101 best 2.62 2.64 2.64 2.45
. i worst 2.85 295.92 4.11
B. Performance verification mean 3.28 6.29 6.73
. . wo0ds102 best 3.00 4.23 4.93 2.57
We continue to examine the performance of XCSAT by worst 3.73 1463 1245
i i i i i i mean 4.19 44.51 38.57
using other 6 v_voods environments which are depicted in Fig. 6 naze? bea .90 590 498 370
in the appendix, and the summary data of them are given in worst 775 39263 12626
Table VI [17], [20], [21], [28]. mean 440 11689 3572
mazeF4 best 4.09 4.11 4.18 3.90
worst 5.54 1171.19 133.47
. ; ; mean 6.51 1208 46.45
TABLE VI: Woods environments for the computational exper- ..o best 570 639 8.20 432
iment worst 8.54 61.76  173.39
mean 4.19 3.89 6.85
. . Littman57 best 3.47 3.47 5.52 3.47
woos\"sogg\snlrg;ment numbelrlof all states number40f aliased states worst 5.09 514 9.87
woods102 28 10
maze7 10 2
mazeF4 11 2 Steps Steps Steps
mazel0 19 13 350 16 450
Littman57 15 8 . 14 400
300
Omean " Omean 350 Omeal
250
. . 300
In these woods environments, starting cells are randomly ,, 0 -
chosen from among non-goal cells. We evaluate the perfor- s o
mances by measuring the number of steps taken from the starts 6 150
to the goals. In the experiment, if the number of actions taken ' ‘I 5 100
by the agent is larger than 10000 and the agent still does not * 50
reach the goal, the current episode terminates and the next .Le e oLe
. . . . . XCSAT XCSMH XCSM XCSAT XCSMH XCSM XCSAT XCSMH XCSM
episode begins with a new starting cell. The exploration rate
. . . i woods101 woods102 maze7
is fixed ate = 0.5. The other experimental conditions and Steps Steps
the parameters are the same as those in the computationalw 20 12
experiment fooods10% given in section V-A. 1200 0 "
Omean 160 | Omean Omean

1000 140

The result of the computational experiment is given in
Fig. 5 and Table VII. The performances of the three systems s 120
XCSAT, XCSM and XSCMH are compared on the basis of the “;Z
data of the last 1000 episodes for the 30 trials. The teest " o
in Fig. 5 and Table VIl means the minimum among the results w0
of the 30 trials where the result of each trial is the average of

8

6
4 ;

S

0 r=%
XCSAT XCSMH XCSM

the last 1000 episodes. Therefore, we note thabtstis not
always the optimum. The terrmseanandworstalso mean the
average of the 30 trials and the maximum among the 30 trials,
respectively.

mazeF4

In Fig. 5,best mean worst, and the range of the steps taken
by the agent from the starts to the goals are given graphically.
In particular,meanis denoted by a circlehestand worst are

200 20 I
o] Le

XCSAT XCSMH XCSM

mazel0

XCSAT

XCSMH  XCSM

Littman57

Fig. 5: Results of the computational experiment (steps)

denoted by bars, and the range of the steps is represented 8 Obviously larger than those of XCSAT, and in some woods
vertical lines. In Table VII, the minimal steps among the three€fvironments theneanand worst of XCSMH sometimes are
systems are emphasized by boldface, and for reference th@ger than those of XCSM. This means that the learning
average steps of the shortest routes are given in the rightmoRgrformance of XCSMH is not stable, and we consider that
column. For example, the average of shortest stepsazeF4 this difficulty is attributed to the problem Qescrlbed in section
is calculated by summing up the numbers of the shortest stepd: In contrast, XCSAT works well in finding the shorter

to the goal for all cells and dividing the number of cells, i.e.,routes to the goal, and then the performance of XCSAT is
stable as seen Table VII. As we discussed in section V-A, also

from the viewpoint of the convergence given in Fig. 3 and
4, the performance of XCSAT is more stable than those of
As seen in Table VII, the number of steps of XCSAT for XCSM and XCSMH. In general, the performance of XCSAT
each of the six woods environments is close to the average superior to XCSM and XCSMH except fdrittman57.
step of the shortest routes. Tlhestof XCSMH is smaller In the experiment forLittman57, XCSMH shows the best
than that of XCSM, and XCSMH provides comparable resultperformance but the performance of XCSAT is also good.
to that of XCSAT. However, theneanand worst of XCSMH Both of XCSAT and XCSMH find the shortest routes, and the

44+3+2+14+04+44+5+5+6+7+6)/11 =3.90.
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difference between the mean steps of them is only 0.3 steps. Since inLargeMaze, the numbers of all states and aliased
states are large and there exist many possible routes from the
starts to the goals, compared t@abl, the number of valid

ials of LargeMaze is smaller that ofLabl, and the steps

As for Littman57, which is composed of 15 states including

8 aliased states, XCSMH works slightly better than XCSAT,

and the performance of XCSM is also reasonable. For mazed, .
. . en by the agent from the starts to the goalkangeMaze

gr m?‘zth“' ?owe\k/‘er, XCS'\QH and XCFS4M. operate me&‘ﬂc:‘e?gyare Iargyer thang those dfabl. The perform%nce:'gf XCSAT
espite the fact that maze7 or mazeF4 is composed o r . . . S

11 states and there are only two aliased states in both of the nd XCSAT are summarized in Table VIIl in a way similar

. X Table VII. As seen in Table VIII, the data supports the
This performance is thought to be due to the property of th%uperiority of the performance of XCSA(TcomparegF:o that

optimal actions. That is, optimal actions are the same in th%]c XSCAT, and then the modified condition for judging the

aliased states of Littman57, while they are different action ; : :
i those of maze7 or mazeFd. XCSAT works well in bothspayoff fluctuation to larger problems is shown to be effective.

problems because it finds an appropriate action efficiently by

referring the internal action table. VI. CONCLUSION
3 In this paper, we develop a learning classifier system with
C. Performance and adaptability for larger problems an internal action table (XCSAT) to deal with sequential

The average numbers of all states and aliased states of thgusmn proble_ms In non—l_\/larkqv environments. In XCSAT,
woods environments dealt with in section V-B are 15.7 and 6.5c0Ntrolling the internal register is separated from classifiers,
|and aliased states are perceived by detecting fluctuation of the
payoffs received by classifiers. After recognizing the existence
8f aliased states, the environmental information and the cor-
responding update of the internal register are recorded in the
internal action table as a rule for updating the internal register.

SAT identifies the perceived aliased state by referring to
the internal action table.

To cope with the larger problems, we revise the condition
for judging the payoff fluctuation of a classifier. The condition
given in section IV is thatel;.pmax — ¢li-pmin < 6, and

problems, we use a woods environmésatbl [1] which is 5
times as large as the woods environments in section V-B, an
we also provide a new woods environméiatrgeMaze which

is 10 times as large as them. These woods environments
depicted in Fig. 7 of the appendix.

By performing computational experiments where 9 woods
environments are used, we demonstrate the effectiveness of
cli.exp > 6,, and if this condition is satisfied, XCSAT judges XCSAT. In particular, XCSAT works well for woods environ-

that the payoffs of the classifier does not fluctuate. SinC({:‘nen.tS su?h Ithat dthe number of statezoao/re about dZO a[‘d the
the difference betweetl;.pyax and cl;.pmin depends on the ractlondo aliase 4 poimons Is about 30% as used in Lanzi
size of a problem and the payoff of a classifier decrease[518] and Lanzi and Wilson [20].

according to the discount factor every period of time, by The success probability of learning for the larger problems
using the discount factoy, we employ a modified condition by the proposed classifier systems (XCSAT and XC@pdre
yeli.pmax < cli.pmin iNstead ofcl; . prax — cli-pmin < 0. The  not high, therefore further improvement of the classifier system
remaining procedure for judging the payoff fluctuation is theshould be a future work.

same as before, and the value pfis set aty = 0.9 due

to increase of the problem size. The system with the revised
condition for judging the payoff fluctuation is denoted by
XCSAT’}/. The number of trials is 20. The other experimental [1] A. Burisov and A. Vasilyev, “ITearning classifier syste;ms in autonomous
conditions and the parameters are the same as those in the agent control task,” Proceedings of the 5th International Conference on

computational experiment for the six woods environments Application on Fuzzy Systems and Soft Computing, 36-42, 2002.
. p. . p [2] L. Bull, J. Sha’Aban, A. Tomlinson, J. D. Addison and B. G. Hey-
given in section V-B.

decker, “Towards distributed adaptive control for road traffic junction

- : . signals using learning classifier systems,” L. Bull (eédpplications of
In this computational experiment, the performances are Learning Classifier SystemSpringer, New York, 279-299, 2004.

evaluated by the average of 20 trials, and we define trials to befs] M. V. Butz and S. W. Wilson, “An algorithm description of XCSSoft
valid for measurement as follows: (i) the average steps from™  computing 6, 144-153, 2002.
the start to the goal is not larger than 100; (i) a trial, which 4]
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Fig. 6: Woods environments LargeMaze

Fig. 7: Large woods environments
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