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Abstract—In this paper, the natural gradient descent method
for the multilayer stochastic complex-valued neural networks
is considered, and the natural gradient is given for a single
stochastic complex-valued neuron as an example. Since the space
of the learnable parameters of stochastic complex-valued neural
networks is not the Euclidean space but a curved manifold, the
complex-valued natural gradient method is expected to exhibit
excellent learning performance.
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I. I NTRODUCTION

Complex-valued neural networks whose parameters (weights
and threshold values) are all complex numbers, are useful
in fields dealing with complex numbers or two-dimensional
vectors such as telecommunications, speech recognition and
image processing with Fourier transformation. Indeed, we can
find some applications of complex-valued neural networks to
various fields in the literature [6], [9].

The multilayer complex-valued neural network is usually
trained using the gradient descent learning method [5], [10],
[11], [12], as in the case of the multilayer real-valued neural
network. The space of the learnable parameters ofstochastic
complex-valued neural networks is, however, not the Euclidean
space but a curved manifold. For stochastic complex-valued
neural networks, the ordinary gradient does not give the
steepest direction of a target function, and the steepest direction
is given by the natural gradient [2], [3]. It has been shown
in [4] that the natural gradient method could avoid singular
points of the real-valued parameter space which is a cause of
standstill in learning, and the natural gradient method could
improve the learning performance of the real-valued neural
networks as a result. Similarly, there exist many singular points
in the complex-valued neural networks [7]. Thus, the natural
gradient method would be useful for the complex-valued neural
networks, too. In this paper, we extend the natural gradient
descent method for the multilayer stochastic real-valued neural
networks to the complex domain, and give the natural gradient
for a single stochastic complex-valued neuron as an example.

Section II describes the complex-valued neural network.
Section III is devoted to the explanation of the natural gradient
method, and Section IV presents the natural gradient method
in complex-valued neural networks, which is followed by our
conclusion in Section V.

II. COMPLEX-VALUED NEURAL NETWORK MODEL

This section describes the complex-valued neural network
model used in this paper. First, we will consider the fol-
lowing complex-valued neuron. The input signals, weights,
thresholds and output signals are all complex numbers. The
net input Un to a complex-valued neuronn is defined as:
Un =

∑
mWnmXm + Vn, where Wnm is the complex-

valued weight connecting the complex-valued neuronsn and
m, Xm is the complex-valued input signal from the complex-
valued neuronm, and Vn is the complex-valued threshold
value of the complex-valued neuronn. To obtain the complex-
valued output signal, convert the net inputUn into its real and
imaginary parts as follows:Un = x+ iy = z, wherei denotes√
−1. The complex-valued output signal is defined to be

fC(z) = φ(x) + iφ(y), (1)

whereφ : R → R, (R denotes the set of real numbers).
Eq. (1) is often called asplit-typecomplex-valued activation
function. Note that the activation functionfC is not a regular
complex-valued function because the Cauchy-Riemann equa-
tions do not hold.

The complex-valued neural network used in this paper
consists of such complex-valued neurons described above.

Note that various types of activation functions other than
Eq. (1) can be considered naturally (for examples, the non-
split-type (fully) one [10]).

III. N ATURAL GRADIENT METHOD

This section briefly describes the natural gradient proposed in
[2], [3]. Let S = {w ∈ RN} be a Riemannian space with
the Riemannian metric tensorG(w) = (gij(w)) on which a
functionL(w) is defined. If

gij(w) =

{
1 (i = j)
0 (i ̸= j) ,

(2)

that is,G(w) is the unit matrix, thenS is an Euclidean space.
Amari proved the following theorem [3].

Theorem 1: The steepest descent direction ofL(w) in a
Riemannian space is given by

−∇̃L(w) = −G−1(w)∇L(w) (3)

where G−1(w) = (gij(w)) is the inverse of the metric
G(w) = (gij(w)) and∇L is the conventional gradient,

∇L(w) =

(
∂

∂w1
L(w), · · · , ∂

∂wN
L(w)

)T

, (4)
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where the superscriptT denotes the transposition. 2

∇̃L(w) = G−1∇L(w) is called thenatural gradient
of L in the Riemannian space. The natural gradient descent
algorithm is given by

wt+1 = wt − εt∇̃L(wt), (5)

whereεt is the learning rate.

Amari derived the natural gradients explicitly in the case
of the space of real-valued perceptrons for neural learning, the
space of matrices for blind source separation, and the space
of linear dynamical systems for blind multichannel source
deconvolution [3].

IV. NATURAL GRADIENT IN COMPLEX-VALUED NEURAL
NETWORKS

In this section, the natural gradient is applied to the
complex-valued neural networks and the natural gradient de-
scent algorithm is explicitly derived for a single complex-
valued neuron.

A. Natural Gradient Learning in Complex-Valued Neural Net-
works

Let us consider a stochastic complex-valued multilayer
feedforward neural network withN input neurons, one output
neuron, and a learnable complex-valued vector parameterw =
(w1, · · · , wN )T ∈ CN which consists of all the weights and
thresholds (C denotes the set of complex numbers). Assume
that the complex-valued input signalz = (z1, · · · , zN )T ∈
CN is subject to an unknown probability distributionq(z),
and the complex-valued output signaly ∈ C is given by

y = gC(z,w) + n, (6)

where gC is a complex function, andn = nR + inI is a
complex-valued random variable subject to a complex normal
distribution (or bivariate normal distribution)N(µ,Σ). The
model specifies the probability density of the input-output pair
as

p(z, y;w) = q(z) · p(y|z;w). (7)

Define a loss functionl(z, y;w) when input signalz is
processed by the stochastic complex-valued neural network
having parameterw as:

l(z, y;w)
def
= − log p(z, y;w)

= − log q(z)− log p(y|z;w). (8)

Given the training set{(zt, yt), t = 1, · · · , T}, minimizing
the loss function (Eq. (8)) is equivalent to maximizing the
probability that the stochastic complex-valued neural network
outputs the training output signalyt.

The space of all the probability distributions which the
above stochastic complex-valued neural network realizes, can
be regarded as a2N -dimensional Riemannian space because
the complex-valued parameter consists of the two real-valued
parameters: the real-part and the imaginary part. Thus, the
information geometry [1] can be applied to the complex-vauled
case, too.

The natural gradient descent algorithm for the complex-
valued neural network is given by

vt+1 = vt − εt∇̃l(zt, yt;vt), (9)

where{(zt, yt) ∈ CN ×C, t = 1, 2, · · · } is the sequence of
the complex-valued training signals, and

v = (v1, · · · , v2N )T

= (Re[w1], · · · , Re[wN ], Im[w1], · · · , Im[wN ])T ,

(10)

∇̃l(z, y ,v) def
= G−1(v) · ∇l(z, y,v). (11)

Eq. (11) is the natural gradient ofl(z, y,v), and the usual
gradient∇l(z, y,v) is given by

∇l(z, y,v) def
=

(
∂l(z, y,v)

∂v1
, · · · , ∂l(z, y,v)

∂v2N

)T

=

(
∂l(z, y,w)

∂Re[w1]
, · · · , ∂l(z, y,w)

∂Re[wN ]
,

∂l(z, y,w)

∂Im[w1]
, · · · , ∂l(z, y,w)

∂Im[wN ]

)T

. (12)

The Riemannian metric tensorG(v) is the Fisher information
matrix [3], and is given by

G(v) = (gij(v)), (13)

gij(v) = E

[
∂ log p(z, y;v)

∂vi
· ∂ log p(z, y;v)

∂vj

]
. (14)

B. Natural Gradient Learning in a Single Complex-Valued
Neuron

In this section, the natural gradient descent learning algo-
rithm for a single complex-valued neuron is given.

Consider a stochastic complex-valued neuron withN -
inputs, weightswk = uk + ivk ∈ C (1 ≤ k ≤ N), and a
threshold valueγ = c + id ∈ C. Then, forN input signals
zk = xk + iyk ∈ C (1 ≤ k ≤ N), the stochastic complex-
valued neuron generates

y = fC

(
N∑

k=1

wkzk + γ

)
+ n

= X + iY (15)

wherefC : C → C is a so-calledsplit-typecomplex-valued
activation function which is defined to be

fC(a+ ib) = φ(a) + iφ(b) (16)

for any a + ib ∈ C, andφ : R → R is suitably chosen, for
examle, the sigmoid function

φ(s) =
1

1 + e−s
(17)

was used in [11], and the scaled error function

φ(s) =
2√
π

∫ s√
2

0

e−t2dt (18)
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was used in [13].n = nR + inI is a complex-valued
random variable subject to the complex normal distribution
(or bivariate normal distribution)N(µ,Σ) where

µ =

[
0
0

]
, (19)

Σ =

[
σ 0
0 σ

]
. (20)

We assume that the input signalz = x + iy where
x

def
= (x1, · · · , xN )T ,y

def
= (y1, · · · , yN )T is subject to the

multivariate complex normal distribution (or2N -dimensional
normal distribution)N(0, I) where the variance covariance
matrix I is the unit matrix; denote its joint probability density
function byq(z). The loss functionl(z, y; θ) is defined as

l(z, y; θ)
def
= − log p(z, y; θ)

= − log q(z)− log p(y|z; θ), (21)

where θ
def
= (uT ,vT , c, d)T , u = (u1, · · · , uN )T , v =

(v1, · · · , vN )T .

Given the sequence of the complex-valued training signals
{(zt, yt) ∈ CN × C, t = 1, 2, · · · }, the the natural gradient
descent algorithm for the stochastic complex-valued neuron is
given by

θt+1 = θt − εt ·G−1(θt) · ∇l(zt, yt; θt). (22)

We shall calculate the Fisher information matirxG(θ) =
(gij(θ)). For any1 ≤ i, j ≤ 2N + 2,

gij(θ) = E

[
∂ log p(z, y; θ)

∂θi
· ∂ log p(z, y; θ)

∂θj

]
= E

[
∂ log p(y|z; θ)

∂θi
· ∂ log p(y|z; θ)

∂θj

]
. (23)

(from Eq. (21))

Here, sincenR is independent ofnI ,

log p(y|z; θ) = log p((φ(S) + nR) + i(φ(T ) + nI)|z; θ)
= log p(φ(S) + nR|z; θ)

+ log p(φ(T ) + nI |z; θ)
= log p(X|z; θ) + log p(Y |z; θ), (24)

where S = Re
[∑N

k=1 wkzk + γ
]
, T =

Im
[∑N

k=1 wkzk + γ
]
. Thus, for any1 ≤ i, j ≤ 2N + 2,

gij(θ) = E

[
∂ log p(X|z; θ)

∂θi
· ∂ log p(X|z; θ)

∂θj

]
+2E

[
∂ log p(X|z; θ)

∂θi
· ∂ log p(Y |z; θ)

∂θj

]
+E

[
∂ log p(Y |z; θ)

∂θi
· ∂ log p(Y |z; θ)

∂θj

]
. (25)

By simple calculations, we obtain

gij(θ) =
1

σ2

{
E[(φ′(S))2xixj ]

+E[(φ′(T ))2yiyj ]
}

(1 ≤ i, j ≤ N), (26)

gij(θ) =
1

σ2

{
E[(φ′(S))2(−yi−N )xj ]

+E[(φ′(T ))2xi−Nyj ]
}

= gji(θ)

(N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N), (27)

gij(θ) =
1

σ2

{
E[(φ′(S))2yi−Nyj−N ]

+E[(φ′(T ))2xi−Nxj−N ]
}

(N + 1 ≤ i, j ≤ 2N), (28)

g2N+1,j(θ) =
1

σ2
E[(φ′(S))2xj ]

= gj,2N+1(θ) (1 ≤ j ≤ N), (29)

g2N+1,j(θ) =
1

σ2
E[(φ′(S))2(−yj−N )]

(N + 1 ≤ j ≤ 2N), (30)

g2N+2,j(θ) =
1

σ2
E[(φ′(T ))2yj ] (1 ≤ j ≤ N),

(31)

g2N+2,j(θ) =
1

σ2
E[(φ′(T ))2xj−N ]

(N + 1 ≤ j ≤ 2N), (32)

g2N+1,2N+1(θ) =
1

σ2
E[(φ′(S))2], (33)

g2N+2,2N+1(θ) = 0

= g2N+1,2N+2(θ), (34)

g2N+2,2N+2(θ) =
1

σ2
E[(φ′(T ))2]. (35)

From Eqs. (26) – (35), we can rewriteG(θ) as

G(θ) =
1

σ2
A(θ), (36)

where

A(θ)
def
=

 A11 A12

A21 A22

a13 a14

a23 a24

a31 a32

a41 a42
A44

 ,

(37)

A11 = σ2· Eq. (26),A21 = AT
12 = σ2· Eq. (27),A22 = σ2·

Eq. (28),a13 = aT
31 = σ2· Eq. (29),a32 = aT

23 = σ2· Eq.
(30), a14 = aT

41 = σ2· Eq. (31),a42 = aT
24 = σ2· Eq. (32),

and

A44 =

(
σ2 · Eq.(33) Eq.(34)

Eq.(34) σ2 · Eq.(35)

)
. (38)

In what follows, each submatrix ofA(θ) (Eq. (37)) is
calculated. Letu = ||u|| =

√
u21 + · · ·+ u2N , v = ||v|| =√

v21 + · · ·+ v2N , u1 = u/u, v1 = v/v, and extendu1, v1

to orthonormal bases{u1, · · · ,uN}, {v1, · · · ,vN} for RN ,
respectively. Then, the real partx ∈ RN and the imaginary
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part y ∈ RN of the input signalz = x + iy ∈ CN can be
decomopsed as

x =

N∑
i=1

χiui, (39)

y =
N∑
i=1

ψivi. (40)

Then, noticing thatχi, ψi ∼ N(0, 1), we have

E[χiχj ] = E[uT
i xx

Tuj ] = uT
i E[xxT ]uj

= uT
i uj = δij , (41)

xxT = χ2
1u1u

T
1 +

N∑
i=2

χ1χi(u1u
T
i + uiu

T
1 )

+
N∑

i,j=2

χiχjuiu
T
j , (42)

uT · x = uT (χ1u1 + · · ·+ χNuN ) = χ1u, (43)

vT · y = vT (ψ1v1 + · · ·+ ψNvN ) = ψ1v. (44)

From Eqs. (41) – (44), we find that the first term of Eq. (26)
(A11) is given by

E[(φ′(S))2xxT ] = E[(φ′(uTx− vTy + c))2xxT ]

= E[(φ′(χ1u− ψ1v + c))2χ2
1]u1u

T
1

+ E[(φ′(χ1u− ψ1v + c))2]
N∑
i=2

uiu
T
i .

(45)

Next, in order to calculate the second term of Eq. (26)
(A11), decompose the real partx ∈ RN and the imaginary
part y ∈ RN of the input signalz = x+ iy ∈ CN as

x =
N∑
i=1

χ′
ivi, (46)

y =

N∑
i=1

ψ′
iui. (47)

Then, we have

E[ψ′
iψ

′
j ] = δij , (48)

yyT = (ψ′
1)

2u1u
T
1 +

N∑
i=2

ψ′
1ψ

′
i(u1u

T
i + uiu

T
1 )

+
N∑

i,j=2

ψ′
iψ

′
juiu

T
j , (49)

vT · x = vT (χ′
1v1 + · · ·+ χ′

NvN ) = χ′
1v, (50)

uT · y = uT (ψ′
1u1 + · · ·+ ψ′

NuN ) = ψ′
1u. (51)

From Eqs. (48) – (51), we find that the second term of Eq.

(26) (A11) is given by

E[(φ′(T ))2yyT ] = E[(φ′(vTx+ uTy + d))2yyT ]

= E[(φ′(χ′
1v + ψ′

1u+ d))2(ψ′
1)

2]u1u
T
1

+ E[(φ′(χ′
1v + ψ′

1u+ d))2]
N∑
i=2

uiu
T
i .

(52)

Thus, from Eqs. (45) and (52),

A11 = E[(φ′(S))2xxT ] + E[(φ′(T ))2yyT ]

=
{
E[(φ′(χ1u− ψ1v + c))2χ2

1]

+ E[(φ′(χ′
1v + ψ′

1u+ d))2ψ2
1 ]
}
u1u

T
1

+
{
E[(φ′(χ1u− ψ1v + c))2]

+ E[(φ′(χ′
1v + ψ′

1u+ d))2]
} N∑

i=2

uiu
T
i

= d0(u, v, c, d) · I

+{d2(u, v, c, d)− d0(u, v, c, d)} ·
uuT

u2
, (53)

where

d0(u, v, c, d)
def
= E[{φ′(χ1u− ψ1v + c)}2]

+E[{φ′(χ′
1v + ψ′

1u+ d)}2], (54)

d2(u, v, c, d)
def
= E[{φ′(χ1u− ψ1v + c)}2χ2

1]

+E[{φ′(χ′
1v + ψ′

1u+ d)}2(ψ′
1)

2].

(55)

Similarly, we have

A21 = d11(u, v, c, d) ·
vuT

uv
= AT

12, (56)
A22 = d0(u, v, c, d) · I

+{d′2(u, v, c, d)− d0(u, v, c, d)} ·
vvT

v2
, (57)

a31 = d1x(u, v, c) · uT
1

= aT
13, (58)

a32 = −d1y(u, v, c) · vT
1

= aT
23, (59)

a41 = d′1y(u, v, d) · uT
1

= aT
14, (60)

a42 = d′1x(u, v, d) · vT
1

= aT
24, (61)

A44 =

(
d0(u, v, c) 0

0 d′0(u, v, d)

)
(62)
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where

d11(u, v, c, d)
def
= E[{φ′(χ′

1v + ψ′
1u+ d)}2χ′

1ψ
′
1]

− E[{φ′(χ1u− ψ1v + c)}2χ1ψ1], (63)

d′2(u, v, c, d)
def
= E[{φ′(χ1u− ψ1v + c)}2ψ2

1 ]

+ E[{φ′(χ′
1v + ψ′

1u+ d)}2(χ′
1)

2], (64)

d1x(u, v, c)
def
= E[{φ′(χ1u− ψ1v + c)}2χ1], (65)

d1y(u, v, c)
def
= E[{φ′(χ1u− ψ1v + c)}2ψ1], (66)

d′1y(u, v, d)
def
= E[{φ′(χ′

1v + ψ′
1u+ d)}2ψ1], (67)

d′1x(u, v, d)
def
= E[{φ′(χ′

1v + ψ′
1u+ d)}2χ1], (68)

d0(u, v, c)
def
= E[{φ′(χ1u− ψ1v + c)}2], (69)

d′0(u, v, d)
def
= E[{φ′(χ′

1v + ψ′
1u+ d)}2]. (70)

We compute the inverse ofA(θ) (Eq. (37)) using the
following formula used in [13].

Lemma 1:

(
B11 B12

B21 B22

)−1

=

(
B11 B12

B21 B22

)
, (71)

provided

|B11| ≠ 0, |B22 −B21B
−1
11 B12| ≠ 0 (72)

where

B11 = B−1
11 +B−1

11 B12B
−1
22,1B21B

−1
11 , (73)

B22,1 = B22 −B21B
−1
11 B12, (74)

B22 = B−1
22,1, (75)

B12 = (B21)T = −B−1
11 B12B

−1
22,1. (76)

2

By using Lemma 1, we have

A(θ)−1 =

(
A11 A12

A21 A22

)
, (77)

where

A11 =

(
a11 a12

a21 a22

)
, (78)

a11 =
I

d0
+

{
G+

(
1

d0
+G

)
(m1l1 +m2l2)

+H(m1l3 +m2l4)

}
uuT

u2
, (79)

a12 =

{
H +H(m1l1 +m2l2) +(
1

d0
+ E

)
(m1l3 +m2l4)

}
uvT

uv
, (80)

a21 =

{
H +

(
1

d0
+G

)
(m3l1 +m4l2) +

H(m3l3 +m4l4)

}
vuT

vu
, (81)

a22 =
I

d0
+ {E +H(m3l1 +m4l2)

+

(
1

d0
+ E

)
(m3l3 +m4l4)

}
vvT

v2
, (82)

A12 =

(
l1u/u l2u/u
l3v/v l4v/v

)
= (A21)T , (83)

A22 =
1

k1k2 − k2

(
k2 −k
−k k1

)
, (84)

E =
d2

d2d′2 − d211
− 1

d0
, (85)

F =
1

d2
− 1

d0
, (86)

G = Ed211

(
1 + 2F

d0
+ F 2

)
+
d211
d0

(
F 2 + 2F +

1

d20

)
+ F, (87)

H = −d11
(

1

d0
+ E

)(
1

d0
+ F

)
, (88)

k = −d1xd′1y
(

1

d0
+G

)
−H(d1yd

′
1y − d1xd

′
1x)

+d′1xd1y

(
1

d0
+ E

)
, (89)

k1 = d0 − d21x

(
1

d0
+G

)
+2Hd1xd1y − d21y

(
1

d0
+ E

)
, (90)

k2 = d′0 − d′21y

(
1

d0
+G

)
−2Hd′1xd

′
1y − d′21x

(
1

d0
+ E

)
, (91)

l1 =
1

k1k2 − k2

{
−k2

(
d1x
d0

+Gd1x −Hd1y

)
+ k

(
d′1y
d0

+Gd′1y +Hd′1x

)}
, (92)
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l2 =
1

k1k2 − k2

{
k

(
d1x
d0

+Gd1x −Hd1y

)
− k1

(
d′1y
d0

+Gd′1y +Hd′1x

)}
, (93)

l3 =
1

k1k2 − k2

{
−k2

(
Hd1x − d1y

d0
− Ed1y

)
+ k

(
Hd′1y +

d′1x
d0

+ Ed′1x

)}
, (94)

l4 =
1

k1k2 − k2

{
k

(
Hd1x − d1y

d0
− Ed1y

)
− k1

(
Hd′1y +

d′1x
d0

+ Ed′1x

)}
, (95)

m1 =
1

k1k2 − k2

{
k2

(
l1

(
1

d0
+G

)
+Hl3

)
−k
(
l2

(
1

d0
+G

)
+Hl4

)}
, (96)

m2 =
1

k1k2 − k2

{
−k
(
l1

(
1

d0
+G

)
+Hl3

)
+k1

(
l2

(
1

d0
+G

)
+Hl4

)}
, (97)

m3 =
1

k1k2 − k2

{
k2

(
Hl1 + l3

(
1

d0
+ E

))
−k
(
Hl2 + l4

(
1

d0
+ E

))}
, (98)

m4 =
1

k1k2 − k2

{
−k
(
Hl1 + l3

(
1

d0
+ E

))
+k1

(
Hl2 + l4

(
1

d0
+ E

))}
. (99)

V. CONCLUDING REMARK

We have developed the natural gradient descent method for
the multilayer stochastic complex-valued neural networks, and
derived the natural gradient for a single stochastic complex-
valued neuron. Since we assume that the varianceσ2

1 for the
real part of the complex-valued additive noise is equal to that
σ2
2 for the imaginary, the Riemannian metric tensor is given

by G(θ) = (1/σ2)A(θ) where A(θ) does not depend on
σ2 = σ2

1 = σ2
2 . The situation is, however, not the same if

σ1 ̸= σ2. And also, the Riemannian metric tensor will be more
complicated if the covariance is not zero.

In future studies, based on the results of this paper, we
will derive the natural gradient descent algorithm for the
three-layered stochastic complex-valued neural network, and
make clear its properties via computer simulations. Since
there exist many singular points in the three-layered stochastic
complex-valued neural network [7], it is expected that the
complex-valued natural gradient method improves its learning
performance dramatically. And also, it has been shown that
there exist singular points in the polar variable complex-valued
neurons [8]. We will apply the natural gradient method to the
polar variable complex-valued neurons.

ACKNOWLEDGMENT

The author would like to give special thanks to the anony-
mous reviewers for valuable comments.

REFERENCES

[1] S. Amari, Differential-geometrical methods in statistics, Lecture Notes
in Statistics vol. 28, Springer-Verlag, 1985.

[2] S. Amari, “Neural learning in structured parameter spaces – Natural
Riemannian gradient,” In M. C. Mozer, M. I. Jordan, & Th. Petsche
(Eds.),Advances in neural processing systems, 9, Cambridge, MA: MIT
Press, 1996.

[3] S. Amari, “Natural gradient works efficiently in learning,”Neural Com-
putation, vol. 10, no. 2, pp. 251–276, 1998.

[4] S. Amari, H. Park, and T. Ozeki, “Singularities affect dynamics of learn-
ing in neuromanifolds,”Neural Computation, vol. 18, no. 5, pp. 1007–
1065, 2006.

[5] G. M. Georgiou and C. Koutsougeras, “Complex domain backpropaga-
tion,” IEEE Trans. Circuits and Systems–II: Analog and Digital Signal
Processing, vol. 39, no. 5, pp. 330–334, 1992.

[6] T. Nitta (Ed.), Complex-valued neural networks: utilizing high-
dimensional parameters, Information Science Reference, Pennsylvania,
USA, 2009.

[7] T. Nitta, “Local minima in hierarchical structures of complex-valued
neural networks,”Neural Networks, vol. 43, pp. 1–7, 2013.

[8] T. Nitta, “Plateau in a polar variable complex-valued neuron,” Pro-
ceedings of the 6th International Conference on Agents and Artificial
Intelligence, ICAART2014-Anger, March 6-8, 2014, pp. 526–531.

[9] A. Hirose (Ed.),Complex-valued neural networks: adcances and applica-
tions in the IEEE press series on computational intelligence, Wiley-IEEE
Press, 2013.

[10] M. S. Kim and C. C. Guest, “Modification of backpropagation networks
for complex-valued signal processing in frequency domain,”Proc. Inter-
national Joint Conference on Neural Networks, San Diego, June, 1990,
vol. 3, pp. 27–31.

[11] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,”Neural Networks, vol. 10, no. 8, pp. 1392-1415, 1997.

[12] T. Nitta, “Orthogonality of decision boundaries in complex-valued
neural networks,”Neural Computation, vol. 16, no. 1, pp. 73–97, 2004.

[13] H. H. Yang and S. Amari, “Complexity issues in natural gradient de-
scent method for training multilayer perceptrons,”Neural Computation,
vol. 10, no. 8, pp. 2137–2157, 1998.

(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 5, No. 7, 2014 

198 | P a g e  

www.ijacsa.thesai.org 


