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Abstract—this paper presents a comparative performance 

analysis of feature(s)-classifier combination for Devanagari 

optical character recognition system. For performance 

evaluation, three classifiers namely support vector machines, 

artificial neural networks and k-nearest neighbors, and seven 

feature extraction approaches viz. profile direction codes, 

transition, zoning, directional distance distribution, Gabor filter, 

discrete cosine transform and gradient features have been used. 

The first four features have been used jointly as statistical 

features. The performance has also been evaluated by using the 

combination of these feature extraction approaches. In addition, 

performance evaluation has also been done by varying the 

feature vector length of Gabor and DCT features. For training 

the classifiers, 7000 samples of first 70 classes (out of 942 classes), 

recognized in the earlier work have been used. Such a large 

number of classes are due to the horizontal and vertical 

fusion/overlapping characters. We have chosen first 70 classes as 

their percentage contribution out of 942 classes has found to be 

96.69%. For testing, 1400 samples have been collected separately. 

A corpus of 25 books has been used for sample collection. 

Classifiers trained on different features, have been compared for 

performance evaluation. It has been found that support vector 

machines trained with Gradient features provide the 

classification correctness of 99.429%, and there is no significant 

increase in the performance with the increase in the feature 
vector length. 
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Distance Distribution; Feature extraction, Gabor; k-Nearest 
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I. INTRODUCTION 

Optical character recognition is a widely used technique 
for generating digital counterpart of printed or handwritten 
text. A lot of work has been done in this field, particularly 
from Devanagari script point of view. In one of the earlier 
work, Sinha and Mahabala [1] have used syntactic pattern 
analysis system with an embedded picture language for 
recognition of Devanagari script.  

Bansal and Sinha[3,4], laid emphasis on the use of various 
knowledge sources at all levels in Devanagari document 

processing system. These knowledge sources are 

mostly statistical in nature. Chaudhuri and Pal 
[5] have suggested the primary grouping of characters, where 

each character is assigned to one of the three groups namely 
basic, modifier and compound character. A feature based tree 
classifier approach is then used for basic and modifier 
character recognition. As Devanagari script consists of several 
basic characters, half form of characters, vowel-modifiers and 
diacritics, therefore from character recognition point of view 
only 78 basic character classes are sufficient for the 
identification of these characters. But in Devanagari the 
characters fuse with each other and generate new compound 
characters which are very difficult to separate during 
segmentation phase of OCR process. These compound 
characters are commonly known as conjuncts.  

Sinha and Bansal [2] have discussed the algorithms that 
can be used to segment the compound characters into its 
constituent symbols rather than treating the character as a 
single unit. But in our work we have considered these 
compound characters as single recognizable unit, so that the 
segmentation errors can be reduced. Kompalli, Nayak and 
Setlur [6] and Kompalli, Nayak and Govindaraju [7] have also 
discussed the wide range of challenges in Devanagari script 
including that of compound characters. These compound 
characters are the result of horizontal or vertical fusion of 

basic characters. As an example व +  ् + य will form व्य and च 

+  ् + च will result in च्च. From these two examples it is very 
much clear, that it is very difficult to decide from where to 
separate these compound characters into the constituent basic 
symbols and therefore treated as single recognizable unit.  

The presence of conjuncts is not the only problem in 
segmentation but sometime the height of constituent characters 
in a word (to be segmented) is such that it causes segmentation 

problems, for example in the word समूह the height of 

constituent character ह is such that it can either lead to, over-

segmentation of ह or under-segmentation of म.ू Therefore we 

have also considered such character combinations (म)ू as single 
recognizable units. It should be noted that if the constituent 
symbols are not connected, then they will be treated as 
separate recognizable units.  

In order to identify the possible classes and their frequency 
of occurrence we [9] have used a corpus of approximately 3 
million words, which comprises of Unicode data. We have 
identified 864 compound characters (apart from basic 78 
characters), which comprise of both horizontally and vertically 
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fused characters, and consonants with lower vowel modifiers 
which makes a total of 942 recognizable units. As it is very 
difficult to handle such a large number of classes; therefore 
coverage analysis has been done to optimize the character 
class count. The analysis has been done on the basis of their 
frequency of occurrence. It has found that the first 70 classes 
contribute to 96.69% of the overall classes, as shown in Table 
I. Therefore in this work we have taken the first 70 classes to 
find an optimal Feature(s)-classifier combination. For 
evaluating the performance of feature(s)-classifier 
combinations 1400 test samples i.e. 20 samples per class has 
been collected separately. 

TABLE I. PERCENTAGE CONTRIBUTION OF RECOGNIZABLE  UNITS 

Recognizable units % contribution 

20 82.0185 

30 90.1112 

40 93.4336 

50 95.0826 

70 96.6985 

 

This paper is organized as follows. Section II describes the 
various classification techniques, like Support Vector 
Machines, Artificial Neural Network and k-Nearest Neighbor. 
Section III depicts the various feature extraction methods 
which are used in his work. In section IV the performance of 
all feature-classifier combinations has been presented, and in 
section V comparison of all combinations has been done. 
Conclusion and future scope is described in the section VI. 

II. CLASSIFICATION METHODS 

The task of classification is to assign an input pattern 
represented by feature vectors to one of many pre-specified 
classes. Here we have used three classifiers described here. 

A. Support Vector Machines (SVM) 

SVM's (Support Vector Machines) [10] are a useful 
technique for data classification. SVM is a supervised learning 
classifier. A classification task usually involves separating 
data into training and testing sets. Each instance in the training 
set contains one target value (class label) and several attributes 
(features). The goal of SVM is to produce a model which 
predicts the target value. Given a training set of attributes-
label pairs,                 where       and   
          the support vector machines require the solution of 
the following optimization problem given by (1): 

    
       

       
 

 
        

 

   

                          

                         
                       

Here training vectors    are mapped into higher 
dimensional space by the function     >0 is the penalty 

parameter of the error term. Furthermore,           

     
       is called the kernel function. Three kernel 

functions are listed below. 

 Linear:              
   . 

 Polynomial:               
      

 
          

 RBF:                        
            

Where           are kernel parameters. 

B. Artificial Neural Network (ANN) 

Artificial neural networks are the computational models 
that consist of number of simple processing units called 
neurons distributed in layers namely input, hidden and output 
(Fig. 2) that communicate with one another over a large 
number of weighted connections. An artificial neural network 
is based on the operation of biological neural networks. The 
neurons in the ANN are the electronic counter part of the 
neurons of the human brain. Neuron of an artificial neural 
network consist of    

 A set of input values (  ) and associated weights (  ) 

 A function (φ) known as activation function that 
operates on the weighted sum (   evaluated by (2)), 
and maps the results to an output (  ). 

        

 

   

                                                       

The model in Fig.1 shows the interval activity of the 
neuron.  

 

 

 

 

 

 
 
 

 

 

Fig. 1. A Neuron 

Various activation functions     available are: threshold, 
piecewise linear, sigmoid, Elliot and Gaussian etc. We have 
used Elliot and sigmoid as activation functions, which have 
been determined experimentally. There may be several hidden 
layers in the neural network, but we have used a single hidden 
layer. The number of hidden neurons is determined 
experimentally. A Neural network can be trained by using 
sample training data, and then the trained network can be used 
to predict the class of unknown test sample. Each neuron in 
output layer corresponds to each class. 

 
 
 
 
 
 
 
 
 

Fig. 2. A Neural Network 
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C. k-Nearest Neighbour (kNN) 

The nearest-neighbor classifier is one of the simplest of all 
classifiers for predicting the class of the test sample. Training 
phase simply store every training sample, with its label. To 
make a prediction for a test sample, its distance to every 
training sample is computed. Then, keep the k closest training 
samples, where k≥1 is a fixed integer. Then a label is searched 
that is most common among these samples. This label is the 
prediction for this test sample. 

This basic method is called the kNN algorithm. There are 
two major design choices to make: the value of k, and the 
distance function to use. We have chosen k = 1, 3, 5 and 7 and 
for the minimum distance, the metric employed is the 
Euclidean distance given by (3), which evaluates the distance 
d(x, y) between test and training sample. 

                                   
 

 

   

 

 
 

      

Where         

III. FEATURE EXTRACTION METHODS 

Feature extraction is the process of extracting distinctive 
information from the digitized sample. The aim of feature 
extraction is to describe the pattern by means of a minimum 
number of features or attributes that are effective in 
discriminating it among pattern classes. 

A. Statistical Features 

Statistical features describe a pattern in terms of a set of 
characteristic measurements extracted from the pattern. The 
statistical features which have been used are: Profile Direction 
Codes, Zoning, Transition and Directional Distance 
Distribution. 

1) Profile Direction Codes: A variation of chain encoding 

has been used on left, right, top and bottom profiles. First the 

sample image is scaled to 50*50. For finding the left profile 

direction codes, the image is scanned from left, from top to 

bottom and local directions of the profile at each pixel are 

noted. Starting from current pixel, the pixel distance of the 

next pixel in east, south or west directions is noted. The 

cumulative count of movement in three directions is 

represented by the percentage occurrences with respect to the 

total number of pixel movement and stored as a three 

component vector with the three components representing the 

distance covered in east, south and west directions, 

respectively. Similarly right, top and bottom profiles are 

calculated. Therefore a total of 12 profiles features have been 

obtained (3 for each profile). 

2) Transition Features: In transition features, location and 

number of transitions from background to foreground pixels in 

the vertical and horizontal directions are calculated. To get this 

information, sample image is first scaled to 50*50 and then 

scanned from right-to-left, left-to-right, top-to-bottom and 

bottom-to-top. A transition which is close to the starting side is 

assigned a high value compared to a transition computed at the 

ending side. For example if the transitions were being 

computed from right-to-left, a transition found close to the 

right would be assigned a high value compared to a transition 

computed to the left. A maximum of five transitions have been 

recorded in each direction. If there were fewer transitions than 

the maximum value, then the remaining transitions would be 

assigned values of 0. It will produce four matrices, two 

matrices having dimensions W × 5(one for top-to-bottom and 

other for bottom-to-top) and other two matrices having 

dimensions H × 5(right-to-left, left-to-right), where W is the 

width and H is the height of the scaled sample image. After 

evaluation of transitions each matrix has been divided into five 

equal parts. We have taken the average of transitions vertically 

in each part. We got 100 (4 × 25) transition feature vector. 

3) Zoning Features: For extracting these features, the 

sample image has been partitioned into the seven equal size 

windows both horizontally and vertically called zones. Density 

value (percentage of black pixels) for each of the zone has 

been calculated. All these density values have been used to 

form the input feature set. As we have partitioned the sample 

image into 49 zones, therefore a density value from each zone 

makes a feature vector set of size 49. 

4) Directional Distance Distribution: For these features 

for each black/white pixel, nearest white/black pixel is located 

in eight different directions (00, 450, 900, 1350, 1800, 2250, 

2700, 3150). These distances are then stored in a set of size 16, 

for each pixel. The first 8 elements of this set correspond to 

the distance of white neighbors of the black pixel in 8 

directions. If the current pixel is white then these elements will 

be set to 0. Similarly the rest of 8 elements correspond to the 

black neighbors of the white pixel in 8 directions. If the 

current pixel is black then these elements will be set to 0. For 

this feature the image is scaled to the size of 36*36. After 

obtaining such sets for each pixel, the input image array has 

been divided into 3 equal parts both horizontally and 

vertically, hence producing 9 zones. From each zone 16 

feature vectors have been obtained by adding the 

corresponding elements of all the sets, corresponding to the 

pixels in that particular zone. Therefore 16 features from each 

zone makes a total of 144 (16*9) feature. 

B. Gabor Filter 

A Gabor filter is a kind of local narrow band pass filter and 
selective to both orientation and spatial frequency. It is widely 
applied in the field of character recognition, face and texture 
recognition. A two dimensional Gabor filter is defined by the 
equation (4) given below: 

                    
 

 
 
  
 

  
  

  
 

  
         

    

 
             

Where                                    
λ and ϕ are the wavelength and orientation of sinusoidal 

plane wave, respectively. Where σx and σy are the standard 
deviations of Gaussian envelop along x-axis and y-axis. In our 
case σx = σy. Before feature extraction the image is scaled to 
the size 32*32. The Gabor feature can be viewed as the 
response of Gabor filter, which can be obtained by convolving 
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the filter with an image. A rotation of the x-y plane by an 
angle ϕ will result in a Gabor filter of orientation ϕ. The value 
of ϕ is given by ϕ                  , Where m 
denotes the number of orientations, which are 9 in our case. 
The filter response corresponding to all orientations are 
obtained from the whole image, each quadrant and each sub-
quadrant of the image, which make a total of 189 features. We 
have also experimented by increasing the feature vector size to 
252, which have been obtained by changing the number of 
orientations to 12. 

C. Discrete Cosine Transform 

Discrete Cosine Transform is the member of a family of 
sinusoidal unitary transforms. Discrete Cosine Transform 
efficiently encodes energy/the significant details of the image 
in a few coefficients. These transform coefficients serve as 
features for the image sample. For the images we have used 
two-dimensional DCT represented by equation (5). It 
calculates the two-dimensional cosine transform of an image. 
In this function M and N are the height and width of the 
image, but as the image is scaled to the size of 40*40, 
therefore for this equation M=N. 
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D(i, j) represents the DCT coefficient corresponding to the 

image pixel p(x, y). Therefore the coefficient corresponding to 
all the image pixels will constitute a feature vector set. 
Discrete cosine transform concentrates most of the image 
energy in very few coefficients. The first transform coefficient 
is called DC component which is at [0, 0] and rest are called 
AC components. As the image is scaled to 40*40, therefore a 
total of 1600 features (transform coefficients) can be obtained 
from it. But we have picked only 100 features in zigzag 
manner, as shown in Fig. 3. We have also evaluated the 
feature-classifier performance by increasing the feature size to 
200, merely by selecting the first 200 features in zigzag 
manner. 

 
 
 

 

 
 
 
 

Fig. 3. Zigzag coefficient collection 

D. Gradient Features 

The gradient features are obtained in three steps: gradient 
computation, directional decomposition, and feature reduction.  

For these features the input image is scaled to the size of 
63*63. The gradient vector g(x, y) is then computed at each 
pixel location using the Sobel operator. Accordingly, the two 
components; gradient in x and y directions are computed as 
follow 

 
                                                   

                       
                                 

 
                                                   

                       
                             

 

The magnitude and direction of gradient vectors are 
evaluated from the components gx and gy. The gradient vectors 
are then decomposed into components in eight chain-code 
directions [8] as shown in Fig. 4(a). If a gradient vector lies 
between two discrete directions, it is decomposed into two 
components (Fig. 4(b)) along the two discrete directions; 
otherwise the magnitude of the vector is exclusively assigned 
to the corresponding direction. This decomposition results in 
63*63*8 values. These values stored in an array are then 
divided into 81 blocks. The gradient magnitude is accumulated 
separately in each of 8 directions, for each block, which results 
in 648 feature values. These values are then down-sampled by 
using 5*5 Gaussian filter, which reduces the feature vector 
size to 200. 

 

  

(a)  (b)  

Fig. 4.  (a) Eight chain code directions  (b) Decomposition of gradient vector 

TABLE II. FEATURES AND THEIR VECTOR LENGTH 

S.No Features Size 

1. Profile direction codes 12 

2. Transition 100 

3. Zoning 49 

4. Directional distance distribution 144 

5. Gabor filter 189/252 

6. Discrete cosine transform 100/200 

7. Gradient features 200 

IV. PERFORMANCE EVALUATION 

Features of all training and testing samples have been 
extracted by using above said feature extraction methods. Each 
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of the classifier explained earlier were then trained by using 
the training features. 

A. Feature-SVM Combination 

SVM trained with 7000 training samples has been 
subjected to classify the 1400 test samples. For classification 
Linear, Polynomial and Radial Basis Function kernels 
functions have been employed. We have experimented with 
these kernels by changing the parameters, like degree of the 
polynomial kernel, and γ for both polynomial and RBF 
kernels. Table III shows the percentage classification of the 
test samples. Here we have shown those values of γ for which 
the classification correctness is maximum. 

TABLE III. PERFORMANCE OF FEATURE(S)-SVM COMBINATION 

 
SVM 

 Kernels 

Features Linear 
Polynomial 

RBF 
deg = 2 deg = 3 

Statistical 97.714 
97.714 

=0.003 

97.714 

=0.003 

97.143 

=0.00001 

Gabor 97.429 
98.000 

=0.0005 

97.143 

=0.005 

97.143 

=0.0007 

DCT 98.571 
97.429 

=0.005 

98.000 

=0.001 

96.857 

=0.003 

Gradient 99.429 
98.857 

=0.005 

98.857 

=0.005 

98.286 

=0.00005 

Stat. + Gabor 97.714 
98.000 

=0.002 

97.714 

=0.002 

96.857 

=0.00005 

Stat. + DCT 97.714 
98.000 

=0.002 

97.714 

=0.002 

97.143 

=0.00001 

Gabor +DCT 98.286 
97.714 

=0.003 

97.714 

=0.003 

97.429 

=0.0005 

Stat. + Gradient 99.143 
98.571 

=0.0019 

98.571 

=0.00001 

98.286 

=0.00005 

Gabor + Gradient 99.429 
98.857 

=0.0025 

98.857 

=0.0025 

98.000 

=0.00005 

DCT + Gradient 99.429 
98.857 

=0.0001 

97.571 

=0.00001 

98.286 

=0.00003 

B. Feature-ANN Combination 

In ANN each output neurons represent the class to be 
detected. Therefore we have used 70 output neurons. The 
number of input neurons corresponds to the size of selected 
feature, and hence number of input neurons can be decided 
from the size of feature vector length.  

The number of the hidden layer neurons was determined 
experimentally. We started with a number close to mean of 
input and output neurons and then checked the performance by 
increasing and decreasing the number of hidden layer neurons. 
Two functions Elliot and sigmoid have been used as activation 
function for hidden and output neurons respectively. These 
function have been determined experimentally form the 
training data. 

TABLE IV. PERFORMANCE OF FEATURE(S)-ANN COMBINATION 

Feature ANN 

Statistical 
91.143 

hidden=100 

94.571 

hidden=180 
96.571 

hidden=360 

Gabor 
92.000  

hidden=90 

93.429 

hidden=125 
96.286 

hidden=230 

DCT 
95.714 

hidden=50 

96.571 

hidden=85 

97.429 

hidden=150 

Gradient 
91.714 

hidden=100 

94.000 

hidden=135 
96.857 

hidden=240 

Stat. + Gabor 
94.571 

hidden=200 

94.857 

hidden=280 
97.429 

hidden=320 

Stat. + DCT 
92.714 

hidden=180 

95.714 

hidden=230 
96.286 

hidden=410 

Gabor + DCT 
93.143 

hidden=80 

93.429 

hidden=170 

97.714 

hidden=330 

Stat. + Gradient 
94.571 

hidden=200 

95.429 

hidden=287 
97.714 

hidden=470 

Gabor + Gradient 
94.000 

hidden=180 

93.714 

hidden=230 
98.000 

hidden=340 

DCT + Gradient 
91.714 

hidden=100 

94.286 

hidden=185 
97.429 

hidden=300 

C. Feature-kNN Combination 

k nearest neighbor is one of the simplest classification 
method. Here the Euclidian distance between test-sample 
feature vector and all of the training-sample feature vectors 
have been evaluated. And then depending upon the value of k 
the class of test-sample is predicted. Table V depicts the 
results of this combination for four different values of k for 
different feature extraction methods. 

TABLE V. PERFORMANCE OF FEATURE(S)-KNN COMBINATION 

 kNN 

Feature k = 1 k = 3 k = 5 k = 7 

Statistical 96.000 95.429 95.143 94.571 

Gabor 95.714 95.143 94.571 94.000 

DCT 97.143 95.143 95.429 96.857 

Gradient 96.571 96.286 94.857 95.714 

Stat. + Gabor 96.000 94.857 95.143 95.429 

Stat. + DCT 96.000 95.429 95.429 95.857 

Gabor +DCT 97.143 96.571 96.000 96.286 

Stat. + Gradient 96.571 96.286 95.714 96.571 

Gabor + Gradient 96.857 97.143 95.714 96.286 

DCT + Gradient 96.857 96.857 95.714 95.714 

D. Effect of Feature Size on Performance 

The effects of increase in the feature vector length of 
Gabor and discrete cosine transform on performance have also 
been evaluated. In order to increase the feature vector length 
corresponding to Gabor features for both training and test 
samples, number of orientations has been increased from 9 to 
12. This increases the feature size from 189 to 252. Similarly 
the numbers DCT feature vectors have been increased by 
selecting 200 feature vectors from the total of 1600 feature 
vectors in zigzag manner as shown in the Fig. 3. 
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TABLE VI. PERFORMANCE OF SVM-GABOR AND SVM-DCT WITH 

VARYING FEATURE VECTOR LENGTH 

 SVM 

 Kernels 

Features Linear 
Polynomial 

RBF 
deg=2 deg=3 

Gabor-189 97.429 
98.000 

=0.0005 

97.143 

=0.005 

97.143 

=0.0007 

Gabor-252 97.429 
98.000 

=0.0003 

96.857 

=0.003 

97.571 

=0.0001 

DCT-100 98.571 
97.429 

=0.005 

98.000 

=0.001 

96.857 

=0.003 

DCT-200 97.142 
97.714 

=0.001 

97.428 

=0.005 

96.857 

=0.00005 

TABLE VII. PERFORMANCE OF ANN-GABOR AND ANN-DCT WITH 

VARYING FEATURE VECTOR LENGTH 

 ANN 

Gabor-189 
92.000  

hidden=90 

93.429 

hidden=125 

96.286 

hidden=230 

Gabor-252 
90.571 

hidden=140 

92.571 

hidden=160 

94.857  

hidden=290 

DCT-100 
95.714 

hidden=50 

96.571 

hidden=85 
97.429 

hidden=150 

DCT-200 
95.714 

hidden=100 

94.429 

hidden=135 

95.429 

hidden=160 

TABLE VIII. PERFORMANCE OF KNN-GABOR AND KNN-DCT WITH 

VARYING FEATURE VECTOR LENGTH 

 kNN 

 k = 1 k = 3 k = 5 k = 7 

Gabor-189 95.714 95.143 94.571 94.000 

Gabor-252 95.429 94.857 94.571 93.714 

DCT-100 97.143 95.143 95.429 96.857 

DCT-200 96.857 95.143 94.857 95.714 

V. PERFORMANCE COMPARISON 

For performance comparison, maximum percentage 
classification accuracy of all combinations (Tables III, IV and 
V) has been taken into account. 

TABLE IX. COMPARISON OF FEATURE(S)-CLASSIFIER COMBINATIONS 

 Classifiers 

Features SVM ANN kNN 

Statistical 97.714 96.571 96.000 

Gabor 98.000 96.286 95.714 

DCT 98.571 97.429 97.143 

Gradient 99.429 96.857 96.571 

Statistical + Gabor 98.000 97.429 96.000 

Statistical + DCT 98.000 96.286 96.000 

Gabor + DCT 98.286 97.714 97.143 

Stat. + Gradient 99.143 97.714 96.571 

Gabor + Gradient 99.429 98.000 97.143 

DCT + Gradient 99.429 97.429 96.857 

Table IX indicates that Gradient feature and its 
combination with other features, with support vector machines 
as classifier outperform the others. Discrete cosine transform 
also perform well with all the classifiers even though it has 
minimum feature vector length of size 100. 

VI. CONCLUSION AND FUTURE SCOPE 

From above discussion it has been found that Gradient 
feature has provided the maximum classification accuracy of 
99.429% only with SVM as compared to other combinations. 
Above results also show that there is no observable increase in 
the performance with the increase in the feature vector length 
of Gabor and DCT features.  

As the analysis has been done on the isolated recognizable 
units therefore there may be variation in the results (e.g. due to 
segmentation process) when these combinations will be used 
in actual optical character recognition.  

The classification results show that different combinations 
complement each other; therefore as future scope, some 
methods can be devised to combine the classification outcome 
of these feature-classifier combinations to improve the 
classification accuracy of complete recognition system. 
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