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Abstract—This paper develops a computationally efficient
process for segmentation of color images. The input image is
partitioned into a set of output images in accordance to color
characteristics of various image regions. The algorithm is based
on random sampling of the input image and fuzzy clustering of
the training data followed by crisp classification of the input
image. The user prescribes the number of randomly selected
pixels comprising the trainer set and the number of color classes
characterizing the image compartments. The algorithm
developed here constitutes an effective preprocessing technique
with various applications in machine vision systems. Spectral
segmentation of the sensor image can potentially lead to
enhanced performance of the object detection, classification,
recognition, authentication and tracking modules of the
autonomous vision system.
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l. INTRODUCTION

Background removal and image segmentation constitute
fundamental components of many autonomous vision systems.
Segmentation is utilized in order to separate regions or entities
of potential interest from each other and from inconsequential
image background for further processing. This paper presents
an operationally robust and computationally efficient
algorithm for segmentation of the input image based on color.
The complex image at the sensor output, which is presented to
the autonomous vision system, is partitioned into multiple less
complicated images prior to further processing [1-5].
Following the segmentation phase, pertinent members of the
resultant image set are processed by the corresponding target
classification, recognition, identification, and authentication
layers of the machine vision system.

The image segmentation process at lower levels entails
ascribing to each pixel the appropriate class label, while at the
higher levels segmentation involves utilization of lower level
information for associating salient parts of the image with
known objects of interest [6-10]. Target detection,
classification, recognition, and authentication procedures
which are based on two dimensional spatial signatures
acquired with various modalities including infrared and
electro optical imagery involve utilization of spatial filters
[11-15]. The spatial filters may be applied directly to the
image at the sensor output or to the resultant images
following the segmentation stage. This paper provides the
formulation and implementation of an efficient lower level
image segmentation algorithm. Image pixels are classified in
accordance to their color attributes regardless of spatial
relationships. The color classifier is computed using a set of

randomly selected pixels, obtained from the input image,
which are partitioned using a fuzzy clustering procedure. A set
of prototype color vectors are computed from the resultant
fuzzy sets and are subsequently utilized to segment the input
image.

1. BAKGROUND

Image segmentation is used in order to partition the input
image into its salient components for further processing.
Segmentation is utilized in various machine vision
applications such as object recognition and tracking as well as
image compression, editing, and retrieval. Segmentation
involves clustering the image feature vectors such as pixel
intensity levels and colors [16-18]. In top-down image
segmentation the input image is partitioned in accordance to
the relationship between the image content and the images of
various objects in the database including object shapes,
contours, textures, and colors. The bottom-up image
segmentation, on the other hand, utilizes the intensity, color,
texture, and region boundaries to break up the image into its
more basic components. Despite the impressive results of
recently reported bottom-up image based segmentation
algorithms, they often fail to capture fundamental
relationships among image elements. The inherent difficulty
encountered by low-level image based segmentation
algorithms is due to potentially sharp intensity and color
variations within the object boundaries. High-level
segmentation algorithms rely on image features such as
contours and shapes as segmentation primitives in order to
reduce the computational complexity. Detection of edges and
contours in the input image is achieved through convolving
the grayscale image with local derivative filter operators [19-
20]. Different regions that are circumscribed by distinct closed
contours are subsequently recognized as the respective image
segments. This Paper presents an unsupervised learning
algorithm for segmentation of color images.

1l. CLUSTERING ALGORITHM

Given a set of N data points in M-dimensional space, and a
user specified integer representing the number of clusters
(classes) Q, the algorithm described here computes a set of Q
prototypes and a Q x N membership matrix. Each prototype is
a vector in M-space and is the optimal representation of the
corresponding class. Each element of the membership matrix
represents the degree of membership (association) of a data
point in the respective cluster.

X={x :1<n<N} 1)
X =[x :1<m<M] ;1<n<N 2
10|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Y:{Yq:lgqgQ} (©)
v =[y, il<m<M]; 1<q<Q 4)
XY, €R (5)

Where X, Y represent, respectively, the set of data points

and prototype vectors in M-space, andR is the set of real
numbers. Our objective is to utilize data points in Eqg. (1) in
order to partition M-space into Q distinct regions with each

region represented by a prototype vectorY, . In the operation

phase, an unlabeled vector is classified based on its distance
with respect to the prototypes. In crisp classification, for
example, the input vector is assigned uniquely to the class
with the closest prototype with respect to the input vector. In
fuzzy classification, on the other hand, the input vector is
assigned to all classes with varying degrees of association.

Each original data point in the trainer set will be linked to
all Q regions (classes) with varying degrees of association
determined by elements of the membership matrix. The initial
membership matrix is generated by assigning random
numbers drawn from independent and identically distributed
uniform probability functions to each matrix element. We will
describe an iterative algorithm for computation of the
prototype vectors. The prototype vectors are then used to
make hard decisions with regard to new input data points. A
new data point is associated with the prototype (class) to
which it is closest in accordance to some predefined distance
metric.

s=[s,Jil<q<Qi<n<N (6)
(0%
Sqn:Q—"2 @)
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Where, S is the membership (association) matrix, s_
denotes the degree with which data point-n is associated with
(is member of) cluster-q, andd_ is the distance between data

point-n and prototype-q. Here, Euclidean distance is used as a
measure of distance between vectors in M-space. The
exponent parameter ue{[1]}is user-specified and

determines the fuzziness of the clustering process. It is noted
from Eq. (8) that the membership matrix is normalized such
that sum of each column is equal to one. Whenu = oo, each
data point belongs to all clusters uniformly and

s, =1/Q,1<n<N,1<q<Q. when however,

clustering is not fuzzy and each data point is associated with a
unique cluster. For crisp (hard) clustering, elements of the
membership matrix are given as follows:

s,=1,d <d_Vvp=gand s =0 otherwise. In hard

d. =¥, =,

u=1,
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clustering,u = 1, each column of S contains a single one and
the rest of entries for that column are zero. The value of u
affects the rate of convergence of the algorithm. In
experiments conducted on diverse sets of RGB images, we
have found that setting u =25, in general, leads to fast
convergence and accurate results.

The process starts with generating a random membership

matrix, called the zero-order membership matrix S. Matrix
elements are chosen from a uniform probability distribution

functions”” € [0,1]. The matrix is then normalized by setting

the sum of each column to one. The randomly generated
membership matrix is then utilized to compute Q zero-order
prototype vectors, one for each cluster. A particular prototype
vector is computed as the weighted sum of the entire set of
data points, where each data point is weighted in accordance
to its association to (membership in) the respective cluster.

YO ={y":1<q<Q} (10)
()
Y = 1<9<Q (11)

DY)
()
:

Where,Yq“” represents the zero-order prototype vector

associated with cluster-g, X is the nth data vector denoting a

typical trainer,s’’ (1<q<Q,1<n<N)are elements of the

randomly generated zero-order membership matrix, and u is
the user-specified exponential parameter. The zero-order
prototype vectors are then utilized to compute the first-order
membership matrix as shown below.

s¥=[s"]; 1<q<Q 1<n<N (12)
o a:‘”
R -
(e rar)
1
o = — : (14)
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Where, s® and G® denote, respectively, the first order

1)

membership and gradient matrices, and & is the first order
gradient. Next, the computed first order membership matrix is
used in order to compute the first order prototype vectors
using Eqg. (11), where the superscript 0 is replaced with 1.
subsequently, the computed first order prototype vectors are
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utilized to compute the second order membership matrix and
the gradient as shown in Eq. (13) and Eq. (17), respectively.

The iterative process described above continues until a
user prescribed stopping criterion is met. The stopping
criterion may be the maximum number of iterations (orders),
in which case the process is terminated when the number of
iterations is reached. One may also use the gradient value or
the relative change of gradient between two consecutive
iterations as the stopping criterion. For the experiments in this
paper the iteration process terminates when the gradient falls

below the user prescribed threshold, i.e. §” < T = 0.001.

V. TESTS WITH SIMULATED DATA

The clustering algorithm described above was used to
partition various synthetically generated data sets into classes,
numbers of which were prescribed by the user. The algorithm
computes a prototype for each class and the membership
matrix for the entire data set. Each trainer may then be
assigned to a unique class by binarizing the computed
membership matrix. Likewise, new unlabeled input data are
classified based on distance between the data point and the
computed prototypes.

In the example of Figure 1, the input data set is comprised
of points in the xy-plane of the Cartesian coordinate system.
the data points were generated by a pair of 2D Gaussian
distributions with means at (1,3), (-2,-1) and equal standard
deviations set to one. The xy components of each data point
were generated by independent distributions. Fifty points
were randomly selected from each distribution and were
combined to form the unlabeled set of one-hundred input data
points. Parameters of the clustering algorithm were set to
Q=2,u=2,T =0.001, and the iteration process converged

after ten rounds. Figure 1 shows the evolution of two
prototypes. Both prototype vectors started very close to each
other at the proximity of the center of gravity of the entire data
set. As the iterations proceed, it is seen that prototypes move
toward centers of the respective distributions, where final
values of the computed prototypes are shown as triangles.
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Fig. 1. Evolution of prototype vectors in a two-class problem.

In Fig 1, using circles and stars to denote the data points
associated with two classes is for illustration purpose only,
and the algorithm is entirely oblivious to the class dispositions
of input data points. Despite complete lack of knowledge
about origins of the data set members in Figure 1, it is seen
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that the algorithm finds appropriate prototypes for two classes.
Figure 2 shows the degree of association of various data points
(1-100) to each prototype (class), and is an illustration of the
computed membership matrix for the fuzzy classifier. It is
seen that the first fifty data points are more strongly associated
with the first prototype (g=1), whereas the last fifty points
have higher association to the second prototype (q=2), as
expected. Fuzzy classification may be utilized for assignment
of classes to new unlabeled input data, where each input
vector is assigned probabilities of membership in respective
classes. In some applications, crisp classification of the input
data may be desired, where a typical input vector is assigned
exclusively to the class whose prototype is closest, based on
Euclidian distance, to the input vector.
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Fig. 2. Trainer data association factor.

In the example of Figure 3, the input data set comprises
125 points in the xy-plane, randomly chosen from three
Gaussian distributions with means at (1,3), (-2,-6), (3,-2), and
different variances along two axes. The clustering algorithm
was tasked to partition the above unlabeled set of data using
parameters Q =3,u =2,T =0.001. As expected, all three

prototype vectors are initially very close to each other and are
situated virtually at the center of gravity of the entire input
data set. As the iteration process proceeds the prototypes
traverse the xy-plane toward their final destinations denoted as
triangles. It is noted that the computed prototypes in this
example are not equal to mean vectors of the respective
classes. This is a byproduct of dataset composition and does
not affect ability of the computed prototype vectors to
accurately classify new and unlabeled input data.
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Fig. 3. Prototype evolutions in a three-class problem
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In order to obtain quantitative performance results for the
fuzzy clustering algorithm the following tests were conducted.
We started with two Gaussian distributions in 2D-space,
where the x and y components of each sample point were
obtained from independent distributions with equal variances.

In the first example, classes A and B were obtained from
two 2D distributions with equal variances oca=cg. Equal
numbers of randomly generated trainers from each class were
combined and were subsequently utilized as the unlabeled
trainer set.

Fuzzy clustering was applied to the above set of unlabeled
trainers in order to evolve two prototypes. A large number of
test points were then generated from the distribution functions
described above. Binary classification was utilized to label all
the test vectors in accordance to their Euclidean distances with
respect to the above two computed prototypes.

Figure 4 shows the classification error rate as function of
the separation factor with the number of unlabeled trainers
utilized from each class as parameter.

Im —m
_ A B

2 2
o, +to,

Where, SF represents the separation factor between two
distributions, and m, o denote, respectively, the mean-vector
and the standard deviation of the particular data set. For each
test case, the number of trainers was fixed and the separation
factor was varied from 0.25 to 4.

SF (18)

Error rate is the percentage of input test vectors that are
misclassified. As expected, the classifier performance
improves as the separation factor increases. It is noted that
number of trainers has virtually no effect on classifier
performance.

In the example of Figure 5, the two Gaussian distributions
have unequal standard deviations such that o = 20, and all

other parameters are same as before. It is seen that the number
of trainers in this case has an slightly more pronounced effect
of the classifier performance.
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Fig. 4. Effect of SF on classification error rate
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Fig. 5. Effect of SF on classification error rate

V. EXPERIMENTS WITH REAL DATA

In this section the fuzzy clustering algorithm described
above is applied to the task of segmentation of color images.
The set of RGB vectors associated with a group of randomly
selected pixels of the input color image constitute the trainer
set. The computed prototypes comprise a set of color vectors
which are subsequently utilized to partition the input image.

The example of Figure 6 shows the input image (upper-
left), and the result of color segmentation. In this example
one-hundred pixels (N=100) were randomly selected from the
input image, comprising the unlabeled trainers which were
used as the input of the fuzzy clustering process. The
algorithm was tasked to partition the training set into three
classes (Q=3). Figures 7 and 8 show, respectively, the trainers
and the evolution of class prototypes in the RGB-space. It is
noted that all three prototypes are initially very close to each
other and are proximate to centroid of the training set. The
prototypes migrate toward their factual positions and true
prototypes are evolved as shown in Figure 8. The initial and
final values of the RGB coordinates of the prototype vectors
for three classes are listed in Table 1. In this example it took
twenty iterations for all three prototypes to reach their final
destinations. The computed prototypes were then utilized for
crisp classification of all the input image pixels. One of three
possible labels were assigned to each pixel of the input image.
The images of Figure 6 show results of the filtering process.
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Fig. 6. Original input image (upper-left), and color-segmented images.
Classes-one (upper right), two (lower-left), and three (lower-right)
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Fig. 7. Training set comprised of one-hundred randomly selected pixels
from the original input image
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Fig. 8. Evolutions of prototypes for classes-one through three. Initial
estimates of prototypes are denoted as circles and final estimates are triangles.

TABLE I. INITIAL AND FINAL PROTOTYPE VECTORS.

Initial Prototypes

Final Prototypes

R G B

R G B

Class-one 0.853 0.678 0.492 0.566 0.255 0.233

Class-two 0.861 0.687 0.492 0.946 0.716 0.345
Class- 0.880 0.700 0.507 0.885 0.757 0.623
three

In the next example the trainer set consisted of one-
hundred pixels randomly selected from the Mondrian painting
of Figure 9. Fuzzy clustering was used to partition the trainer
set into four classes, and the respective RGB prototype vectors
were computed.

All pixels of the input image were subsequently classified
crisply in accordance to the prototype with the smallest
Euclidean distance with respect to the corresponding pixels.
The images of Figure 10 show the result of input image
segmentation, where pixels of the corresponding class are
turned on while pixels of all other classes are set to white.

Vol. 5, No. 7, 2014

Fig. 9. Input image

o

Fig. 10. Output images.

Figures 11 and 12 show the set of one-hundred training
vectors and the evolution of four prototype vectors for the
Mondrian of Figure 9. As before, all four prototypes are
initially close to the center of mass of the training set. In this
experiment, The process converged after six iterations. Circles
and triangles in Figure 12 denote, respectively, the initial and
final wvalues of the prototype vectors. The above four
computed prototype RGB vectors were used to assign each
pixel of the input Mondrian to one exclusive class,
characterized by the prototype with the smallest Euclidean
distance with respect to the RGB vector of the pixel. Each one
of the filtered images in Figure 10 shows the pixels of the
respective class with all other pixels set to white.

ool Y

Fig. 11. Training set comprised of one-hundred randomly selected pixels of
the Mondrian
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Fig. 12. Evolutions of prototypes for classes-one through four. Initial
estimates of prototypes are denoted as circles and final estimates are triangles.

The images of Figure 13 show an input image and the
resultant filtered images which are produced by the prototype
vectors computed from fuzzy clustering of the trainer set into
three groups. The one-hundred element trainer set, shown in
Figure 14, was obtained by random sampling of the input
image. Figure 15 shows the evolution of the prototype vectors.

Fig. 13. Upper left shows the input image. The input image is filtered using a
three-class filter.

ey

Fig. 14. Training set comprised of one-hundred randomly selected pixels of
the input image.
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Fig. 15. Evolutions of prototypes for classes-one through three. Triangles
denote final prototypes.

In the next example the input image is partitioned in a
hierarchical manner. First, the image is sampled randomly and
the samples are grouped into two classes using the fuzzy
clustering algorithm. This leads to computation of two
prototypes, which are used to carry out crisp segmentation of
the input image. This process produces two images, each
comprised of the input image pixels that belong to the
respective class with all other pixels set to white. Each of the
two generated images is treated as a new input image and is
partitioned into two classes, resulting in four new images. The
process continues for a user specified number of partition
rounds.

The original set of training pixels were selected randomly
from the input image of Figure 16, and were partitioned into
two classes using fuzzy clustering. The images of Figure 17
show the result of this two-class segmentation process. The
Class-one image, consisting of the leaf and bug only which
constitute the foreground in the original image, was then
sampled randomly to form a new set of trainers which were
partitioned using fuzzy clustering, resulting in computation of
two new prototypes. The image (Class-one) was subsequently
partitioned using the computed prototypes. The images of
Figure 18 show the segmentation results.

VI. CONCLUSIONS

This paper provides a computationally efficient and
operationally robust algorithm for segmentation of color
images. Tests using synthetically generated data sets as well as
real RGB images have demonstrated the efficacy of the image
segmentation procedure developed here. The algorithm has
practical applications in machine vision systems where
partitioning the sensor images in accordance to color
characteristics of various image regions can precede higher
level processing layers such as recognition and tracking of
targets. Future work will include utilization of different
distance measures such as Mahalanobis distance  and
applications to multi-spectral image segmentation.
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Fig. 16. Input image.

Fig. 17. The result of segmentation of the input image into two classes,
foreground and background.

Fig. 18. The result of segmentation of the foreground into two classes
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