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Abstract—In this paper, the natural gradient descent method Il. COMPLEX-VALUED NEURAL NETWORK MODEL

for the multilayer stochastic complex-valued neural networks Thi . d ib h | lued | K
is considered, and the natural gradient is given for a single IS section describes the complex-valued neural networ

stochastic complex-valued neuron as an example. Since the space model used in this paper. First, we will consider the fol-
of the learnable parameters of stochastic complex-valued neural lowing complex-valued neuron. The input signals, weights,
networks is not the Euclidean space but a curved manifold, the thresholds and output signals are all complex numbers. The
complex-valued natural gradient method is expected to exhibit net input U,, to a complex-valued neuron is defined as:
excellent learning performance. U = >, WamXs, + V,,, Where W,,,,, is the complex-
i ) valued weight connecting the complex-valued neurorsnd

Keywords—Neural network; Complex number; Learning; Sin- ;" is the complex-valued input signal from the complex-
gular point valued neuronm, and V,, is the complex-valued threshold
value of the complex-valued neuran To obtain the complex-
valued output signal, convert the net inddy into its real and
imaginary parts as followd’,, = x + iy = z, wherei denotes
v/—1. The complex-valued output signal is defined to be

Complex-valued neural networks whose parameters (weights fo(z) = o(x) +ip(y), (1)

and threshold values) are all complex numbers, are useful

in fields dealing with complex numbers or two-dimensionalVNeré : B — R, (R denotes the set of real numbers).
vectors such as telecommunications, speech recognition and (.1) is often called aspl_|t-ty_pecomp!ex-v_alued activation
image processing with Fourier transformation. Indeed, we caftnction. Note that the activation functioft: is not a regular

find some applications of complex-valued neural networks t¢OMplex-valued function because the Cauchy-Riemann equa-
various fields in the literature [6], [9]. tions do not hold.

I. INTRODUCTION

The complex-valued neural network used in this paper

‘The multilayer complex-valued neural network is usually consists of such complex-valued neurons described above.
trained using the gradient descent learning method [5], [10],

[11], [12], as in the case of the multilayer real-valued neural Note that various types of activation functions other than
network. The space of the learnable parameterstochastic Ed. (1) can be considered naturally (for examples, the non-
complex-valued neural networks is, however, not the EuclideaiPlit-type (fully) one [10]).

space but a curved manifold. For stochastic complex-valued

neural networks, the ordinary gradient does not give the lIl. NATURAL GRADIENT METHOD

is given by the natural gradient [2], [3]. It has been shownpp) 3] Let § = {w € RV} be a Riemannian space with

in [4] that the natural gradient method could avoid singulatiye Riemannian metric tens@(w) = (g;;(w)) on which a
points of the real-valued parameter space which is a cause ginction L(w) is defined. If !

standstill in learning, and the natural gradient method could

improve the learning performance of the real-valued neural (w) = 1 (i=17) )
networks as a result. Similarly, there exist many singular points Jii 0 (i #7)

in the complex-valued neural networks [7]. Thus, the natura hat is, G(w) is the unit matrix, therf is an Euclidean space
gradient method would be useful for the complex-valued neura mari,proved the following théorem [3] '
networks, too. In this paper, we extend the natural gradient ’
descent method for the multilayer stochastic real-valued neural Theorem 1: The steepest descent directionfofw) in a
networks to the complex domain, and give the natural gradieriRiemannian space is given by

for a single stochastic complex-valued neuron as an example. NV L(w) = —G(w)VL(w) 3)

Section Il describes the complex-valued neural networkwhere G~'(w) = (¢%(w)) is the inverse of the metric
Section lil is devoted to the explanation of the natural gradienig(w) = (g;;(w)) and VL is the conventional gradient,
method, and Section IV presents the natural gradient method -
in complex-valued neural networks, which is followed by our _( 9 0
conclusion in Section V. VL(w) = 0w1L(w)’ et ) @)
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where the superscrigf’ denotes the transposition. m] The natural gradient descent algorithm for the complex-

~ . . valued neural network is given b
VL(w) = G 'VL(w) is called thenatural gradient g y
of L in the Riemannian space. The natural gradient descent Vi1 = vy — & V(24 yis ve), 9)
algorithm is given by
- where{(z;,y) € CY x C, t=1,2,---} is the sequence of
Wiy = we — & VL(wy), (3)  the complex-valued training signals, and

whereg; is the learning rate. T

v = (Ula"' 7U2N>
Amari derived the natural gradients explicitly in the case = (Re[ur],--- , Refwn], Im[un],--- , Im[wn])7,
of the space of real-valued perceptrons for neural learning, the (10)
space of matrices for blind source separation, and the space_ def
of linear dynamical systems for blind multichannel source Vi(z,y,v) = G~ (v)- Vi(z,y,v). (11)

deconvolution [3].
3] Eqg. (11) is the natural gradient d¢fz,y,v), and the usual

gradientVi(z,y,v) is given by

T
Vi(z,y0) ol(z,y,v) ol(z,y,v)

In this section, the natural gradient is applied to the ks B vy 7 Ouan

complex-valued neural networks and the natural gradient de- Al(z,y, w) Al(z,y, w)

scent algorithm is explicitly derived for a single complex- = ( dRe[w] yTT dRe[wn]

valued neuron. .
Ol(z,y, w) ol(z,y, w)) (12)

A. Natural Gradient Learning in Complex-Valued Neural Net- OImlwi] * 7 OIm[wy]
works

IV. NATURAL GRADIENT IN COMPLEX-VALUED NEURAL
NETWORKS

The Riemannian metric tens6¥(v) is the Fisher information
Let us consider a stochastic complex-valued multilayemmatrix [3], and is given by
feedforward neural network witftV input neurons, one output

neuron, and a learnable complex-valued vector paranaeter Gv) = (9i;(v)), (13)
(w1, --- ,wy)T € CN which consists of all the weights and _ p[0logp(z.yiv) dlogp(zyiv)] o,
thresholds € denotes the set of complex numbers). Assume gii(v) = v, ' v, - (14)
that the complex-valued input signal = (21, - ,2x)7 €

C" is subject to an unknown probability distributiar{z),

and the complex-valued output signak C is given by B. Natural Gradient Learning in a Single Complex-Valued

Neuron

y = go(z,w) +n, (6) In this section, the natural gradient descent learning algo-
where gc is a complex function, andh = np + in; is a  fithm for a single complex-valued neuron is given.
complex-valued random variable subject to a complex normal  ~gnsider a stochastic complex-valued neuron with
distribution (or bivariate normal distribution) (x, ). The inputs, weightswy, = uy + iv, € C (1 < k < N), and a
model specifies the probability density of the input-output pairthresh,old valuey = ¢ +id € C. Then fBrN_input,signals

as 2 = a1 +iyp € C (1 < k < N), the stochastic complex-
p(z,y;w) = q(2) - p(y|z; w). (7)  valued neuron generates

Define a loss functiori(z, y; w) when input signalz is N
processed by the stochastic complex-valued neural network y = Jfe Zwkzk Ty +n
having parametew as: k=1

= X+iV (15)
(z,yw) © —logp(z,y;w) : :
where fo : C — C is a so-calledsplit-type complex-valued
= —logq(z) —logp(y|z; w). (8)  activation function which is defined to be

Given the training sef{(z:,y:),t = 1,---, T}, minimizing

the loss function (Eqg. (8)) is equivalent to maximizing the fela+ib) = p(a) +ip(b) (16)
probability that the stochastic complex-valued neural networkor any ¢ + ib € C, andy : R — R is suitably chosen, for

outputs the training output signg}. examle, the sigmoid function
The space of all the probability distributions which the 1
above stochastic complex-valued neural network realizes, can o(s) = 1 — an
be regarded as a/N-dimensional Riemannian space because te
the complex-valued parameter consists of the two real-valuegas used in [11], and the scaled error function
parameters: the real-part and the imaginary part. Thus, the .
information geometry [1] can be applied to the complex-vauled 2 V2 2
case, too. p(s) = VT Jo e di (18)
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was used in [13].n ng + iny is a complex-valued

random variable subject to the complex normal distribution

(or bivariate normal distribution)V(u, 3) where

0
w0 (19)
. c 0
¥y = {0 U} (20)
We assume that the input signal = « + iy where
z (v, ,on)Ty o (y1,-- ,yn)T is subject to the

multivariate complex normal distribution (@ -dimensional
normal distribution) N(0, I) where the variance covariance
matrix I is the unit matrix; denote its joint probability density
function byq(z). The loss functiori(z,y; #) is defined as

lz,y;0) = —logp(z,y;0)
= —logq(z) —logp(y|z;0), (21)
where § % (W, v c, )T, u = (uy, - ,un)?, v =
(v1,-- ,on)T.

Given the sequence of the complex-valued training signals

{(ze,:) e CN x C, t =1,2,---}, the the natural gradient

descent algorithm for the stochastic complex-valued neuron is

given by

Op1 =0, — ¢ - G_l(et) : Vl(ztvyt; 91&)- (22)

We shall calculate the Fisher information mati&(6) =
(9i5(0)). For anyl <i,j < 2N +2,

| 0logp(z,y:0) Ologp(z,y;0)
0, 0,
B dlogp(y|z;0) Ologp(yl|z;0)
- E{ o, 6, . (23)

9 (0)

(from Eq. (21))

Here, sinceng is independent ofiy,

logp((¢(S) +nr) +i(p(T) +nr)lz; 0)

log p((S) + nrlz;0)
+logp(o(T) + nr|z;0)

log p(X|z;0) + log p(Y|z; 0),

log p(y|z; 0)

(24)

where

S Re [fovzl Wrzk + 7} , T
Im [ijzl wizp + *y]. Thus, for anyl <i,j < 2N + 2,

9i;(0) = E [8logp(X|z;9) _ 8logp(X|z;9)]

0, 0,
dlogp(X|z;0) 0Ologp(Y|z;0)

+2E[ 06; 26,
dlogp(Y|z;0) Ologp(Y|z;0)

FE .

* [ 06; 26,

}. (25)
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By simple calculations, we obtain

95(6) = 5 {El# () riz;]
+E[(¢'(T))?yiy;] }
(1<4,7<N), (26)
65(6) = — (B (8)(~yi)z;]
+E[(¢'(T))*xi-ny;]}
= g;i(0)
(N+1<i<2N,1<j<N), (27)
95(6) = 5 {BI& () 5]
+E[(¢'(T))?zi-naj-N]}
(N+1<i,j<2N), (28)
gov15(6) = 5 El(/(5) )]
= gjan+1(0) (1 <j<N), (29)
govi15(0) = Bl () ()]
(N+1<j<2N),  (30)
gone2s(0) = SEISDPy] (1<j<N),
(31)
gov+25(6) = 5Bl (T) s ]
(N +1<j<2N), 32)
gon+12n+1(0) = %E[(sﬂ/(s))Q]a (33)
gon+y22N+1(0) = 0
= gon+12N+2(0), (34)
gavszania(0) = Bl (TP (39)
From Eqgs. (26) — (35), we can rewri@(0) as
G(6) = 5 A(6), (36)
where
A A a3 | aiy
A(9) dgf Aoy Ao Qg3 | A4
asy asz A ’
as1 Q42
(37)

Ay = 0% Eq. (26), A9, = AL, = 02 Eq. (27), A3, = o2
Eqg. (28),0,13 = aSTl = g2 Eq. (29),0,32 = aQTg = g2 Eq.
(30), a14 = al; = 0% Eq. (31),a42 = al, = 0% Eq. (32),

and
Ay = ( ) |

In what follows, each submatrix ofA(6) (Eq. (37)) is

calculated. Letu = |ju|| = Jui+---+u3, v = ||v]| =

vi+--+ %, u =u/u, vi =v/v, and extendu;, v,

o2 - Eq(33)
Eq.(34)

Eq.(34)

o2 - Eq(35) (38)

to orthonormal base$u,,--- ,un}, {vi,---,vn} for RY,
respectively. Then, the real patt € R and the imaginary
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party € RY of the input signalz = = + iy € C" can be
decomopsed as

(26) (All) is

Vol. 5, No. 7, 2014

given by

N El(¢'(T)yy"] = Bl(¢'(v"z +u"y +d))*yy”]
T=) ) Xit, (39) = Ell¢! (v + v + P01 Turud
=1
N Yo / 2 T
+ El@' (Xiv +Piu+d)] ) uiu;
y=> v (40) ;
= (52)
Then, noticing thaty;,v; ~ N(0,1), we have
Exix;) Eul zz"u;] = u] Elzz’|u, Thus, from Egs. (45) and (52),
’U,ZTU]' = 51'3', (41)
N
A E[(w’@))2 2’| + E[(¢'(T))*yy"]
zxT = 2uiu’t + (u ul —l—uiuT H
il + ) xluad + u) {EI (e — o + )]
v ] F Bl 0w + i+ )220}
+ Z XiXj Wil (42) + {E[(gp (1w — v+ C))Q]
i,j=2
u -z u' (xaus + -+ xvun) = xau,  (43) + E[(¢'(xv + Yiu+ d))? Zul
v’y v (Y11 + -+ Unon) =Yv. (44)
= do(u,v,¢,d) -1
From Egs. (41) — (44), we find that the first term of Eq. (26) uu”
(All) is given by +{d2(u7va ¢, d) - do(u,’U,C, d)} : w2’ (53)
Bl(¢'(5))*z2"] = El(¢(u”z — vy + ) waT] where
= E[(¢'(xiu — 1o+ C))2x?]ulu1T
+ Bl(¢' (xiu— v +¢)) Zul do(u,v,e,d) = B[{e (xiu = 1o+ o)}
45) +E[{¢ (xiv +Yru+d)}?,  (54)
do(u,v,0,d) = B[ (au — 1o+ )}
_ +E{¢' (X1v + Yiu + d) P (47)?).
Next, in order to calculate the second term of Eq. (26) (55)
(A11), decompose the real part € R" and the imaginary
party € RY of the input signakz = = + iy € C" as
Similarly, we have
N
= ", 46
@ ; Xiv (46) L Lt
N 21 = 11(u,v,¢,d) - w
y=> viu,. (47) AT, (56)
=1 Az do (’U/7 v, ¢, d) I
T
Then, we have H{dy(u, v, ¢, d) — do(u, v, c,d)} - "’ULQ (57)
Blviw)) = (48) az = dis(u,v,0) uf
= a’,{Sa (58)
ny = (1/)1 U1u1 + 27/11 ulu +Uzu{) azz = —dly(%UaC) : U{
N =2 = a2T3, (59)
+ ) viiu], (49) an = dy,(u,v,d) uy
i,j=2 = ajy, (60)
vl v (Xjv1 + -+ Xvon) = X1, (50) ap = dy,(u,v,d)- v
w' oy = wl(@Wiur o Yuy) = Yu. (51) az,, (61)
A _ dO (ua v, C) 0 (62)
From Egs. (48) — (51), we find that the second term of Eq. 4 0 dfy(u,v,d)
196 |Page
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where where
All
du(uv,e,d) = B¢ (v + diu+d)}x ] i
— E{¢' (x1u — ¥1v + ) }2xa], (63)
dy(u,v,c,d) = E[{¢ (xau — 1o + )}
+ E[{¢ (xiv+ iu+d)}(x1)?], (64)
dis(u,v,0) € B[ (viu— 1o+ o)} xal, (65) a'?
diy(u,v,0) € B (xau — v +)}2y],  (66)
dyy(u,v,d) E B (v + vlu+d)Y2u), (67)
d,(u,0,d) ¥ B OGv+du+d)2xi], (68) a2l
do(u,v,0) € B[ (au— v+ )}, (69)
dy(u,v,d) = B[ (v +du+d)}?).  (70)
a22
We compute the inverse ofA(6) (Eg. (37)) using the
following formula used in [13]. Al2
Lemma 1:
A22
By By - _( B B" 71) E
By Baj —\ B* B* )’
F
provided G
|B11| #0, [Ba2 — BBy Bia| #0 (72)
H
where k
B'" = Bj +B{Bi:By BaBy, (73)
Bys1 = By — ByBi'B, (74) Fa
B*® = By, (75)
B” = (B)"=-B;B12B;,. (76)
ko
|
By using Lemma 1, we have I
B All A12
a0 = fa 4= ). @)

www.ijacsa.thesai.org

Vol. 5, No. 7, 2014

11 12
(G o). 79)
I 1
—+<G+ | —+G (mlll +m212)
do do
T
+H(mals + m214)}“u“;, (79)
{H + H(mly + mols) +
1 T
(+8) mts e mat |22 (@0)
do uv
1
{H + (d + G) (m3l1 + m412) +
0
vul
H(m3l3 + m4l4) —_—, (81)
VU
I
df + {E + H(m3l1 + m412)
0
1 voT
+ <d0 + E) (msls + m4l4)}v27 (82)
Lhu/u lu/u
l3'U/’U l4v/v
(A*hHr, (83)
1 ko —k
kle _ kQ ( _k kl ) ) (84)
do 1
oy — &y dy %)
1 1
o do (86)
142F
Ed3, ( e F2>
0
d2
+-L (F?+2F + — | + F, (87)
do dg
—d 1 +F 1 + F (88)
11 dO dO )

1
+d},d1y ( + E) , (89)
do
do—d2, (L +G
0 1z dO
1
+2Hdyodyy — di, ( + E) , (90)
do
1
2
dy— d?, <d0 + G)
1
—2Hd,,dy, — df, ( + E) : (91)
do
1 dla:
i e (o )
d/
+k(24+Gd, +H, ), (92)
do v
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B 1 dis
l2 — W{k(do +Gd1x—Hd1U>
d/
— k(2 +Gd, +Hd, )}, (93)
do ! [
B 1 dy
Iy = Y — {—k2 <Hd1x - Ed1y> 2
.,
+k (Hd'ly + d—lo + Ed’m> } , (94)
1 dl ) [3]
Iy, = ——k(Hdy,— -2 —FEd
LT hike - k2 { ( g v 4
I
— ks <Hd’1y + B + Ed’u) } , (95)
1 do 1 Bl
—k <12 (1 + G) + Hl4) } , (96)
do
~ Y Tl (Eie) e m )
e k?lkz—k2{ (1<do+ )+ 3) 8]
1
+ky <12 (d + G> + Hl4> } \ (97)
1 : 1 9]
ms = k1k2—k2 {kg (Hll+l3 (dO+E)>
1 [10]
—k (Hl2+l4 <+E)>}, (98)
do
= L —k( Hly +1 L +E
my = Feky — k2 1 3 do [11]
1
+ky (ng +l (d + E)) } (99) [4
0 [13]

V. CONCLUDING REMARK

We have developed the natural gradient descent method for
the multilayer stochastic complex-valued neural networks, and
derived the natural gradient for a single stochastic complex-
valued neuron. Since we assume that the variarfcéor the
real part of the complex-valued additive noise is equal to that
o2 for the imaginary, the Riemannian metric tensor is given
by G(9) = (1/0?)A(6) where A(9) does not depend on
0? = o} = o3. The situation is, however, not the same if
o1 # o2. And also, the Riemannian metric tensor will be more
complicated if the covariance is not zero.

In future studies, based on the results of this paper, we
will derive the natural gradient descent algorithm for the
three-layered stochastic complex-valued neural network, and
make clear its properties via computer simulations. Since
there exist many singular points in the three-layered stochastic
complex-valued neural network [7], it is expected that the
complex-valued natural gradient method improves its learning
performance dramatically. And also, it has been shown that
there exist singular points in the polar variable complex-valued
neurons [8]. We will apply the natural gradient method to the
polar variable complex-valued neurons.
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