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Abstract—Cascading failures are crucial issues for the study 

of survivability and resilience of our infrastructures and have 

attracted much interest in complex networks research. In this 

paper, we study the  overload-based cascading failure model and 

propose a soft defense strategy to mitigate the damage from such 

cascading failures. In particular, we assign adjustable weights to 

individual links of a network and control the weight parameter. 

The information flow and the routing patterns in a network are 

then controlled based on the assigned weights. The main idea of 

this work is to control the traffics on the network and we verify 

the effectiveness of the load redistribution for mitigating 

cascading failure. Numerical results imply that network 

robustness can be  enhanced significantly using the relevant 

smart routing strategy, in which loads in the network are 

properly redistributed. 

Keywords—cascading failures; link’s weight; network 

robustness 

I. INTRODUCTION 

Nowadays, many complex systems in nature and society 
can be described by intricate network patterns, including 
technological, social and biological systems such as the 
Internet, the World-Wide Web, electrical power grid networks, 
metabolic networks and so on. In recent years, complex 
network research has also attracted much attention and 
becomes an useful tool for scientists to make major advances 
in understanding salient properties of complex human 
engineered systems, that go beyond the single component 
behaviour. A vast number of studies have clarified that certain 
topological properties of complex networks have strong 
impacts on their stability. An early important work of Albert, 
Jeong and Barabasi [1] showed that scale-free networks which 
have heterogeneous degree distributions, are remarkably 
resistant against random errors, but at the same time, targeted 
malicious attacks can easily disrupt the networks by removing 
only a small fraction of nodes or links. On the other hand, 
homogeneous degree distribution networks – namely, random 
networks, might be considerably stable against attacks but 
somewhat vulnerable to random failures. 

Since a vulnerability is a weakness which might reduce a 
system performance, recently, one of the major focuses of 
complex network research, is the vulnerability management. In 
our daily life, cascading failures are common phenomenon and 
can occur in many natural and man-made systems, due to 
endogenous or exogenous (or can be both in some cases) 
factors.  

There are many types of cascading failures that are 
mentioned, from some critical infrastructures such as electrical 
power grids and computer networks, to economic, ecological, 
even political systems. A common yet hard-to-predict property 
of cascading failures is that even a single point of failure 
emerges locally, the damage is widely propagated and could 
result in global collapse. 

In decades, a number of important aspects of cascading 
failures in complex networks have been discussed and many 
valuable results have been found. There several works studied 
the impact of cascading failures on different types of power 
grid networks such as the North American power grid network 
[2], the European power grid network [3], and the Italy power 
grid network [4]. Other works studied cascading failures in 
other types of complex networks, such as telecommunication 
networks [5], or socio-technological networks [6]. As we 
further model and understand the behaviour of cascading 
failures, how to build in safeguards that may be able to prevent 
them in the future, has become a central topic of interest. 

Available set of existing methods to enhance network 
robustness against cascading failures can be generally divided 
into two classes 

 A set of methods to improve network robustness 
statically, which has been developed in order to prevent 
cascading failures before the occurrence of initial 
failures. 

 A set of methods to improve network robustness 
dynamically, which has been developed in order to 
minimize the damage of cascading failures after some 
initial failures occurred. 

An example study of the former is the paper of Shin and 
Namatame [7]. In their paper, they considered network 
robustness and design cost as a trade-off function and used an 
evolutionary algorithm to evolve networks. Their results 
revealed that clustering, modularity, and long path lengths all 
play an important part in the design of robust large-scale 
infrastructure. 

Typical examples of the latter include the well-known 
method proposed by Motter [8]. In his paper, he introduced and 
investigated a costless defense method based on a selective 
removal of nodes and edges immediately after initial failure 
and showed that the proposed method is practical and can 
drastically reduce the size of the cascade.  
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The main idea in [8] is that a selective set of insignificant 
nodes that process little but contribute relatively large loads to 
the network are removed so as to reduce the overall load in the 
network. This approach has the advantage of a low incremental 
investment cost, as it requires the ability to perform a remote 
shutdowns of nodes. However, it also has a strong 
disadvantage since it is difficult to provide early detection of 
cascading failures and it requires knowledge of the global 
topology. 

There are essentially two types of strategies for defending 
or mitigating cascading failures 

 Hard strategy to prevent cascading failures. This type 
of strategy has a disadvantage of impacting the 
topology of networks. 

 Soft strategy to minimize the damage of cascading 
failures without any change in the connection of 
networks. 

Both of the above-mentioned methods [7, 8] can be 
regarded as hard strategy type. While the latter shows its 
disadvantage in directly impacting to the topological structure 
of networks, the former may become a harder strategy since the 
purpose is to design robust networks from the beginning while 
it has been showed that most of networks in reality already 
have their own specific existing structures. 

To overcome the difficulties of hard strategy, some soft 
strategies to counter cascading failures without impacting to 
the connections of given networks, have been recommended. 
Wang and Kim [9], Li, Wang, Sun, Gao, and Zhou [10] 
developed new capacity models to cascading failures to make 
the network more robust, while at the same time the cost to 
assign capacities is drastically reduced. Meanwhile, in the 
survey of Chen, Huang, Cattani, and Altieri [11], they 
reviewed strategies for improving transport efficiency, 
including soft strategies to design efficient routing strategies 
and also hard strategies to adjust the underlying network 
structure. 

Because hard strategies are not always applicable in many 
cases, we mainly focus on soft control strategy in this work. 
Among existing literature, the most related work to ours is the 
paper by Yang, Wang, Lai, and Chen [12]. In their paper, they 
discovered an optimal solution to both cascading failures and 
traffic congestion problem. They provided numerical evidence 
and theoretical analysis to show that, by choosing a proper 
weighting parameter, a maximum level of robustness against 
cascades and traffic congestion can be simultaneously achieved. 
However, the critical tolerance parameters which are the 
minimal values to prevent cascading failures that they showed 
in their paper are applied for all nodes in the network. It 
implies that, to prevent overload in some nodes, they 
unexpectedly increased the capacities in other nodes which are 
may be unnecessary and become waste redundancy, and of 
course it leads to much cost. Besides, they did not consider the 
connectivity of the network after initial failures, which is a 
relevant index in studying network robustness. 

In this paper, we control load distribution in a network via 
several smart routing schemes. We define network robustness 
in considering the connectivity of the network.  

We evaluate network robustness to capture the 
effectiveness of the proposed method on an artificial generated 
scale-free network and some realistic networks subjected to 
intentional attacks. Simulation results show the significant 
enhancement of network robustness when a smart routing 
strategy is adapted. 

The reminder of this work is organized as follows: we first 
present the cascading failure model in Section II. We then 
introduce the proposed routing strategy and simulation settings 
in Section III and IV. We present numerical results in Section 
V, and finally summarize this work in Section VI. 

II. A CASCADING FAILURE MODEL 

Cascading breakdown in complex networks is regarded as 
an avalanching failure, where the failure of a few local nodes 
can result in a global-scale breakdown of the network. In 
various types of existing cascading failures, one of the most 
prominent cascade phenomenon that occurs in most 
infrastructure networks, is overloaded cascading failure. 

This type of cascading failures can take place in electrical 
power grid networks, when for any reason a line breaks down, 
its power is automatically shifted to the neighbouring lines. In 
most of the cases, the neighbouring lines can handle the extra 
load, but sometimes, these lines are also overloaded and 
continuously shift their load to their neighbours. This 
eventually leads to a cascade of failures where a large number 
of transmission lines are overloaded and malfunction at the 
same time. For instance, due to the power redistribution, some 
typical incidents have taken place in history, such as the 
blackout on August 14, 2003 when an initial disturbance in 
Ohio led to the largest blackout in the history of the United 
States and millions of people throughout parts of North Eastern 
and Mid-Western United States, and Ontario, Canada, were 
without power for as long as 15 hours [13]. 

Furthermore, the overloaded cascading failures can also 
take place on the Internet, where traffic is rerouted to bypass 
breakdown routers, eventually leading to an avalanche of 
overloads on other routers which do not have enough capability 
to handle extra traffic, and a large drop in the performance. A 
prominent example is the congestion on the early Internet in 
October 1986, when the NSFnet phase-I backbone dropped 
three orders of magnitude from its capacity of 32 kbit/s to 40 
bit/s, and this continued to occur until end nodes started 
implementing Van Jacobson’s congestion control between 
1987 and 1988 [14]. 

The interesting feature of this type of overloaded cascading 
failures is that it does not necessarily propagate through 
adjacent physical contact, i.e. the single failure of one node in a 
network may cause failures to non-adjacent nodes due to the 
network’s load redistribution. The potential impact of this type 
of cascading breakdown on the security of large complex 
networks, has been firstly investigated by Motter and Lai [15]. 

Since traffic or information is usually transmitted along the 
shortest paths in most communication networks, it has been 
suggested that the information flow across the network –  
namely the load L, can be captured well by the betweenness 
centrality, which can be calculated as the number of shortest 
paths that pass through a node when flow is sent from each 
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available generation node to each distribution node (load in 
unweighted networks) 

 L = shortest path betweenness. 

We consider the networked system with N nodes. The 
possibility of observing cascading failures is enabled by 
assigning flow capacities to each of the nodes of the system. 
Here, the capacity of a node is defined as the maximum load 
that the node can handle. Since engineered systems are 
optimized for maximum capacity and minimum cost, it is 
assumed that the capacity of the nodes is proportional to the 
initial load [15, 16] 

 NiLC ii ,...,2,1),0(   

where Ci is the capacity of node i, Li(0) is the initial load of 

node i which is defined in (1). The tolerance parameter ≥ 
1) captures the relationship between network component 
capacity and load demand levels. Here, the tolerance parameter 

also implies the budget of network construction or resource 
allocation. 

Suppose that si(t) represents the state of node i at time step t. 
A very simple condition to recognize that node i will fail or not 
at time step t is the following relation 


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 


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where si(t) = 1 indicates that node i will fail at time step t, 
and si(t) = 0 indicates that node i will be safe. 

Each disruptive event triggers flow redistribution within the 
networks and can potentially lead to cascading failures. 
Initially, a network is in a stationary state in which the load at 
each node is smaller than its capacity. It is possible that from 
some reasons a breakdown occurs at one or more nodes –   
some nodes in the system is overloaded beyond the given 
capacity, so that they cannot work at all, and can be assumed 
that be removed from the network, causing the change of 
transmission paths in the network. The breakdown of one or 
some heavily loaded nodes will cause the redistribution of 
loads over the remaining nodes, which can trigger breakdowns 
of newly overloaded nodes. These additional failures require a 
new redistribution of loads, which either stabilizes and the 
failures are locally absorbed, or grows until a large number of 
nodes are compromised to a failure point. 

Using the model, we are able to follow the dynamical 
response of the system to failures, and in particular to model 
how the failure in one location can propagate and have 
consequences over the whole network. The model is applicable 
to many realistic situations in which the flow of physical 
quantities in the network, as characterized by the loads on 
nodes, is important. 

III. SMART ROUTING STRATEGY 

Any network can be represented by an adjacency matrix A.  

The element of matrix A in the i
th
 row and the j

th
 column is 

expressed as aij. If aij = 1, node i and node j are connected, and 
if aij = 0, these two nodes are not connected. 

We assume that a weight of an arbitrary link connecting a 
node i and j is assigned proportionally to the connectedness of 
the two nodes as follows 

 )( jiijij kkaw   

where ki and kj is the degree – the number of links, of node i 

and j, respectively, and  is the weight control parameter. 

The introduced weight of a link connecting a node i and j 
can be also referred to as resistance of the link against the flow, 
which is determined, for example, by the conductance in an 
electrical network. As it can be observed in (4), the control 

parameter  > 0 indicates that links connecting hubs – node 
with high degrees, have high weights, and will be avoided 
using to transmit information. This assumption matches the 
reality since lines that have high resistances will obstruct the 

flow in networks. In contrast,   < 0 implies that low weights 
are assigned to links connecting hubs, meaning that these links 
have low resistances and are frequently used to transmit 

information. The final regime  = 0 corresponds to the case in 
which all links have the equal weight (same resistance). In this 
case, the flow will be transmitted by a predetermined rule, e.g. 
via the shortest paths in networks. It is worth noting that the 
weights we assign for links in networks here, are only dummy 
values – these values do not correspond to any measurement in 
reality, e.g. the geographical distance between two cities, the 
resistance of a transmission line between two substations, etc. 
The idea of this work is to control the flow of communication 
in networks based on these dummy values. 

The weight of a path from a node m to node n, that passing 
thought a set of l intermediate nodes S = {1,2,...,l} is the total 
link weights including in the path 

 



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1
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l

i

ijnm ijww  

from which, the shortest path on the weighted network, 
within all possible weighted paths between m and n can be 
obtained. 

As introduced in section II, the shortest path based 
betweenness of a node i can be used as an approximation of the 
load that flows through i. Nevertheless, this definition of load 
has the disadvantage that is only applicable for unweighted 
networks. Based on the mentioned weight in (4), we extend the 
definition of load that is also applicable for weighted networks.  

In particular, the load of a node i can be approximated by 
the total number of shortest weighted  paths that pass through 
that node (load in weighted networks) 

 L = shortest weighted path betweenness. 
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IV. SIMULATION SETTINGS AND PERFORMANCE 

MEASUREMENT 

We conduct simulations with both artificial generated and 
realistic networks. We use a scale-free network generated by 
Barabasi-Albert model [17] as a benchmark network, which 
has the number of nodes N = 1000 and the average degree <k> 
= 4. We use realistic networks such as: the Euro-road network 
– a road network located mostly in Europe where nodes 
represent cities and a link denotes that nodes are connected by 
a road [18, 19]; the Western States of the United States of 
America – a node is either a generator, a transformer or a 
substation, and a link represents a power supply line [18, 20]; 
the autonomous system peering information inferred from 
Oregon route-views between March 31, 2001 and May 26, 
2001 [21]; the network of e-mail interchanges between 
members of the University Rovira I Virgili [18, 22]; and the 
top 500 busiest commercial airports in the United States [23, 
24]. These networks have been chosen in order to represent a 
wide variety of complex network topologies. Additional 
statistical information of the networks used in this paper is 
summarized in Table 1, where N is the number of nodes; E is 
the number of links; <k> is the average degree; and kmax is the 
maximum degree. 

We first show the effect of the weight control parameter 

in (4) to the load distribution of the benchmark scale-free 
network in Fig. 1. 

As shown in the figure, by adjusting the weight control 

parameter , the scale-free network discloses its load 
distributions in different manners while its topological 

structure is kept unchanged.  = 0 corresponds to the case 
where all links in the network are assigned an equal weight (wij 
= 1, for all i, j). In this case, the scale-free network shows its 
heterogeneous load distribution – the higher degree a node has, 
the higher load it carries, since all nodes tend to use hubs as 
shortcuts to transmit information along the network. If we 

reduce the parameter  to –1, we obtain the most 
heterogeneous load distribution among three cases. In this case, 
low weights are assigned to links connecting hubs, meaning 
that hubs are more and more frequently used to transmit 

information. As expected,  = 1 shows the most homogeneous 
load distribution where links connecting hubs will be avoided 
using to transmit information. In this case, hubs experience a 
significant decrease in load. On the other hand, nodes which 
carried a small load, may acquire a larger one. In other words, 
all nodes contribute equivalently to transmitting information 
along the network. 

If a node has a relatively small load, its removal will not 
cause major changes in the load balance, and subsequent 
overload failures are unlikely to occur. However, when the 
load at a node is relatively large, its removal is likely to 
significantly affect loads at other nodes and possibly start a 
sequence of overload failures. To study the attack vulnerability 
of a network, the procedure for selecting the order in which 
nodes are removed is an open choice. A tractable choice, used 
in the original study of complex networks, is based on aiming 
at the most connected nodes, and highest loaded nodes. This is 
a deterministic process since the topology of the network is 
known at every point in time. To explore the effects of our 

proposed method, only nodes disrupted at intentional attacks 
are included in the analysis. The node with the largest load 
Lmax is chosen for node attacks, and Lmax is recalculated after 
every node removal when more than one element is eliminated 
according to the intensity of the disruptive events. 

TABLE I. STATISTICAL INFORMATION OF NETWORKS USED IN THIS PAPER 

Network Category N E <k> kmax 

Scale-free 

Artificial 

generated 
1000 1997 3.99 72 

Euro-road Physical 1174 1417 2.41 10 

US power 

grid 
Physical 4941 6594 2.67 19 

Internet Physical 10670 22003 4.12 2312 

E-mail Communication 1133 5451 9.62 71 

Top 500 Physical 500 2980 11.92 145 

 

Fig. 1. The relation of load distribution vs. degree and average load vs. 

degree of scale-free network with the weight control parameter (a)  = –1, (b) 

 = 0, (c)  = 1. 

The evaluation of robustness focuses on some generic 
topological metrics of network such as the size, efficiency, and 
average shortest path length of the Largest Connected 
Component LCC – the component for which there is a path 
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between any pair of nodes in a network. In addition to 
considering properties of the LCC, some other metrics are also 
considered, e.g., the average avalanche size and distribution, 
the critical point of phase transition from an absorbing to 
cascading state. Since the connectivity of the system is 
important, it is reasonable to consider the LCC as network 
robustness. 

In this paper, we quantify the network robustness using R, 
the ratio of functional nodes in the LCC before and after the 
cascading event caused by the failure of a single node with 
highest load 

 NNR /'  

where N and N’ are the sizes of the LCC of the network 
before and after cascading failure event, respectively. 
Evidently, N is the size of the initial network and 0 ≤ R ≤ 1. A 
network has high integrity if R ≈ 1, i.e., there is no cascade in 
the network and all nodes are almost fully connected and 
functional after initial failure. Otherwise, R ≈ 0 indicates that a 
network has been disintegrated into several small sub-networks. 
Thus, the relative size of R is appropriate for representing the 
robustness of a network to cascading failures. Using the model 
presented in Section II and this definition of network 
robustness, we obtain the familiar property "robust yet fragile" 
for which, in scale-free networks, R remains close to unity in 
the case of random breakdowns, but is significantly reduced 
under attacks that target nodes with the highest loads. 

V. SIMULATION RESULTS 

Intuitively, the most effective and simple method to prevent 

a cascading failures is to increase the tolerance parameter so 
that all nodes have sufficient resources to prevent failure due to 
overload. Another solution is redistributing load of a failure 
node. 

The resulting networks provide information about the 
minimum capacity that each remaining node must be able to 
carry to survive without triggering cascade. The capacity that a 
node i must have for preventing cascade at any initial one node 
failure, is the maximum overall networks with single removal: 

)\(max jNLC iiNji i , where )\( jNL ii  is the load on the 

node i in the network with the node j removed. However, the 
capacity is often limited by cost thus it is impractical to assign 
sufficient large capacity to all nodes in networks. Based on this 
fact, and also to validate the effectiveness of our method, we 

assume that the tolerance parameter  is taken as 1 ≤  ≤ 2, 
implying that there is no much redundant capacity in the 
system. We evaluate the efficiency of our proposed approach 

for small value of , and show we can mitigate cascading 
failures without needing to increase the capacity of each node. 

Since the difficulty of early detection makes the reactive 
defense strategy after initial attack but prior to the cascade an 
unrealistic damage control strategy for many real-world 
networks, we focus on the scenario of seeking an appropriate 
routing strategy before initial failures, indicating the static 
proactive defense strategy where we design a robust routing 
strategy against predicted attacks a priori. 

Fig. 2 shows the network robustness defined in (7) with the 
assumption of only a single node with the highest load is failed 
initially. 

The Euro-road and US power grid network are more likely 
random network, i.e. the degree and load distribution of the 
networks are homogeneous. On the other hand, the scale-free, 
Internet, E-mail and Top 500 have the degree and load 
heterogeneously distributed. It is obviously shown in Fig. 2 
that network robustness can be enhanced for all values of 

weight control parameter  if we simply increase the tolerance 

parameter  to allocate as much capacities as possible to nodes. 
However, it also exhibits that without considering a proper 

parameter , the enhancement is not noticeable even when we 

have sufficient large  – a little change in the value of the 
weight control parameter may leads to the dramatic decrease of 
network performance. It implies that, to enhance network 
robustness significantly, we have to consider adjusting 

properly both tolerance parameter  and weight control 

parameter . Simulation results show that the relation between 

the weight control parameter  and the tolerance parameter 

strongly impacts to network robustness, and this relation is 
irregular for each individual network. In particular, as shown in 
the figure, we are able to archive high network robustness for 

 Scale-free network with: ≥≥ 

 Top 500 airports network with: 0.5 ≤ ≤ 0.7, ≥ 

 E-mail network with: 0 ≤ ≤ 0.6, ≥ 

 The Internet with: 0 ≤ ≤ 1, ≥ 

 Euro-road network with: –0.75 ≤ ≤ –0.5, ≥ 

 US power grid network with: 0.2 ≤ ≤ 0.5, ≥ 

Fig. 2 shows the similar tendency of overwhelming hot 

color area where  > 0 compared with other area ( ≤ 0) for 
heterogeneous networks. It indicates that we can significantly 
enhance network robustness against intentional attacks by 

choosing a proper routing strategy with  > 0, which 
transforms a network from heterogeneous state to 
homogeneous one. 

Interestingly, we obtain different results for Euro-road and 
US power grid although they are both homogeneous networks. 
While network robustness may be enhanced due to some 

positive values of  in the case of US power grid network, the 
result in Euro-road network shows a different manner, i.e. 
network robustness is enhanced significantly with some 

negative values of 

An evident truth emerges when  is small for all networks. 

With these , load distribution of a network becomes extreme 
heterogeneous, and a single attack to a single highest load node 
may disrupt the whole system. 

One more interesting result is also observed with some 

large values of , in which network robustness start to decrease. 
We can explain this tendency as follows: with some 

intermediate values of , a network is transformed from 
heterogeneous load distribution to a more homogeneous one 
gradually.  
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However, too large  leads a homogenized network once 
again becomes heterogeneous load distributed – nodes with 
small degrees become very high load nodes, and this makes 
intentional attacks devastate the system. 

As shown in Fig. 2, we can classify strategies that enhance 
network robustness into four following classes 

 Hub avoidance strategy ():efficient for scale-free 
network, top 500 airports network, the Internet. 

 Hub oriented strategy (): efficient for Euro-road 
network. 

 Strategy that increases the tolerance parameter: efficient 
for E-mail network. 

 Strategy of both hub avoidance () and increase of 
the tolerance parameter: efficient for US power grid 
network. 

 

Fig. 2. Network robustness of the scale-free, Euro-road, US power grid, E-

mail and Internet as the function of the tolerance parameter  in (2) and 

weight control parameter  in (4). In the figure, hot colors show the area of 

high robustness and cold colors correspond to the rest. In this scenario, we 

intentionally seek for an efficient design of routing strategy as a proactive 
defense strategy. 

VI. CONCLUSIONS 

In this paper, we proposed a routing strategy to mitigate the 
damage of cascading failures caused by overload. We assigned 
weighs to links in networks and control the weight by an 

adjustable parameter. Numerical results showed the 
effectiveness and the availability of our proactive method for 
critical infrastructure networks such as electrical power grid 
networks, the Internet, and so forth. Routing traffic in this 
manner can limit the damage of cascades by turning a 
heterogeneous load distribution into a more homogeneous one, 
reduces the need to shutdown nodes to stop a cascade, and 
simultaneously lowers the investment costs in network capacity 
layout. 

For simplicity, in this paper, we assigned a weight to a link 
connecting two nodes, a value that proportional to the 
connectedness of the two nodes. However, almost systems in 
reality have more complicated, even unpredictable links 
weights. In addition, there are several alternative possibilities 
to the node load for the case in which the physical quantity of 
interest (information, packets, electric power, etc) does not 
travel through shortest paths only. Therefore, our future work 
is to investigate the two questions: how to logically assign 
weights to links of a network; and how to determine general 
flow manner. Thereto, infrastructure systems are becoming 
more interdependent and failures within a given system are 
more likely to reduce the performance of other systems [25, 26, 
27, 28, 29]. Hence, how to mitigate cascading failures in such 
interdependent networks becomes an indispensable issue and 
will be also our future work. 
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