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Abstract—This paper develops a computationally efficient 
process for segmentation of color images. The input image is 
partitioned into a set of output images in accordance to color 
characteristics of various image regions. The algorithm is based 
on random sampling of the input image and fuzzy clustering of 
the training data followed by crisp classification of the input 
image. The user prescribes the number of randomly selected 
pixels comprising the trainer set and the number of color classes 
characterizing the image compartments. The algorithm 
developed here constitutes an effective preprocessing technique 
with various applications in machine vision systems. Spectral 
segmentation of the sensor image can potentially lead to 
enhanced performance of the object detection, classification, 
recognition, authentication and tracking modules of the 
autonomous vision system. 
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I. INTRODUCTION 

Background removal and image segmentation constitute 
fundamental components of many autonomous vision systems. 
Segmentation is utilized in order to separate regions or entities 
of potential interest from each other and from inconsequential 
image background for further processing. This paper presents 
an operationally robust and computationally efficient 
algorithm for segmentation of the input image based on color. 
The complex image at the sensor output, which is presented to 
the autonomous vision system, is partitioned into multiple less 
complicated images prior to further processing [1-5]. 
Following the segmentation phase, pertinent members of the 
resultant image set are processed by the corresponding target 
classification, recognition, identification, and authentication  
layers of the machine vision system. 

The image segmentation process at lower levels entails 
ascribing to each pixel the appropriate class label, while at the 
higher levels segmentation involves utilization of lower level 
information for associating salient parts of the image with 
known objects of interest [6-10]. Target detection, 
classification, recognition, and authentication procedures 
which are based on two dimensional spatial signatures 
acquired with various modalities including infrared and 
electro optical imagery involve utilization of spatial filters 
[11-15]. The spatial filters may be applied directly to the 
image at the sensor output or to the  resultant images 
following the segmentation stage. This paper provides the 
formulation and implementation of an efficient lower level 
image segmentation algorithm. Image pixels are classified in 
accordance to their color attributes regardless of spatial 
relationships. The color classifier is computed using a set of 

randomly selected pixels, obtained from the input image, 
which are partitioned using a fuzzy clustering procedure. A set 
of prototype color vectors are computed from the resultant 
fuzzy sets and are subsequently utilized to segment the input 
image. 

II. BAKGROUND 

Image segmentation is used in order to partition the input 
image into its salient components for further processing. 
Segmentation is utilized in various machine vision 
applications such as object recognition and tracking as well as 
image compression, editing, and retrieval. Segmentation 
involves clustering the image feature vectors such as pixel 
intensity levels and colors [16-18]. In top-down image 
segmentation the input image is partitioned in accordance to 
the relationship between the image content and the images of 
various objects in the database including object shapes, 
contours, textures, and colors. The bottom-up image 
segmentation, on the other hand, utilizes the intensity, color, 
texture, and region boundaries to break up the image into its 
more basic components. Despite the impressive results of 
recently reported bottom-up image based segmentation 
algorithms, they often fail to capture fundamental 
relationships among image elements. The inherent difficulty 
encountered by low-level image based segmentation 
algorithms is due to potentially sharp intensity and color 
variations within the object boundaries. High-level 
segmentation algorithms rely on image features such as 
contours and shapes as segmentation primitives in order to 
reduce the computational complexity. Detection of edges and 
contours in the input image is achieved through convolving 
the grayscale image with local derivative filter operators [19-
20]. Different regions that are circumscribed by distinct closed 
contours are subsequently recognized as the respective image 
segments. This Paper presents an unsupervised learning 
algorithm for segmentation of color images. 

III. CLUSTERING ALGORITHM 

Given a set of N data points in M-dimensional space, and a 
user specified integer representing the number of clusters 
(classes) Q, the algorithm described here computes a set of Q 
prototypes and a Q N´  membership matrix. Each prototype is 
a vector in M-space and is the optimal representation of the 
corresponding class. Each element of the membership matrix 
represents the degree of membership (association) of a data 
point in the respective cluster. 
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Where ,X Y represent, respectively, the set of data points 
and prototype vectors in M-space, and  is the set of real 
numbers. Our objective is to utilize data points in Eq. (1) in 
order to partition M-space into Q distinct regions with each 

region represented by a prototype vector
q

Y . In the operation 

phase, an unlabeled vector is classified based on its distance 
with respect to the prototypes. In crisp classification, for 
example, the input vector is assigned uniquely to the class 
with the closest prototype with respect to the input vector. In 
fuzzy classification, on the other hand,  the input vector is 
assigned to all classes with varying degrees of association. 

Each original data point in the trainer set will be linked to 
all Q regions (classes) with varying degrees of association 
determined by elements of the membership matrix. The initial 
membership matrix is generated by assigning  random 
numbers drawn from independent and identically distributed 
uniform probability functions to each matrix element. We will 
describe an iterative algorithm for computation of the 
prototype vectors. The prototype vectors are then used to 
make hard decisions with regard to new input data points. A 
new data point is associated with the prototype (class) to 
which it is closest in accordance to some predefined distance 
metric. 
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Where, S  is the membership (association) matrix, 
qn

s

denotes the degree with which data point-n is associated with 

(is member of) cluster-q, and
qn

d  is the distance between data 

point-n and prototype-q. Here, Euclidean distance is used as a 
measure of distance between vectors in M-space. The 

exponent parameter [ ]{ }1,u Î ¥ is user-specified and 
determines the fuzziness of the clustering process. It is noted 
from Eq. (8) that the membership matrix is normalized such 
that sum of each column is equal to one. When u =¥ , each 
data point belongs to all clusters uniformly and

1 / , 1 , 1
qn

s Q n N q Q= £ £ £ £ . when 1u = , however, 

clustering is not fuzzy and each data point is associated with a 
unique cluster. For crisp (hard) clustering, elements of the 
membership matrix are given as follows:  

1 ,
qn qn pn

s d d p q= < " ¹ and 0
qn

s =  otherwise. In hard 

clustering, 1u = , each column of S  contains a single one and 
the rest of entries for that column are zero. The value of u  
affects the rate of convergence of the algorithm. In 
experiments conducted on diverse sets of RGB images, we 
have found that setting 2.5u = , in general, leads to fast 
convergence and accurate results. 

The process starts with generating a random membership 

matrix, called the zero-order membership matrix ( 0 )
S . Matrix 

elements are chosen from a uniform probability distribution 

function ( 0 )
[0,1].

qn
s Î  The matrix is then normalized by setting 

the sum of each column to one. The randomly generated 
membership matrix is then utilized to compute Q zero-order 
prototype vectors, one for each cluster. A particular prototype 
vector is computed as the weighted sum of the entire set of 
data points, where each data point is weighted in accordance 
to its association to (membership in) the respective cluster. 
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Where, ( 0 )

q
Y represents the zero-order prototype vector 

associated with cluster-q,
n

X  is the nth data vector denoting a 

typical trainer,
( 0 )

(1 ,1 )
qn

s q Q n N£ £ £ £ are elements of the 

randomly generated zero-order membership matrix, and u is 
the user-specified exponential parameter. The zero-order 
prototype vectors are then utilized to compute the first-order 
membership matrix as shown below. 
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Where, (1)
S  and (1)

G denote, respectively, the first order 

membership and gradient matrices, and (1)d  is the first order 
gradient. Next, the computed first order membership matrix is 
used in order to compute the first order prototype vectors 
using Eq. (11), where the superscript 0 is replaced with 1. 
subsequently, the computed first order prototype vectors are 
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