
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

105 | P a g e

www.ijacsa.thesai.org

Adaptive Cache Replacement:A Novel Approach

Sherif Elfayoumy

School of Computing

University of North Florida

Jacksonville, Florida

Sean Warden

School of Computing

University of North Florida

Jacksonville, Florida

Abstract—Cache replacement policies are developed to help

insure optimal use of limited resources. Varieties of such

algorithms exist with relatively few that dynamically adapt to

traffic patterns. Algorithms that are tunable typically utilize off-

line training mechanisms or trial-and-error to determine optimal

characteristics.

Utilizing multiple algorithms to establish an efficient

replacement policy that dynamically adapts to changes in traffic

load and access patterns is a novel option that is introduced in

this article. A simulation of this approach utilizing two existing,

simple, and effective policies; namely, LRU and LFU was studied

to assess the potential of the adaptive policy. This policy is

compared and contrasted to other cache replacement policies

utilizing public traffic samples mentioned in the literature as well

as a synthetic model created from existing samples. Simulation

results suggest that the adaptive cache replacement policy is

beneficial, primarily in smaller cache sizes.

Keywords—cache replacement policy; high performance

computing; adaptive caching; Web caching

I. INTRODUCTION

Caching in computing has been a proven form of
performance enhancement for some time, most notably in
memory paging [1] [2]. The basic premise is that objects that
are frequently used or most likely to be used can be stored in a
location that provides performance benefits by virtue of being
temporally or locally near the consumer of the object.
Temporally meaning that an object may be served more
quickly from a given location when compared to the service
time from another host location, possibly due to reduced
latency of access from faster resources (disk, memory, etc.) or
increased service bandwidth. Because cache resources are
finite in size, however, one problem in caching is that there
exists a wide variety of algorithms for replacing objects in a
filled cache.

Effective caching algorithms are necessary to insure users
experience favorable performance benefits, especially in an
environment as diverse and distributed as the Internet. Such
performance benefits are a reduction in the delay between the
time a user requests an object and its delivery to the user.

Since the Web has evolved, several caching algorithms
have been suggested in literature; Balamash and Krunz‘s
survey of replacement algorithms described no fewer than
twenty different replacement schemes [3]. Each strategy
utilizes different parameters to determine objects to replace –
Balamash classified caching policies based on whether they
utilized frequency, recency, or size information. While some
algorithms utilize a single traffic trait, others employ a

functional approach to compute a derived ‗cost‘ of an object
cache miss based on multiple parameters, thus removing the
lowest ‗cost‘ object when a replacement is required. Not
surprisingly, the research has shown that functional
approaches are generally more computationally complex than
those based on a single attribute [3]. Due to the variety of
approaches, metrics, and parameters utilized (sometimes
singly and sometimes in combination), each algorithm has
distinct performance characteristics.

Since access patterns are unique to each environment,
certain algorithms are more suitable than others depending on
the traffic situation, and one single algorithm is not best in
class for all situations. A web server that functions as a search
engine will have different traffic patterns, and thus unique
cache architecture requirements, when compared to a
university web portal, online encyclopedia, multimedia server,
etc. [4]. Algorithm designers (such as [5]) have attempted to
overcome this problem using one or more static parameters
that can be tuned offline to optimize performance through
analysis of historical object requests.

Web caches are designed to provide apparent speed
benefits to object requestors by offloading objects from the
web server itself to a location that is physically or logically
closer to the requestor and/or decreases the amount of load
experienced by the web server [6]. A web cache typically
stores its objects in some form of memory or disk. Because
these storage resources are finite, however, cache replacement
policy algorithms are utilized to determine which objects to
remove from the cache as new objects are accessed which are
deemed more productive to cache [7]. Ideally, these
replacement policy algorithms will always choose to keep the
objects that will provide the best performance.

Developing an algorithm that is optimal for all traffic
patterns is a challenging problem. Some algorithms attempt to
overcome this problem using static tuning parameters that are
set using offline training, trial-and-error, or possibly via an
educated guess. Others attempt to adapt dynamically, using
computationally complex dynamic parameters that are based
on historical object requests. Because of the ubiquity of
caching across a variety of computing environments –
microprocessors, web, thin-clients, wireless devices, etc. – and
the wide variety of possible differences in traffic and access
patterns within and across these environments, researching
methods for adaptive performance optimization is a worthy
objective.

In this article, a novel adaptive approach to finding an
efficient cache replacement policy for a given traffic pattern
by sectioning the cache storage space into areas managed by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

106 | P a g e

www.ijacsa.thesai.org

separate object replacement policies is introduced and
assessed. The overall cache space then utilizes a tuning
algorithm to allow the overall cache to choose the best policy
based on current access patterns. This effort focuses on
caching within a web environment. However, the approach is
extensible to other caching environments. In section II an
overview of the most prominent cache replacement policies is
provided, and in section III the adaptive cache replacement
policy is described. The assessment approach and preliminary
results are described in section IV. Last, section V highlights
the conclusions.

II. CACHE REPLACEMENT POLICIES

A variety of cache replacement policy algorithms have
been designed and evaluated in literature, with a goal of
maximizing cache effectiveness as measured using
performance metrics such as Hit Ratio. Each algorithm
generally utilizes one or more of three pieces of information
about requested objects: recency of access, frequency of
access, or size. Algorithms range from those which are very
simple in that they only use a single traffic parameter, such as
LRU and LFU, to those which are very complex, using
multiple parameters as well as statically tuned constants, such
as Hybrid and GDSF. In the case of LRV, dynamic probability
functions – built based on static algorithm analysis – are
included but at the cost of implementation challenges and
computational complexity.

Evaluating the performance of replacement algorithms is
typically accomplished using real-world web logs (also known
as web traces). These web logs are cleansed to remove non-
cacheable requests (such as cgi or other dynamically generated
content), then run through a program to simulate the
replacement algorithm by ‗playing back‘ the cleansed web
log. The simulation process calculates benchmarks over a
range of cache sizes. The most common metrics are hit ratio
(HR), or the ratio of cache hits to all requests; byte hit ratio
(BHR), or the ratio of bytes returned from the cache to all
bytes requested; and latency ratio (LR), or the delay
experienced by a user for objects retrieved from the cache
verses that experienced if no objects were cached. Other
effectiveness measures include reduced packets, or the ratio of
network packets avoided due to caching to the total packets
that would have otherwise been seen by the server; and
reduced hops, a similar measure that focuses on network hops
between client and server. Balamash and Krunz define the
most common measures as follows [3]:









Ri

i

Ri

i

f

h

HR















Ri

ii

Ri

ii

fs

hs

BHR















Ri

ii

Ri

ii

fd

hd

LR

Where: is = size of object i;
if = total number of object

requests for object i;
ih = total number of cache hits for object

i;
id = average server retrieval delay for object i; R = set of all

requested objects.

A. Least Recently Used (LRU) Algorithm

The Least Recently Used algorithm essentially uses a
single parameter to decide which object to remove from the

cache: time since last access. The basic premise of the
algorithm is that those objects that are most likely to be
accessed will have been accessed more recently than those
that are not as likely. While simple to implement and
requiring less computational power than most other
algorithms, LRU has been outclassed by several other
replacement algorithms: Balamash and Krunz‘s experiments
showed that for large cache sizes, LUV, GDS, and Hyper-G
produced better results for both HR and LR [3], while Bahn et
al. found that for large cache sizes, LUV, Hybrid, Size, Mix,
and sw-LFU performed better for HR and LUV was better for
LR [5].

B. Least Frequently Used (LFU) Algorithm

Another relatively simple algorithm, Least Frequently
Used utilizes a frequency counter for each object in the cache.
Objects that are most frequently accessed are thus more likely
to remain in the cache and presumably provide benefit to
future users. Similar to LRU in terms of ease of
implementation and complexity, this algorithm has also been
surpassed by algorithms that are more efficient; Bahn et al.
noted that LUV, LNC-R-W3, GDS, and LRV outperformed
LFU for HR, BHR, and LR [5].

C. Size Algorithm

The Size algorithm is another simple algorithm - size is the
only measure utilized for eviction evaluation [8]. When an
eviction is required, Size removes the largest object currently
in the cache with the idea that users are less likely to re-
request larger objects. Smaller objects, then, are more likely
to remain in the cache long-term [3]. Additionally, this allows
for a larger number of objects to remain in the cache,
potentially improving hit rates for some traffic patterns.
Algorithm implementation is simple when compared to
algorithms using multiple parameters, but exhibits generally
poor performance: Balamash et al. found that the Size
algorithm was a middle-of-the-pack performer for HR and
absolute worst for BHR and LR using a simulated DEC trace
and compared against LUV, GDS, Hyper-G, LRU, and Hybrid
algorithms.

D. Least Unified Value (LUV) Algorithm

The LUV algorithm is a more complex functional
algorithm that ―trie[s] to get the benefit of both LRU and LFU
in one unified scheme [3]‖. Each object in the cache is
assigned a value that is used during a replacement operation;
the object with the lowest value is removed. Values for each
object (i) are assigned by the following formula:

  














k

n
i

i

i

ik

s

C
kV

1

,

2

1
)(



Where:
iC is the cost of object i; is is the size of object i;

 is a static parameter in the range 0 ≤  ≤ 1;
ik , is the time

since the k
th

 reference to object i.

Bahn et al. did not describe a mechanism for determining
λ, simply mentioning training as an approach without
providing implementation details [5], while Katsaros and
Manolopoulos suggested trial-and-error [9]. An obvious

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

107 | P a g e

www.ijacsa.thesai.org

drawback to either methodology is that the resulting parameter
may not provide efficient object replacement as request
patterns change. Interestingly, a value of zero for λ causes the
algorithm to behave very similar to LFU, while behavior
similar to LRU results when λ is set to one.

E. Hybrid Algorithm

Wooster et al., presented a cache policy that utilizes
several objects and request traffic statistics in a functional
computation that derives a cost (or value) for each member or
potential member of the cache [10]. The Hybrid formula is
defined as:

 in sW

isbsi fbWrttV
/

)()/(

Where: si= size of object i; fi= total number of object
requests for object i; rtts= round trip time from cache to server
s; bs= bandwidth from cache to server s; Wb and Wn= tuned
parameters.

Balamash and Krunz noted that Wb is tuned based on the
―importance of the connection time relative to the connection
bandwidth [3]‖, while Wn is tuned based on the ―importance of
frequency information relative to the size of the object [3].‖
These parameters are static; though they can be tuned for each
implementation, they do not change over time within the
context of the implementation. Similar to LUV, the authors
do not provide a methodology for determining the static
parameters Wb and Wn other than experimentation utilizing
trace files, which can result in less efficient cache
performance.

F. Mix Algorithm

Niclausse et al. presented an extension to the Hybrid cache
policy that adds a parameter of time since last access to the
functional cost computation [7]. The Mix formula is defined
as:

43

21

r

i

r

i

r

i

r

i
i

stref

fd
V






Where: si= size of object i; fi= total number of object
requests for object i; di = average server retrieval delay for
object i; trefi= current date and time of last request for object
i; r1, r2, r3, r4= tuned parameters.

The authors noted that tuning the parameters utilized by
the algorithm is not a trivial task and did not present a
methodology for doing so. However, their trace simulation
experiments found that using a value for r1 that was much
smaller than r2, r3, and r4 gave optimal performance, and their
published results used 1, 0.1, 0.1, and 0.1 for the respective
parameters. Though the algorithm utilizes several performance
characteristics as well as tuned parameters in an attempt to
create an efficient replacement algorithm, experimentation by
Balamash found that the algorithm was one of the worst
performers, generally bested by even LRU and being superior
only to Size.

G. Greedy Dual Size with Frequency (GDSF) Algorithm

Jin and Bestavros proposed the GDSF algorithm, which is
a functional algorithm similar in approach to Mix in that it
utilizes several object statistics, but different in that it utilizes

only one pre-tuned parameter [11]. The GDSF formula is
defined as:

 LscfV iiii  /

Where: si = size of object i; fi = total number of requests
for object i; ci= the cost of bringing object i into the cache; L=
a runtime factor which starts at zero when the cache is
initialized and represents the value of the most recent object to
be replaced.

Arlitt et al. noted that the best HR is achieved when ci is
set to one [12]. The runtime factor L works as follows: when
the cache is first initialized, L is set to zero. L remains zero
until the cache becomes full and an object needs to be
removed from the cache. The algorithm determines the object
with the lowest value, Vi, and removes it from the cache. The
runtime parameter L is set to the value of Vi for the ejected
object. This process continues throughout the life of the cache
such that L is an ever-increasing parameter.

Shi and Zhang, attempting to find single optimal
algorithms for HR, BHR, and LR separately, instead found
that GDSF performed best for all three metrics simultaneously
when compared to LRU, LFU, and GDS [13].

H. Lowest Relative Value (LRV) Algorithm

After extensive analysis of web traces, Rizzo and Vicisano
proposed a complex (and, according to Bahn et al., ―difficult‖
to implement) algorithm called Lowest Relative Value [14][3].
The algorithm utilizes separate computations based on
whether the object is being requested for the first time or a
subsequent time:

otherwisesctDP

nsctDsP
V

iin

iii

i
,/)](1[

1,/)](1[)(
{

1






Where: si= size of object i; ci= the cost of loading object i
into the cache; t= time since last request for object i; Pn=
probability of access of n+1 given access of n times; D(t)=
cumulative distribution function of object inter-access time.

The probability functions Pn and D(t) are based on
―extensive analysis of trace data [5],‖ but are computed
dynamically [14]. Rizzo provides an estimation for

computing D(t) as:)log()(
1

1






t
ctD where

1 is a

parameter that ―accounts for the periodicity of frequent
references to popular documents [14]‖ and c is further defined

by the equation:)log()(
1

12






t

btDc

While Bahn, et al. did not examine the effectiveness of
LRV, their treatment of the algorithm noted that the Vi
equation needed to be calculated for every object in the cache
each time an object was removed. Additionally, the LRV
authors stated that the probability functions were iterative in
nature. While the algorithm is adaptive to traffic, then, it is
not only difficult to implement but also computationally
complex.

I. Advanced Replacement Cache (ARC) Algorithm

Megiddo and Modha constructed a dynamically adaptive
cache policy that attempted to strike a balance between object
request frequency and recency. Their policy implements two

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

108 | P a g e

www.ijacsa.thesai.org

LRU cache areas: one is a list of LRU-ordered objects that
have been requested only once and the other is a list of LRU-
ordered objects that have been requested two or more times
[15]. They define their algorithm as

ARC(c) Initialize T1 = B1 = T2 = B2 = 0, p = 0.

 x - requested page.

Case I. x ∈ T1 ∪ T2 (a hit in ARC(c) and

DBL(2c)):

 Move x to the top of T2.

Case II. x ∈ B1 (a miss in ARC(c), a hit in

DBL(2c)):

 Adapt p = min{c,p + max{|B2|/|B1|, 1} }.

 REPLACE(p).

 Move x to the top of T2 and place it in the

cache.

Case III. x ∈ B2 (a miss in ARC(c), a hit in

DBL(2c)):

 Adapt p = max{0,p - max{|B1|/|B2|, 1} }.

 REPLACE(p).

Move x to the top of T2 and place it in the

cache.

Case IV. x ∈ L1 ∪ L2 (a miss in DBL(2c) and ARC(c)):

case (i) |L1| = c:

if |T1| < c then delete the

LRU page of B1.

REPLACE(p).

else delete LRU page of T1 and remove it from

the cache.

case (ii) |L1| < c and |L1| + |L2| ≥ c:

if |L1| + |L2| = 2c then delete the LRU page of

B2.

REPLACE(p).

Put x at the top of T1 and place it in the cache.
Subroutine REPLACE(p)

if (|T1| ≥ 1) and ((x ∈ B2 and |T1| = p) or (|T1| > p)) then
move the LRU page of T1 to the top of B1 and remove it from
the cache.

else move the LRU page in T2 to the top of B2 and remove
it from the cache.

In their implementation, T1 and T2 represent the list of
most recently requested objects in lists L1 and L2, respectively.
Similarly, B1 and B2 represent the list of least recently
requested objects in lists L1 and L2, respectively. The
parameter p dynamically adjusts such that the overall cache
contains ―the p most recent [objects] from L1 and c-p most
recent [objects] from L2.― [15]. The authors‘ experimental
results show that the ARC algorithm does outperform LRU in
their trials. Unfortunately, the experiments were performed
using traffic traces specific to their research facility rather than
publicly available traces, making direct comparisons to other
published algorithms impossible.

III. ADAPTIVE REPLACEMENT POLICY

Memory-based caching being finite in nature is typically
governed by a single cache-replacement policy. A simplified
and generalized architecture for a cache area x governed by
replacement policy R is depicted in figure 1.

Size: x

Policy: R

Fig. 1. Simple Cache Architecture

This article focuses on an adaptive cache replacement
policy that allows for a short period of possibly less efficient
cache performance while still providing some cache benefits,
directly leading to an efficient algorithm choice without the
need for trace file collection or offline training. The approach
is similar to that of ARC, except that it is adaptable to
replacement policy choices other than LRU and possibly
extensible to more than two policies. The rest of this section
outlines the new multiple-algorithm approach to dynamically
choosing an efficient replacement policy.

The new approach modifies the simple cache architecture
by splitting its finite area into n separate parts, each governed
by a distinct replacement policy, Ri. In such an architecture,
each partition would start with size x/n. Figure 2 depicts this
generalized architecture.

Size: x/n

Policy: R0

...

Size: x/n

Policy: R1

Size: x/n

Policy: Rn

Fig. 2. Generalized n-Policy Cache Architecture

Considering a two-parts cache architecture, a second
modification allows for the size of each area y and y’ to adjust
dynamically based on traffic patterns while their combined
sizes are never greater than x, as illustrated in figure 3.
Caches are initialized to be completely empty, so a cache
system has no history on which to base the loading or removal
of objects. The multi-algorithm approach primes each cache
area with objects as they are being requested. The priming
process alternates loading objects between the two caches, y
and y’, until both areas are full. Additionally, a cached object
can exist in only one area at a time, not both simultaneously.
During the load process, the cache policies continue to work
normally – if a cached object is re-requested, it is provided by
the cache area from which it resides. If one area becomes full
during the priming phase, the other area continues to be filled
until it, too, is completely primed.

Once primed, a secondary algorithm begins to dynamically
adjust the size of the caches based on which area is serving the
most cache hits. This is accomplished using a dynamic

parameter  that is initially set to x/2 and is used to calculate
the current size of each cache area, mathematically:

y  xy'

Size: ρ

Policy: R

Size: x - ρ

Policy: R’

Fig. 3. Two-Policy Cache Architecture with Parameter

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

109 | P a g e

www.ijacsa.thesai.org

When area y experiences a cache hit,  is increased by the
size of the object being requested. Alternatively, when area y’

sees a hit,  is decreased by the requested object size. If the
total size of all objects cached for an area exceeds the dynamic
size, cache replacement policies kick in and objects are
removed until the total object size is less than or equal to the
dynamic allocation.

The initial theory behind the new multi-algorithm
replacement policy hypothesized that a cache area x would
adapt to changing traffic patterns in a manner similar to that of
ARC. Instead, another interesting result emerged from the
simulation results: the overall area x generally converges to
either replacement policy R or R’, depending on which policy
yields best results for the traffic pattern. The multi-algorithm
policy is outlined as follows:

Given:

L1 is list using LRU policy

L2 is list using LFU policy

x is total cache size

0 < |L1| ≤ ρ and ρ < |L2| ≤ x

LFRU3 (x) Initialize L1 = L2 = 0, ρ = x/2.

o - requested object.

Case I. o  L1 (a miss in LFU, a hit in LRU):
If L1 is primed, L2 is primed, ρ>

sizeof(o), and ρ +sizeof(o)< x

Adapt ρ = ρ + sizeof(o).

Move o to the top of L1.

If |L2| > x - ρ, evict LFU objects until

|L2| ≤ x – ρ and mark L2 as primed.

Case II. o  L2 (a miss in LRU, a hit in LFU):
If L1 is primed, L2 is primed, x - ρ >

sizeof(o), and ρ - sizeof(o) > 0

Adapt ρ = ρ - sizeof(o).

Increase frequency of o in L2.

If |L1| > ρ, evict LRU objects until |L1|

≤ ρ and mark L1 as primed.

Case III. o  L1  L2 (a miss in LRU and LFU):
If ((L1 is not primed and L1 has fewer

entries than L2)

or (L1 is not primed and L2 is primed)

or (L1 is primed and L2 is primed and ρ

< x/2))

and ρ + sizeof(o) < x

(LRU is doing better or needs primed)

add o to the top of L1.

Else

If ((L2 is not primed and L2 has fewer

entries than L1)

or (L2 is not primed and L1 is

primed)

or (L1 is primed and L2 is primed))

and ρ - sizeof(o) > 0

(LFU is doing better or needs

primed)

add o to L2 with frequency of 1.

ρ remains unchanged.

If |L1| > ρ, evict LRU objects until

|L1| ≤ ρ and mark L1 as primed.

If |L2| > x - ρ, evict LRU objects

until |L2| ≤ x - ρ and mark L2 as

primed.

IV. PRELIMINARY RESULTS

An experiment was designed to assess the effectiveness of
the adaptive policy using two algorithms where the cache was
split into two parts. LRU algorithm was chosen for policy R
and the LFU algorithm was chosen for policy R’. These

policies were chosen due to their computational simplicity
[16] and the fact that many if not most existing policies utilize
recency and/or frequency in their design [3].

Two traces from the Internet Traffic Archive [17] were
chosen to carry out the validation process: one from Digital
Equipment Corporation (DEC) and another from the
Environmental Protection Agency (EPA). The trace files were
chosen primarily based on how they performed under
simulation; DEC generally performed better using the LRU
policy whereas EPA generally showed a preference for the
LFU policy. Additionally, the DEC trace files were
previously utilized in algorithm research by in [5], [16], [11],
[3], and [14] while the EPA trace files were used in [18].
Finally, a third trace file was created to alternate requests from
the DEC and EPA trace files in order to craft a synthetic trace
file for analysis that mimicked two simultaneous unique traffic
patterns.

These web traces were applied using a cache simulator
written by Pei Cao, known as Uniform [19]. Employed in
other research ([20], [21], and [22]) and written in C, this
application readily facilitated the simulation of the LRU
replacement policy. The simulator was enhanced by
implementing the LFU policy as well as the adaptive policy,
LFRU3, in order to simulate these policies along with the
already available LRU. Additionally, each policy utilized a
threshold mechanism that existed in the initial simulator and
was implemented in newly added policies (LFU and LFRU3).
The threshold process refused to cache objects above a certain
size (250kB in this experiment) so that one large object could
not ‗pollute‘ the cache, meaning that a request for one large
object would not cause many smaller and possibly more
beneficial objects to be removed.

The performance of the three primed with thresholding
versions of the three algorithms were compared to determine
the effectiveness of LFRU3. Figures 4-6 depict the
performance using the DEC, EPA, and synthetic DECEPA
trace files, respectively. For the DEC trace the adaptive policy,
LFRU3, has nearly the same performance as the best
algorithm (LRU) for smaller cache sizes and very close in
performance at the largest cache size, as shown in figure 4.
This indicates that LFRU3 successfully converged to the
better of the two algorithms in all test cases.

In the EPA simulations the new two-algorithm policy
chose the better (LFU) algorithm in two scenarios – cache
sizes of 0.05% and 10% of maximum (5 simulations). For
these five simulations, then, LFRU3 successfully converged to
the better of the two algorithms 40% of the time. It is
encouraging to note that at the 0.05% cache size, where the
LRU algorithm and LFU algorithm showed the most dramatic
performance differential, the adaptive policy successfully
converged to the better of the two algorithms, as shown in
figure 5.

The synthetic simulation showed the most promise. In this
simulation the new approach was actually superior to the other
algorithms for smaller cache sizes. It delivered an 8% HR
improvement over LFU and 48% improvement over LRU for
the 0.05% cache size. At 0.5% cache size, the results were
less pronounced but still superior: 1.4% HR improvement

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

110 | P a g e

www.ijacsa.thesai.org

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 R
a

te

Portion of Trace Processed

LFRU3-thresh-priming LFU-thresh-priming
LRU-thresh-priming

over LFU and 9.6% better than LRU, as shown in figure 6.
Figures 7 and 8 depict the HR for these two cache sizes over
simulation time.

Fig. 4. HR vs. Cache Size (percentage of DEC Trace)

Fig. 5. HR vs. Cache Size (percentage of EPA Trace)

Fig. 6. HR vs. Cache Size (percentage of DECEPA)

Results in Figure 7 illustrate that for the smallest cache,
LFRU3 performs consistently better than the other algorithms,
and all three algorithms have consistent performance
throughout the life of the simulation. Thus, the convergence
to superior performance over the other algorithms occurs very
early in the lifecycle of the cache and remains constant
throughout, a very encouraging result.

Fig. 7. HR vs. Sim. Time Size (0.05% Synthetic Trace)

Fig. 8. HR vs. Sim. Time Size (0.5% Synthetic Trace)

The next largest cache shows LRU starting strong but
quickly being surpassed by both LFU and the new approach,
with LFRU3 consistently better than LFU throughout the
examination period, as shown in figure 8. While in this case
the new policy is not superior at the first examination period
(10% of the trace), it quickly exceeds the performance of the
initial best performer and shows gradual improvement and
superior performance throughout the remainder of the cache
lifecycle.

For Byte Hit Rate (BHR), the performance gain was not as
pronounced. As Figure 9 illustrates, the LFRU3 policy slightly
edges the next-best performer, LFU, at the smaller size, but
performance at other sizes varies. Reduced latency (LR), a
measure of the reduction of time spent waiting for objects,
shows promise.

0

0.2

0.4

0.6

0.8

1

0.05 0.5 5 10 20

H
it

 R
a

te

Cache Size (% of Trace)

LFRU3-thresh-priming LFU-thresh-priming

LRU-thresh-priming

0

0.2

0.4

0.6

0.8

0.05 0.5 5 10 20

H
it

 R
a

te

Cache Size (% of Trace)
LFRU3-thresh-priming LFU-thresh-priming
LRU-thresh-priming

0.34

0.36

0.38

0.4

0.42

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 R
a

te

Portion of Trace Processed
LFRU3-thresh-priming LFU-thresh-priming
LRU-thresh-priming

0

0.1

0.2

0.3

0.05 0.5 5 10 20

H
it

 R
a

te

Cache Size (% of Trace)

LFRU3-thresh-priming LFU-thresh-priming

LRU-thresh-priming

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

111 | P a g e

www.ijacsa.thesai.org

Figure 10 shows that LR is nearly identical to that for HR
– LRFU3 is the best LR performer for the two smallest caches.

Fig. 9. BHR vs. Cache Size (percentage of Striped Trace)

Fig. 10. LR vs. Cache Size (percentage of Striped Trace)

V. CONCLUSIONS

Caching for Web documents is a hugely beneficial
function, and much research has been published on cache
replacement policies. While the replacement algorithms
themselves may factor in one, a few, or many parameters
related to the objects and their request history, a multi-
algorithm policy has not been attempted. While this article
focuses on a two-policy architecture, it is expected that it can
be effective for more than two policies.

Simulations of the multi-algorithm cache replacement
policy shows that it is a viable approach that can adapt itself to
the better of two replacement policies in many instances, and
provide superior performance in some others. The empirical
results support that the adaptive policy works particularly well
in environments with limited cache sizes.

REFERENCES

[1] Smith, A. J., ―Bibliography on Paging and Related Topics‖, Operating
Systems Reviews, Vol. 12, 1978.

[2] Smith, A. J., ―Second Bibliography for Cache Memories‖, Computer
Architecture News, Vol. 19, No. 4, 1999.

[3] Balamash, A. and M. Krunz, ―An Overview of Web Caching
Replacement Algorithms‖, IEEE Communications Surveys, Vol. 6, No.
2, Second Quarter, 2004.

[4] Baeza-Yates, Ricardo, et al., ―Design Trade-Offs for Search Engine
Caching‖, ACM Transactions Web, Vol. 2, No. 4, October, 2008.

[5] Bahn, Hyokyung, et al., ―Efficient Replacement of Nonuniform Objects
in Web Caches‖, IEEE Computer, Vol. 35, No. 6, June, 2002.

[6] Chankhunthod, A., et al., ―A Hierarchical Internet Object Cache‖,
Technical Report 95-611, Computer Science Department, University of
Southern California, Los Angeles, California, 1995.

[7] Niclausse, N., et al., ―A New and Efficient Caching Policy for the World
Wide Web‖, Proceedings of Workshop Internet Server Performance
(WISP 98), 1998.

[8] Williams, S., ―Removal Policies in Network Caches for World Wide
Web Documents‖, Proceedings of ACM SIGCOMM Conference,
Stanford University, Aug. 1996.

[9] Katsaros, D. and Y. Manolopoulos, ―Caching in Web Memory
Hierarchies‖, Proceedings of the 2004 ACM Symposium on Applied
Computing, 2004.

[10] Wooster, R. and M. Abrams, ―Proxy Caching that Estimates Page Load
Delays‖, Proceedings of the 6th International World Wide Web
Conference, Santa Clara, CA, Apr. 1997.

[11] Shudong and A. Bestavros, ―Popularity-Aware GreedyDual-Size Web
Proxy Caching Algorithms‖, Proceedings of the 20th IEEE International
Conference on Distributed Computing Systems (ICDCS 2000), 2000.

[12] Arlitt, M., et al., ―Evaluating Content Management Techniques for Web
Proxy Caches‖, SIGMETRICS Performance Evaluation Review, Vol.
27, No. 4, March, 2000.

[13] Shi, Lei and Y. Zhang, ―Optimal Model of Web Caching‖, Conference
Record of the 2008 Fourth International Conference on Natural
Computation, 2008.

[14] Rizzo, L. and L. Vicisano, ―Replacement Policies for a Proxy Cache‖,
IEEE/ACM Transactions on Networking, Vol. 8, No. 2, 2000.

[15] Megiddo, N. and D. Modha, ―Outperforming LRU with an Adaptive
Replacement Cache Algorithm‖, IEEE Computer, Vol. 37, No. 4, April,
2004.

[16] Bahn, Hyokyung, ―Web Cache Management Based on the Expected
Cost of Web Objects‖, Information and Software Technology, Vol. 47,
April, 2005.

[17] The Internet Traffic Archive, http://ita.ee.lbl.gov/html/traces.html, last
updated April 9, 2008.

[18] Cheng, A. M. K. and Z. Zhang, ―Improving Web Server Performance
with Adaptive Proxy Caching in Soft Real-time Mobile Applications‖,
Journal of VLSI Signal Processing, Vol. 47, 2007.

[19] Cao, Pei, Uniform Cache Simulator, download from
ftp://ftp.cs.wisc.edu/pub/cao/webcache-simulator.tar.z.

[20] Cao, P. and S. Irani, ―Cost Aware WWW Proxy Caching Algorithms‖,
Proceedings of the 1997 UXENIX Symposium on Internet Technology
and Systems, 1997.

[21] Shi, Lei, et al., ―An Applicative Study of Zipf‘s Law on Web Cache‖,
International Journal of Information Technology, Vol. 12, No. 4, 2006.

[22] Buijtendijk, V., ―Module Deployment and Management within the Grid-
based Virtual Laboratory for e-Science‖, Thesis Paper, Universiteit van
Amsterdam, May, 2005.

0

0.1

0.2

0.3

0.4

0.05 0.5 5 10 20

B
yt

e
 H

it
 R

at
e

Cache Size (% of Trace)

LFRU3-thresh-priming LFU-thresh-priming

LRU-thresh-priming

0

0.2

0.4

0.6

0.8

0.05 0.5 5 10 20

La
te

n
cy

 R
e

d
u

ct
io

n

Cache Size (% of Trace)
LFRU3-thresh-priming LFU-thresh-priming

LRU-thresh-priming

