
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

37 | P a g e
www.ijacsa.thesai.org

Comparative Performance Analysis of Feature(S)-

Classifier Combination for Devanagari Optical

Character Recognition System

Jasbir Singh

Department of Computer Science

Punjabi University

Patiala, India

Gurpreet Singh Lehal

Department of Computer Science

Punjabi University

Patiala, India

Abstract—this paper presents a comparative performance

analysis of feature(s)-classifier combination for Devanagari

optical character recognition system. For performance

evaluation, three classifiers namely support vector machines,

artificial neural networks and k-nearest neighbors, and seven

feature extraction approaches viz. profile direction codes,

transition, zoning, directional distance distribution, Gabor filter,

discrete cosine transform and gradient features have been used.

The first four features have been used jointly as statistical

features. The performance has also been evaluated by using the

combination of these feature extraction approaches. In addition,

performance evaluation has also been done by varying the

feature vector length of Gabor and DCT features. For training

the classifiers, 7000 samples of first 70 classes (out of 942 classes),

recognized in the earlier work have been used. Such a large

number of classes are due to the horizontal and vertical

fusion/overlapping characters. We have chosen first 70 classes as

their percentage contribution out of 942 classes has found to be

96.69%. For testing, 1400 samples have been collected separately.

A corpus of 25 books has been used for sample collection.

Classifiers trained on different features, have been compared for

performance evaluation. It has been found that support vector

machines trained with Gradient features provide the

classification correctness of 99.429%, and there is no significant

increase in the performance with the increase in the feature
vector length.

Keywords—Artificial Neural Network; DCT; Directional

Distance Distribution; Feature extraction, Gabor; k-Nearest

Neighbour; Profile direction codes; Support Vector Machines;

Transition; Zoning

I. INTRODUCTION

Optical character recognition is a widely used technique
for generating digital counterpart of printed or handwritten
text. A lot of work has been done in this field, particularly
from Devanagari script point of view. In one of the earlier
work, Sinha and Mahabala [1] have used syntactic pattern
analysis system with an embedded picture language for
recognition of Devanagari script.

Bansal and Sinha[3,4], laid emphasis on the use of various
knowledge sources at all levels in Devanagari document

processing system. These knowledge sources are

mostly statistical in nature. Chaudhuri and Pal
[5] have suggested the primary grouping of characters, where

each character is assigned to one of the three groups namely
basic, modifier and compound character. A feature based tree
classifier approach is then used for basic and modifier
character recognition. As Devanagari script consists of several
basic characters, half form of characters, vowel-modifiers and
diacritics, therefore from character recognition point of view
only 78 basic character classes are sufficient for the
identification of these characters. But in Devanagari the
characters fuse with each other and generate new compound
characters which are very difficult to separate during
segmentation phase of OCR process. These compound
characters are commonly known as conjuncts.

Sinha and Bansal [2] have discussed the algorithms that
can be used to segment the compound characters into its
constituent symbols rather than treating the character as a
single unit. But in our work we have considered these
compound characters as single recognizable unit, so that the
segmentation errors can be reduced. Kompalli, Nayak and
Setlur [6] and Kompalli, Nayak and Govindaraju [7] have also
discussed the wide range of challenges in Devanagari script
including that of compound characters. These compound
characters are the result of horizontal or vertical fusion of

basic characters. As an example व + ् + य will form व्य and च

+ ् + च will result in च्च. From these two examples it is very
much clear, that it is very difficult to decide from where to
separate these compound characters into the constituent basic
symbols and therefore treated as single recognizable unit.

The presence of conjuncts is not the only problem in
segmentation but sometime the height of constituent characters
in a word (to be segmented) is such that it causes segmentation

problems, for example in the word समूह the height of

constituent character ह is such that it can either lead to, over-

segmentation of ह or under-segmentation of म.ू Therefore we

have also considered such character combinations (म)ू as single
recognizable units. It should be noted that if the constituent
symbols are not connected, then they will be treated as
separate recognizable units.

In order to identify the possible classes and their frequency
of occurrence we [9] have used a corpus of approximately 3
million words, which comprises of Unicode data. We have
identified 864 compound characters (apart from basic 78
characters), which comprise of both horizontally and vertically

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

38 | P a g e
www.ijacsa.thesai.org

fused characters, and consonants with lower vowel modifiers
which makes a total of 942 recognizable units. As it is very
difficult to handle such a large number of classes; therefore
coverage analysis has been done to optimize the character
class count. The analysis has been done on the basis of their
frequency of occurrence. It has found that the first 70 classes
contribute to 96.69% of the overall classes, as shown in Table
I. Therefore in this work we have taken the first 70 classes to
find an optimal Feature(s)-classifier combination. For
evaluating the performance of feature(s)-classifier
combinations 1400 test samples i.e. 20 samples per class has
been collected separately.

TABLE I. PERCENTAGE CONTRIBUTION OF RECOGNIZABLE UNITS

Recognizable units % contribution

20 82.0185

30 90.1112

40 93.4336

50 95.0826

70 96.6985

This paper is organized as follows. Section II describes the
various classification techniques, like Support Vector
Machines, Artificial Neural Network and k-Nearest Neighbor.
Section III depicts the various feature extraction methods
which are used in his work. In section IV the performance of
all feature-classifier combinations has been presented, and in
section V comparison of all combinations has been done.
Conclusion and future scope is described in the section VI.

II. CLASSIFICATION METHODS

The task of classification is to assign an input pattern
represented by feature vectors to one of many pre-specified
classes. Here we have used three classifiers described here.

A. Support Vector Machines (SVM)

SVM's (Support Vector Machines) [10] are a useful
technique for data classification. SVM is a supervised learning
classifier. A classification task usually involves separating
data into training and testing sets. Each instance in the training
set contains one target value (class label) and several attributes
(features). The goal of SVM is to produce a model which
predicts the target value. Given a training set of attributes-
label pairs, where and
 the support vector machines require the solution of
the following optimization problem given by (1):

Here training vectors are mapped into higher
dimensional space by the function >0 is the penalty

parameter of the error term. Furthermore,

 is called the kernel function. Three kernel

functions are listed below.

 Linear:
 .

 Polynomial:

 RBF:

Where are kernel parameters.

B. Artificial Neural Network (ANN)

Artificial neural networks are the computational models
that consist of number of simple processing units called
neurons distributed in layers namely input, hidden and output
(Fig. 2) that communicate with one another over a large
number of weighted connections. An artificial neural network
is based on the operation of biological neural networks. The
neurons in the ANN are the electronic counter part of the
neurons of the human brain. Neuron of an artificial neural
network consist of

 A set of input values () and associated weights ()

 A function (φ) known as activation function that
operates on the weighted sum (evaluated by (2)),
and maps the results to an output ().

The model in Fig.1 shows the interval activity of the
neuron.

Fig. 1. A Neuron

Various activation functions available are: threshold,
piecewise linear, sigmoid, Elliot and Gaussian etc. We have
used Elliot and sigmoid as activation functions, which have
been determined experimentally. There may be several hidden
layers in the neural network, but we have used a single hidden
layer. The number of hidden neurons is determined
experimentally. A Neural network can be trained by using
sample training data, and then the trained network can be used
to predict the class of unknown test sample. Each neuron in
output layer corresponds to each class.

Fig. 2. A Neural Network

∑

wp

w2

w1

xp

x2

x1

vk y
k

....
....

φ(vk)

Input

values

Weights

Summing

junction

Activation

function Output

Input 1

Input 2

Input 3

Output 1

Output 2

Output 3

Input

neurons

Hidden

neurons

Output

neurons

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

39 | P a g e
www.ijacsa.thesai.org

C. k-Nearest Neighbour (kNN)

The nearest-neighbor classifier is one of the simplest of all
classifiers for predicting the class of the test sample. Training
phase simply store every training sample, with its label. To
make a prediction for a test sample, its distance to every
training sample is computed. Then, keep the k closest training
samples, where k≥1 is a fixed integer. Then a label is searched
that is most common among these samples. This label is the
prediction for this test sample.

This basic method is called the kNN algorithm. There are
two major design choices to make: the value of k, and the
distance function to use. We have chosen k = 1, 3, 5 and 7 and
for the minimum distance, the metric employed is the
Euclidean distance given by (3), which evaluates the distance
d(x, y) between test and training sample.

Where

III. FEATURE EXTRACTION METHODS

Feature extraction is the process of extracting distinctive
information from the digitized sample. The aim of feature
extraction is to describe the pattern by means of a minimum
number of features or attributes that are effective in
discriminating it among pattern classes.

A. Statistical Features

Statistical features describe a pattern in terms of a set of
characteristic measurements extracted from the pattern. The
statistical features which have been used are: Profile Direction
Codes, Zoning, Transition and Directional Distance
Distribution.

1) Profile Direction Codes: A variation of chain encoding

has been used on left, right, top and bottom profiles. First the

sample image is scaled to 50*50. For finding the left profile

direction codes, the image is scanned from left, from top to

bottom and local directions of the profile at each pixel are

noted. Starting from current pixel, the pixel distance of the

next pixel in east, south or west directions is noted. The

cumulative count of movement in three directions is

represented by the percentage occurrences with respect to the

total number of pixel movement and stored as a three

component vector with the three components representing the

distance covered in east, south and west directions,

respectively. Similarly right, top and bottom profiles are

calculated. Therefore a total of 12 profiles features have been

obtained (3 for each profile).

2) Transition Features: In transition features, location and

number of transitions from background to foreground pixels in

the vertical and horizontal directions are calculated. To get this

information, sample image is first scaled to 50*50 and then

scanned from right-to-left, left-to-right, top-to-bottom and

bottom-to-top. A transition which is close to the starting side is

assigned a high value compared to a transition computed at the

ending side. For example if the transitions were being

computed from right-to-left, a transition found close to the

right would be assigned a high value compared to a transition

computed to the left. A maximum of five transitions have been

recorded in each direction. If there were fewer transitions than

the maximum value, then the remaining transitions would be

assigned values of 0. It will produce four matrices, two

matrices having dimensions W × 5(one for top-to-bottom and

other for bottom-to-top) and other two matrices having

dimensions H × 5(right-to-left, left-to-right), where W is the

width and H is the height of the scaled sample image. After

evaluation of transitions each matrix has been divided into five

equal parts. We have taken the average of transitions vertically

in each part. We got 100 (4 × 25) transition feature vector.

3) Zoning Features: For extracting these features, the

sample image has been partitioned into the seven equal size

windows both horizontally and vertically called zones. Density

value (percentage of black pixels) for each of the zone has

been calculated. All these density values have been used to

form the input feature set. As we have partitioned the sample

image into 49 zones, therefore a density value from each zone

makes a feature vector set of size 49.

4) Directional Distance Distribution: For these features

for each black/white pixel, nearest white/black pixel is located

in eight different directions (00, 450, 900, 1350, 1800, 2250,

2700, 3150). These distances are then stored in a set of size 16,

for each pixel. The first 8 elements of this set correspond to

the distance of white neighbors of the black pixel in 8

directions. If the current pixel is white then these elements will

be set to 0. Similarly the rest of 8 elements correspond to the

black neighbors of the white pixel in 8 directions. If the

current pixel is black then these elements will be set to 0. For

this feature the image is scaled to the size of 36*36. After

obtaining such sets for each pixel, the input image array has

been divided into 3 equal parts both horizontally and

vertically, hence producing 9 zones. From each zone 16

feature vectors have been obtained by adding the

corresponding elements of all the sets, corresponding to the

pixels in that particular zone. Therefore 16 features from each

zone makes a total of 144 (16*9) feature.

B. Gabor Filter

A Gabor filter is a kind of local narrow band pass filter and
selective to both orientation and spatial frequency. It is widely
applied in the field of character recognition, face and texture
recognition. A two dimensional Gabor filter is defined by the
equation (4) given below:

Where
λ and ϕ are the wavelength and orientation of sinusoidal

plane wave, respectively. Where σx and σy are the standard
deviations of Gaussian envelop along x-axis and y-axis. In our
case σx = σy. Before feature extraction the image is scaled to
the size 32*32. The Gabor feature can be viewed as the
response of Gabor filter, which can be obtained by convolving

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

40 | P a g e
www.ijacsa.thesai.org

the filter with an image. A rotation of the x-y plane by an
angle ϕ will result in a Gabor filter of orientation ϕ. The value
of ϕ is given by ϕ , Where m
denotes the number of orientations, which are 9 in our case.
The filter response corresponding to all orientations are
obtained from the whole image, each quadrant and each sub-
quadrant of the image, which make a total of 189 features. We
have also experimented by increasing the feature vector size to
252, which have been obtained by changing the number of
orientations to 12.

C. Discrete Cosine Transform

Discrete Cosine Transform is the member of a family of
sinusoidal unitary transforms. Discrete Cosine Transform
efficiently encodes energy/the significant details of the image
in a few coefficients. These transform coefficients serve as
features for the image sample. For the images we have used
two-dimensional DCT represented by equation (5). It
calculates the two-dimensional cosine transform of an image.
In this function M and N are the height and width of the
image, but as the image is scaled to the size of 40*40,
therefore for this equation M=N.

Where

 and

D(i, j) represents the DCT coefficient corresponding to the

image pixel p(x, y). Therefore the coefficient corresponding to
all the image pixels will constitute a feature vector set.
Discrete cosine transform concentrates most of the image
energy in very few coefficients. The first transform coefficient
is called DC component which is at [0, 0] and rest are called
AC components. As the image is scaled to 40*40, therefore a
total of 1600 features (transform coefficients) can be obtained
from it. But we have picked only 100 features in zigzag
manner, as shown in Fig. 3. We have also evaluated the
feature-classifier performance by increasing the feature size to
200, merely by selecting the first 200 features in zigzag
manner.

Fig. 3. Zigzag coefficient collection

D. Gradient Features

The gradient features are obtained in three steps: gradient
computation, directional decomposition, and feature reduction.

For these features the input image is scaled to the size of
63*63. The gradient vector g(x, y) is then computed at each
pixel location using the Sobel operator. Accordingly, the two
components; gradient in x and y directions are computed as
follow

The magnitude and direction of gradient vectors are
evaluated from the components gx and gy. The gradient vectors
are then decomposed into components in eight chain-code
directions [8] as shown in Fig. 4(a). If a gradient vector lies
between two discrete directions, it is decomposed into two
components (Fig. 4(b)) along the two discrete directions;
otherwise the magnitude of the vector is exclusively assigned
to the corresponding direction. This decomposition results in
63*63*8 values. These values stored in an array are then
divided into 81 blocks. The gradient magnitude is accumulated
separately in each of 8 directions, for each block, which results
in 648 feature values. These values are then down-sampled by
using 5*5 Gaussian filter, which reduces the feature vector
size to 200.

(a) (b)

Fig. 4. (a) Eight chain code directions (b) Decomposition of gradient vector

TABLE II. FEATURES AND THEIR VECTOR LENGTH

S.No Features Size

1. Profile direction codes 12

2. Transition 100

3. Zoning 49

4. Directional distance distribution 144

5. Gabor filter 189/252

6. Discrete cosine transform 100/200

7. Gradient features 200

IV. PERFORMANCE EVALUATION

Features of all training and testing samples have been
extracted by using above said feature extraction methods. Each

1

2

3

4

5

6

7

8

1

2

θ

θθ
3

θ
4

1

2

3

4

5

6

7

8

1

2
vv

v

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

41 | P a g e
www.ijacsa.thesai.org

of the classifier explained earlier were then trained by using
the training features.

A. Feature-SVM Combination

SVM trained with 7000 training samples has been
subjected to classify the 1400 test samples. For classification
Linear, Polynomial and Radial Basis Function kernels
functions have been employed. We have experimented with
these kernels by changing the parameters, like degree of the
polynomial kernel, and γ for both polynomial and RBF
kernels. Table III shows the percentage classification of the
test samples. Here we have shown those values of γ for which
the classification correctness is maximum.

TABLE III. PERFORMANCE OF FEATURE(S)-SVM COMBINATION

SVM

 Kernels

Features Linear
Polynomial

RBF
deg = 2 deg = 3

Statistical 97.714
97.714

=0.003

97.714

=0.003

97.143

=0.00001

Gabor 97.429
98.000

=0.0005

97.143

=0.005

97.143

=0.0007

DCT 98.571
97.429

=0.005

98.000

=0.001

96.857

=0.003

Gradient 99.429
98.857

=0.005

98.857

=0.005

98.286

=0.00005

Stat. + Gabor 97.714
98.000

=0.002

97.714

=0.002

96.857

=0.00005

Stat. + DCT 97.714
98.000

=0.002

97.714

=0.002

97.143

=0.00001

Gabor +DCT 98.286
97.714

=0.003

97.714

=0.003

97.429

=0.0005

Stat. + Gradient 99.143
98.571

=0.0019

98.571

=0.00001

98.286

=0.00005

Gabor + Gradient 99.429
98.857

=0.0025

98.857

=0.0025

98.000

=0.00005

DCT + Gradient 99.429
98.857

=0.0001

97.571

=0.00001

98.286

=0.00003

B. Feature-ANN Combination

In ANN each output neurons represent the class to be
detected. Therefore we have used 70 output neurons. The
number of input neurons corresponds to the size of selected
feature, and hence number of input neurons can be decided
from the size of feature vector length.

The number of the hidden layer neurons was determined
experimentally. We started with a number close to mean of
input and output neurons and then checked the performance by
increasing and decreasing the number of hidden layer neurons.
Two functions Elliot and sigmoid have been used as activation
function for hidden and output neurons respectively. These
function have been determined experimentally form the
training data.

TABLE IV. PERFORMANCE OF FEATURE(S)-ANN COMBINATION

Feature ANN

Statistical
91.143

hidden=100

94.571

hidden=180
96.571

hidden=360

Gabor
92.000

hidden=90

93.429

hidden=125
96.286

hidden=230

DCT
95.714

hidden=50

96.571

hidden=85

97.429

hidden=150

Gradient
91.714

hidden=100

94.000

hidden=135
96.857

hidden=240

Stat. + Gabor
94.571

hidden=200

94.857

hidden=280
97.429

hidden=320

Stat. + DCT
92.714

hidden=180

95.714

hidden=230
96.286

hidden=410

Gabor + DCT
93.143

hidden=80

93.429

hidden=170

97.714

hidden=330

Stat. + Gradient
94.571

hidden=200

95.429

hidden=287
97.714

hidden=470

Gabor + Gradient
94.000

hidden=180

93.714

hidden=230
98.000

hidden=340

DCT + Gradient
91.714

hidden=100

94.286

hidden=185
97.429

hidden=300

C. Feature-kNN Combination

k nearest neighbor is one of the simplest classification
method. Here the Euclidian distance between test-sample
feature vector and all of the training-sample feature vectors
have been evaluated. And then depending upon the value of k
the class of test-sample is predicted. Table V depicts the
results of this combination for four different values of k for
different feature extraction methods.

TABLE V. PERFORMANCE OF FEATURE(S)-KNN COMBINATION

 kNN

Feature k = 1 k = 3 k = 5 k = 7

Statistical 96.000 95.429 95.143 94.571

Gabor 95.714 95.143 94.571 94.000

DCT 97.143 95.143 95.429 96.857

Gradient 96.571 96.286 94.857 95.714

Stat. + Gabor 96.000 94.857 95.143 95.429

Stat. + DCT 96.000 95.429 95.429 95.857

Gabor +DCT 97.143 96.571 96.000 96.286

Stat. + Gradient 96.571 96.286 95.714 96.571

Gabor + Gradient 96.857 97.143 95.714 96.286

DCT + Gradient 96.857 96.857 95.714 95.714

D. Effect of Feature Size on Performance

The effects of increase in the feature vector length of
Gabor and discrete cosine transform on performance have also
been evaluated. In order to increase the feature vector length
corresponding to Gabor features for both training and test
samples, number of orientations has been increased from 9 to
12. This increases the feature size from 189 to 252. Similarly
the numbers DCT feature vectors have been increased by
selecting 200 feature vectors from the total of 1600 feature
vectors in zigzag manner as shown in the Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 6, 2014

42 | P a g e
www.ijacsa.thesai.org

TABLE VI. PERFORMANCE OF SVM-GABOR AND SVM-DCT WITH

VARYING FEATURE VECTOR LENGTH

 SVM

 Kernels

Features Linear
Polynomial

RBF
deg=2 deg=3

Gabor-189 97.429
98.000

=0.0005

97.143

=0.005

97.143

=0.0007

Gabor-252 97.429
98.000

=0.0003

96.857

=0.003

97.571

=0.0001

DCT-100 98.571
97.429

=0.005

98.000

=0.001

96.857

=0.003

DCT-200 97.142
97.714

=0.001

97.428

=0.005

96.857

=0.00005

TABLE VII. PERFORMANCE OF ANN-GABOR AND ANN-DCT WITH

VARYING FEATURE VECTOR LENGTH

 ANN

Gabor-189
92.000

hidden=90

93.429

hidden=125

96.286

hidden=230

Gabor-252
90.571

hidden=140

92.571

hidden=160

94.857

hidden=290

DCT-100
95.714

hidden=50

96.571

hidden=85
97.429

hidden=150

DCT-200
95.714

hidden=100

94.429

hidden=135

95.429

hidden=160

TABLE VIII. PERFORMANCE OF KNN-GABOR AND KNN-DCT WITH

VARYING FEATURE VECTOR LENGTH

 kNN

 k = 1 k = 3 k = 5 k = 7

Gabor-189 95.714 95.143 94.571 94.000

Gabor-252 95.429 94.857 94.571 93.714

DCT-100 97.143 95.143 95.429 96.857

DCT-200 96.857 95.143 94.857 95.714

V. PERFORMANCE COMPARISON

For performance comparison, maximum percentage
classification accuracy of all combinations (Tables III, IV and
V) has been taken into account.

TABLE IX. COMPARISON OF FEATURE(S)-CLASSIFIER COMBINATIONS

 Classifiers

Features SVM ANN kNN

Statistical 97.714 96.571 96.000

Gabor 98.000 96.286 95.714

DCT 98.571 97.429 97.143

Gradient 99.429 96.857 96.571

Statistical + Gabor 98.000 97.429 96.000

Statistical + DCT 98.000 96.286 96.000

Gabor + DCT 98.286 97.714 97.143

Stat. + Gradient 99.143 97.714 96.571

Gabor + Gradient 99.429 98.000 97.143

DCT + Gradient 99.429 97.429 96.857

Table IX indicates that Gradient feature and its
combination with other features, with support vector machines
as classifier outperform the others. Discrete cosine transform
also perform well with all the classifiers even though it has
minimum feature vector length of size 100.

VI. CONCLUSION AND FUTURE SCOPE

From above discussion it has been found that Gradient
feature has provided the maximum classification accuracy of
99.429% only with SVM as compared to other combinations.
Above results also show that there is no observable increase in
the performance with the increase in the feature vector length
of Gabor and DCT features.

As the analysis has been done on the isolated recognizable
units therefore there may be variation in the results (e.g. due to
segmentation process) when these combinations will be used
in actual optical character recognition.

The classification results show that different combinations
complement each other; therefore as future scope, some
methods can be devised to combine the classification outcome
of these feature-classifier combinations to improve the
classification accuracy of complete recognition system.

REFERENCES

[1] Sinha and H.N. Mahabala, “Machine recognition of Devanagari script,”
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-9, pp.

435-441, 1979.

[2] R.M.K Sinha and V. Bansal, “On Devanagari Document Processing,”

IEEE International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1621-1626, 1995.

[3] V.Bansal and R.M.K. Sinha, “Integrating Knowledge Sources in

Devanagari Text Recognition System,” IEEE Transactions on Systems,
Man and Cybernetics-part A: Systems and Humans, vol. 30, No. 4, pp.

500-505, July 2000.

[4] V.Bansal and R.M.K.Sinha, “A complete OCR for printed Hindi text in
Devanagari script”, Proceedings of the Sixth International Conference on

Document Analysis and Recognition (ICDAR’01), pp. 800-804,2001.

[5] B.B. Chaudhuri and U. Pal, “An OCR System to Read Two Indian
Language Scripts: Bangla and Devnagari (Hindi),” Proceedings of the

4th International Conference on Document Analysis and Recognition,
vol. 2, pp. 1011-1015, Germany, 1997.

[6] S. Kompalli, S. Nayak and S. Setlur, “Challenges in OCR of Devanagari

Documents,” Proceedings of the 8th International Conference on
Document Analysis and Recognition (ICDAR’05), vol. 1, pp. 327-331,

2005.

[7] S. Kompalli, S. Setlur and V. Govindaraju, “Devanagari OCR using a
recognition driven segmentation framework and stochastic language

models,” International Journal on Document Analysis and Recognition.
pp. 123–138, 2009.

[8] A. Kawamura, K. Yura, T. Hayama, Y. Hidai, T. Minamikawa, A.
Tanaka and S. Masuda, “On-line recognition of freely handwritten

Japanese characters using directional features densities,” Proceedings of
11

th
 International Conference on Pattern Recognition, Hague,

Netherlands, 1992, Vol. II, pp. 183-186.

[9] J. Singh and G.S. Lehal, “Optimizing Character Class Count for
Devanagari Character Recognition,” International Conference on

Information Systems for Indian Languages (ICISIL2011), CCIS vol.
139, pp. 144-149, 2011.

[10] C.-W. Hsu, C.-C. Chang and C.-J. Lin, “A Practical Guide to Support

Vector Classification,”

 http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. 2010.

