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Abstract—In this paper, the modification of conditional Fuzzy 

C-Means (CFCM) aimed at estimation of unknown desired 

channel states is accomplished for Bayesian blind channel 

equalizer under the presence of heavy additive Gaussian noise 

(AWGN). For the modification of CFCM to search the optimal 

channel states of a heavy noise-corrupted communication 

channel, a Gaussian weighted partition matrix, along with the 

Bayesian likelihood fitness function and the conditional 

constraint of ordinary CFCM, is developed and exploited. In the 

experiments, binary signals are generated at random and 

transmitted through both types of linear and nonlinear channels 

which are corrupted with various degrees of AWGN, and the 

modified CFCM estimates the channel states of those unknown 

channels. The simulation results, including the comparison with 

the previously developed algorithm exploiting the ordinary 

CFCM, demonstrate the effectiveness of proposed modification 

in terms of accuracy and speed, especially under the presence of 

heavy AWGN. Therefore, the proposed modification can possibly 

constitute a search algorithm of optimal channel states for 

Bayesian blind channel equalizer in severe noise-corrupted 

communication environments. 

Keywords—Gaussian Partition Matrix; Conditional Fuzzy C-

Means; Channel States; Bayesian Blind Equalizer 

I. INTRODUCTION 

Channel equalization is a major issue in digital 
communications, because a channel is easily affected by inter-
symbol-interference (ISI) with both linear and nonlinear 
distortions in the presence of AWGN. The task of channel 
equalization is to minimize those distortions to recover the 
transmitted sequence. In general, there exist two kinds of 
equalizers in digital communication systems: data aided 
(trained) equalizers and blind equalizers. For trained 
equalizers, a reference signal is required, increasing the 
bandwidth. However, in blind equalizations, the original 
transmitted message is recovered only from the received 
sequence that is corrupted by noise without any training 
sequence or a priori knowledge of the channel. As a result, the 
use of blind equalizers is preferred in high-speed 
communication systems to reduce ISI without increasing 
overhead costs [1][2]. Because of inherent simplicity, most 
available blind equalization algorithms focus on linear 
channels that are often inadequate for modeling channels 
which exhibit nontrivial nonlinearities [3]. In practical world, 
the equalization of nonlinear is often required such as in high 
power amplifiers as well as in high-density magnetic and 
optical storage channels. Therefore, the blind equalization 

method handled in this paper must be dealt with both linear 
and nonlinear channels, which is independent of the type of 
channel structure. 

Traditionally, channel equalization has been considered 
equivalent to inverse filtering. The optimal solution, based on 
maximum likelihood sequence estimation (MLSE) [4], has a 
complexity that grows exponentially with the dimension of the 
channel impulsive response (Viterbi algorithm). Alternatively, 
several nonlinear detection procedures have been proposed to 
address this problem with varying degrees of success, such as 
multi-layered perceptrons (MLPs) [5], radial basis function 
networks (RBFNs) [6], recurrent RBFNs [7], self-organizing 
feature maps (SOFMs) [8][9], wavelet neural networks [10], 
kernel Adeline (KA) [11], support vector machines (SVMs) 
[12] and Genetic Algorithms[13][14]. Such structures usually 
outperform linear equalizers, especially when non-minimum 
phase channels are encountered. They can also compensate for 
nonlinearities in the channel. However, they still suffer from 
the relatively high computational cost such as the iterative 
reweighted quadratic procedure of SV in [12]. The simplex 
Genetic Algorithm (GA) in [13] estimates the optimal channel 
output states instead of estimating the channel parameters in a 
direct manner. The desired channel states of an unknown 
channel were constructed from these estimated channel output 
states, and placed at the center of RBF equalizer. With this 
approach, the complex modeling of the nonlinear channel can 
be avoided and the method works well within a simple single 
input single output (SISO) communication environment. 
Additionally, this kind of approach can be applied to a linear 
channel as well, because it does not estimate the channel 
parameters but the channel output states directly, which is not 
dependent on the type of the channel structure. However, the 
GA based algorithms may visibly suffer from their poor 
convergence properties. Recently, to overcome this weakness, 
Fuzzy C-Means (FCM), one of the  representative clustering 
algorithms which exhibits shorter processing time than the 
GA-based methods, has been modified and applied, and the 
faster convergence speed along with the reliable estimation 
accuracy in search of the optimal channel output states has 
been achieved [15][16]. Especially, the algorithm based on 
CFCM clearly outperforms the GA and FCM approaches in 
terms of speed and accuracy [16]. The CFCM was first 
introduced in [17], and successfully applied to channel 
equalization problem [16][18]. The conditioning aspect of 
CFCM, which describes a level of involvement of incoming 
input pattern in the constructed clusters, influences the 
clustering mechanism and improves the estimation accuracy 
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of an unknown channel states for blind channel equalization. 
However, in the presence of heavy AWGN that often arises in 
a high speed communication channel, the estimation accuracy 
of CFCM presented in [16] needs the higher level of 
reliability, even though it is superior to other FCM or GA-
related algorithms. This leads to the consideration of the 
modification of CFCM clustering mechanism, which makes it 
more robust to the heavy noise. In this study, the modification 
is accomplished by using a Gaussian weighted partition matrix 
during the clustering procedure of CFCM. The use of 
Gaussian weights for a partition matrix instead of ordinary 
Euclidean distance measuring can help to search the correct 
channel states of an unknown channel, because the received 
sequence under the presence of AWGN is a scattered random 
process having conditional Gaussian density functions 
centered at each of the desired channel states. More details on 
this modification of CFCM are explained in Section 5. Before 
that, an optimal Bayesian equalizer for a linear/nonlinear 
channel is introduced in the next section and the 
reconfiguration procedure of desired channel states with 
channel output states is discussed in Section 3. In Section 4, 
the fitness function for the proposed CFCM is derived. This 
study is an extension of previous work [16] and thus the 
similarity of the structure of Section 2 and 3 can be found in 
[16]. Finally, the simulation results including some 
comparative studies with early work [16] and conclusions are 
provided in Section 6 and 7, respectively. 

II. OPTIMAL  BAYESIAN EQUALIZER FOR A 

LINEAR/NONLINEAR CHANNEL 

 

 
Fig. 1. Channel equalization with ISI 

A general channel equalization system with ISI is 
illustrated in Fig. 1. The digital information symbol s(k), 
which is assumed to be an equiprobable and independent 
binary sequence taking values from a two-valued set 1 , is 

transmitted through a nonlinear dispersive channel. Here the 
nonlinear channel is composed of a linear part with transfer 
function H(z), whose output )k(y  described by (1), and a 

nonlinear component N(z), whose output )k(ŷ  governed by 

(2). 





p
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2

21 )k(yD)k(yD)k(yD)k(yD)k(ŷ      (2) 

In (1) and (2), p is the channel order and Di stands for the 
coefficient of the i

th
 nonlinear term which is possibly caused 

by nonlinearities associated with nonlinear devices used in the 
transmitter and the receiver. For a linear channel model, the 
nonlinear terms are set to D1=1, D2=0, D3=0 and D4=0. The 

noise-free observation vector, )( kŷ  expressed by (3), is 

referred to as the desired channel states, and for a specific 
equalizer order denoted by q, there exist 1qp2M   different 
patterns. 

)k(ŷ =  )qk(ŷ,),1k(ŷ),k(ŷ              (3) 

These M desired channel states can be partitioned into two 

sets, 1

d,q
Y  and 1

d,q
Y , as shown in (4) and (5), depending on the 

value of s(k-d), where d is the required time delay. 

1

d,q
Y ={ )k(ŷ | 1)dk(s  }           (4) 

1

d,q
Y ={ )k(ŷ | 1)dk(s  }            (5) 

Finally, the desired channel states, )( kŷ , are corrupted by 

the AWGN, e(k), and thus the channel observation vector 
(input of equalizer) y(k) can be described as 

)()(ˆ)( kekyky             (6) 

The task of the equalizer is to produce the estimated 
sample )dk(ŝ   which has the same value as the transmitted 

symbol s(k-d), based on the noise-corrupted observation 
vector, y(k). Because of the AWGN, the observation vector, 
y(k), is a random process having conditional Gaussian density 
functions centered at each of the desired channel states, )(ˆ ky . 

The determination of the value of s(k-d) becomes a decision 
problem. The optimal symbol-by-symbol spaced equalizer 
decision function is provided by the maximum a-posteriori 
probability criteria and is called Bayesian equalizer. The 
decision function for Bayesian equalizer [19] can be 
represented as follows, 
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where 1

i
y  and 1

i
y  are the desired channel states belonging 

to sets 1

,



dq
Y  and 1

,



dq
Y , respectively, and their number of elements 

in these sets are denoted by 1

s
n  and 1

s
n . Furthermore 2

e
  is 

the noise variance. From (7) and (8), the evaluation of desired 
channel states is essential for the optimal Bayesian equalizer, 
and the performance of Bayesian blind equalizer highly 
depends on the correct estimation of the desired channel 
states, 1

i
y  and 1

i
y , only from the noise-corrupted observation 

vector, y(k). In this study, the modification of CFCM with 
Gaussian weighted partition matrix is presented to search the 
optimal states of an unknown channel under the presence of 
heavy AWGN. After the estimation of the desired channel 
states, the equalization for the reconstruction of the 
transmitted symbols is straightforward with (7) and (8). 

III. RECONFIGURATION OF DESIRED CHANNEL STATES 

WITH CHANNEL OUTPUT STATES 

The knowledge of the desired channel states, 1

i
y  and 1

i
y , 

is essential for the Bayesian equalizer. If the channel order is 
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taken as p=1 with transfer function 1z5.0)z(H  , the 

equalizer order q is equal to 1, the time delay d is also set to 1, 
and the nonlinear portion is described by 

0.0D,9.0D,0.0D,1D 4321   (see Fig. 1), then the eight 

different desired channel states ( 82 1qp  ) may be observed at 

the receiver in a noise-free case. The input sequences, the 
desired channel states and the output of the equalizer for this 
channel are shown in Table 1. From this table, it can be seen 
that the values of the desired channel states  )1(ˆ),(ˆ kyky  are 

composed of the elements of the scalar channel states called 
“channel output states” ,  4321 a,a,a,a , where for this 

particular channel they have 3875.0a ,5375.1a 21  , 

3875.0a3   and 5375.1a 4  . The only difference between the 

desired channel states and channel output states is that the first 
are vectors while the latter are scalars. The length of this 
scalar dataset, n~ , is determined by the channel order, p, such 

as 42 1p  , which is independent of the equalizer order. As 

shown in Table 1, the desired channel states for 1

1,1


Y (positive 

states) and 1

1,1


Y (negative states) are (a1,a1), (a1,a2), (a3,a1), 

(a3,a2) and (a2,a3), (a2,a4), (a4,a3), (a4,a4), respectively. A change 
in the decision delay only changes some of the positive states 
to negative and the equal number of the negative states to 
positive. Additionally, it can be applied for a linear model as 
well, where nonlinear terms of channel, D2, D3, and D4, are 
equal to zero. In case of the linear model, the elements of data 
set  4321 a,a,a,a  become 1.5, -0.5, 0.5 and -1.5, respectively, 

and are shown in Table 1 by parentheses. The desired channel 
states of these nonlinear and linear models are illustrated in 
Fig. 2. This relationship of desired channel states and channel 
output states is always valid for the channel that has a one-to-

one mapping between the channel inputs and outputs [13] and 
is successfully used in [14]-[16]. Additionally, it can be easily 
extended with a higher channel order such as p=2, which is 
evaluated in the experimental section. If the channel order p is 
2 with 21 z3482.0z8704.03482.0)z(H   , there exist the 

sixteen desired channel states ( 162 1qp  ) composed of the 

eight channel output states (
8321

1p a,,a,a,a  ,82n~   ). The 

desired channel states, (a1,a1), (a1,a2), (a2,a3), (a2,a4), (a5,a1), 
(a5,a2), (a6,a3), (a6,a4), belong to 1

1,1


Y , and (a3,a5), (a3,a6), (a4,a7), 

(a4,a8), (a7,a5), (a7,a6), (a8,a7), (a8,a8) belong to 1

1,1


Y , where 

8321
a,,a,a,a   are 2.0578, 1.0219, -0.1679, -0.7189, 1.0219, 

0.1801, -0.7189 and -1.0758, respectively. This channel can be 
found in [16] as well. As shown in Table 1, the desired 
channel states for both types of linear and nonlinear can be 
constructed with the channel output states if channel order, p, 
is assumed to be known, and thus the main problem of blind 
equalization moves its focus onto the determination of the 
optimal channel output states only from the received patterns. 

 

(a) for the nonlinear channel                  (b) for the linear channel 

Fig. 2. Desired channel states (noise-free) for the nonlinear and linear 

channels shown in Table 1 (positive(□) and negative(△) states).

 RECONFIGURATION OF DESIRED CHANNEL STATES BY CHANNEL OUTPUT STATES FOR NONLINEAR AND LINEAR MODELS TABLE I. 

Nonlinear channel with 1z0.15.0)z(H  , 0.0D,9.0D,0.0D,1D 4321  , and d=1 

Linear channel with 1z0.15.0)z(H  , 0D,0D,0D,1D 4321  , and d=1 

Input sequences Desired channel states Output of equalizer 

)2k(s)1k(s)k(s   )1k(ŷ           )k(ŷ   

( ) used for the lineal model 

By channel output 

states,  4321 a,a,a,a  )1k(ŝ   

1          1          1   (1.5) 5375.1  (1.5) 5375.1  )a,a( 11  
Positive 
channel 

states, 
1

1,1


Y  

 1  

1       1          1    (1.5) 5375.1  (-0.5) 3875.0  )a,a( 21   1  

1          1          1  )5.0(3875.0  (1.5) 5375.1  )a,a( 13   1  

1        1          1   )5.0(3875.0  (-0.5) 3875.0  )a,a( 23   1  

1          1       1     (-0.5) 3875.0   )5.0(3875.0  )a,a( 32  
Negative 

channel 

states, 
1

1,1


Y  

1  

1       1       1     (-0.5) 3875.0   (-1.5) 5375.1  )a,a( 42  1  

1          1       1   (-1.5) 5375.1   )5.0(3875.0  )a,a( 34  1  

1        1       1   (-1.5) 5375.1   (-1.5) 5375.1  )a,a( 44  1  

IV. FITNESS FUNCTION FOR OPTIMAL CHANNEL STATES 

In order to find the optimal channel states, the use of the 
Bayesian likelihood (BL) [20] is considered. Since the 
Bayesian decision variable is a probability density function 
(pdf) variable, similar to the conventional likelihood, the BL 
can be defined by (9). 



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
1

0

11 ))(),(max(
L

k

BB kfkfBL           (9) 

where )k(f 1

B

 =



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sn

i

(
2

1 iyky )( / 22 e ), )k(f 1

B

 =




1

1

exp
sn

i

(
2

1 iyky )( / 22 e ) and L is the length of the received 

sequences. By evaluating the Bayesian likelihood, the optimal 
dataset of desired channel states which always corresponds to 
the maximum Bayesian likelihood would be found [13]. For 
this reason, the BL has been widely used as a fitness function 
(FF) in the previously developed search algorithms based on 
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GA or Fuzzy Clustering [13]-[16], and it is utilized as a fitness 
function for our modification of CFCM as well. Being more 
specific, the fitness function is taken as the logarithm of the 
BL, that is 







1

0

11 )))(),(log(max(
L

k

BB kfkfFF            (10) 

Because of the characteristics of FF illustrated in [13] and 
[16], it cannot be easily solved by conventional gradient-based 
methods. On the other hand, the mathematical relation 
between FF and channel states cannot be formulated without 
the knowledge of channel structure [13]. Furthermore, it is too 
complex to be formulated even if the channel structure is 
known. Therefore in this paper, to search the optimal channel 
states which produce the maximum FF, under the presence of 
heavy AWGN, a modification of CFCM with Gaussian 
weighted partition matrix is developed. 

V. MODIFICATION OF CFCM WITH GAUSSIAN WEIGHT 

The conditional fuzzy clustering method was reported by 
W. Pedrycz in [17] and successfully applied to channel 
equalization problem [16][18]. In [17], the conditioning aspect 
of the clustering mechanism is introduced by taking into 
consideration the conditioning variable assuming values,

k21 f,,f,f  , on the corresponding patterns.  This 

conditioning aspect, which describes a level of involvement of 
incoming input pattern in the constructed clusters, influences 
the clustering mechanism and improves the estimation 
accuracy of an unknown channel states for blind channel 
equalization [16]. Using the conditioning variables,

k21 f,,f,f  , makes it possible to apply the different weights 

to each of received patterns, which depend on their distances 
to the constructed clusters. To be more specific, the closer the 
received pattern to the clusters, the higher weight is attached 
and consequently more influential it becomes in the clustering 

process. For example, if 0fi  , the i
th

 received pattern is 

regarded as meaningless in the clustering procedure and the 
calculations of the resulting prototypes are not affected by this 
element. Subsequently, the calculations of the partition matrix 
U in fuzzy clustering procedure do not take this into 

consideration. On the other hand, the pattern for which 1fi   

contributes to the clustering process to the highest extent. This 
can be accomplished by the partition matrix U in CFCM 
derived as follows 
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where )1( m

iy  is the i
th

 estimated center set at the (m+1)
th

 

iteration and i=1,2,3,…,8 for the channels in Table 1 because 
of ns=8 (total number of desired channel states). By the same 

way, the range of i for the channel in Table 2 is 1 to 16. Here 

in (11), the conditional constraint kf  should contain the 

distance information of each of received patterns, and it has a 
high value if the corresponding pattern is closely located at the 
estimated center. The CFCM in [16] utilizes each component 
of BL for the received patterns shown in (9) as the conditional 

constraint kf  after normalization, because it contains the 

distance information for each of received patterns. For an 
example, if a received pattern is located near the optimal 
desired channel states, 1

iy  or 1

iy , this pattern produces a 

higher value of )k(f 1

B

  or )k(f 1

B

  in (9) and consequently it 

becomes more influential in the clustering process by (11). In 
other words, the closer the received pattern to the optimal 
channel states, the higher conditional constraint is applied. 
Because of the use of these conditioning variables, the 
performance of CFCM is relatively superior to those of the 
existing GA and FCM based approaches in terms of speed and 
accuracy. More details of the CFCM clustering algorithm for 
blind channel equalizations are described in [16]. The 

conditional constraint kf  of the CFCM represents the 

Gaussian probability value of each of received patterns 
because it depends on the BL in (9). However, the partition 
matrix U in (11) is still updated based on Euclidean distance 
measure. Because of AWGN, the received vector, y(k), is 
scattered with a conditional Gaussian probability density 
centered at each of the desired channel states. Therefore, for 
the calculation of partition matrix U during the clustering 
procedure, the Gaussian probability of each of received 
patterns should be involved instead of the Euclidean distance 
measuring. The Gaussian weighted partition matrix UG, where 
Euclidean distance is replaced with Gaussian probability, is 
described by (13) and a new center set 

iy  is sequentially 

derived by (14). 
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The effectiveness of the proposed Gaussian weighted 
partition matrix UG under a heavy noise environment is 
demonstrated in Fig. 3. It shows the values of the conditional 
constraint kf  after 10 epochs of clustering procedure with the 

partition matrix U in (11) and UG in (13) for the nonlinear 
channel in Table 1. The optimal centers of this channel are 
illustrated in Fig. 2(a). The received patterns under 0dB SNR 
are shown in Fig. 3(a), and the value of conditional constraint 
for each of those patterns is displayed by gray-colors (from 
0(white) to 1(black)) in Fig. 3(b). For both cases, the noise-
corrupted patterns, which are scattered and located far away 
from the optimal centers, have relatively very low constraint 
values (close to “0” indicated by bright color in Fig. 3(b)). On 
the other hand, the received patterns located near the optimal 
channel states are more weighted by the conditional constraint 

kf  (close to “1”, black color in Fig. 3(b)) and generate higher 

contributions to the clustering procedure. However, the 
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received patterns with the high values of kf  in Fig. 3(c)-

(e)_left are more widely spread than the patterns in Fig. 3(c)-
(e)_right. In other words, it is observed that, in Fig. 3(c)-
(e)_right, the high constraint values are assigned only for the 
received patterns which are more densely located near the 
optimal centers. It means that, by the clustering procedure 
with the partition matrix UG, the closer located patterns near 

the optimal states have the relatively higher values of kf  than 

the values of kf  by clustering with U.  

Therefore, in the proposed algorithm, the Gaussian 
weighted partition matrix UG along with the conditional 

constraint kf , shown in (13), is exploited instead of (11) and a 

new center set 
iy  is derived by (14). The resulting estimation 

accuracy is increased even with low SNRs and it is 
demonstrated in the next section. 

 

(a) received patterns under 0 dB SNR for the nonlinear channel in Table 1 

 

(b) received patterns displayed by kf : 1(black)  0(white) (left: with U, 

right: with UG) 

 

(c) received patterns only for kf > 0.7 (left: with U, right: with UG) 

 

(d) received patterns only for kf > 0.5 (left: with U, right: with UG) 

 

(e) received patterns only for kf > 0.3 (left: with U, right: with UG) 

Fig. 3. Received patterns under 0 dB SNR for the nonlinear channel in Table 

1 and patterns displayed by their conditional constraint kf (left: clustering 

with U, right: with UG).  

VI. SIMULATION RESULTS AND COMPARISONS 

In order to demonstrate the performance of the proposed 
CFCM with UG in search of the optimal channel states for 
blind channel equalization, the following simulations are 
carried out and compared. As mentioned in the introduction 
section, the performance of CFCM in [16] was superior to the 
previously developed GA based [13][14] and conventional 
FCM based [15] approaches in terms of speed and accuracy. 
Those algorithms also estimate the optimal channel states of 
an unknown channel to solve the blind equalization problem. 
Therefore the comparison for the effectiveness of the proposed 
method focuses on the CFCM in [16]. In the experiments, 
three channels including a linear model are evaluated. Channel 
1 and 2 shown in Table 1 stand for each of nonlinear and 
linear models respectively, with the channel order p=1, and 
Channel 3 discussed in Section 3 concerns a nonlinear model 
with the channel order p=2 as presented in [16] and [21]. The 
first two channels were also often discussed in [13]-[16]. The 
detailed description of the channels is presented below. 

Channel 1 (nonlinear): 1z0.15.0)z(H  , 

0D,9.0D,0D,1D
4321
 , and d=1 

Channel 2 (linear): 1z0.15.0)z(H  , 

0D,0D,0D,1D 4321  , and d=1 

Channel 3 (nonlinear): 21 z3482.0z8704.03482.0)z(H    

0D,0D,2.0D,1D
4321
 , and d=1 
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In the experiments, 10 independent simulations for each of 
three channels with five different noise levels (SNR=0, 2.5, 5, 
7.5, and 10dB) were performed with 1,000 randomly 
generated transmitted symbols (L=1000). Afterwards, the 
obtained results were averaged. The proposed CFCM with UG 
and the ordinary CFCM with U have been implemented in a 
batch mode to facilitate a comparative analysis. In addition, 
both algorithms are evaluated with the use of the same 
parameters shown in Table 2, and these are fixed for all 
experiments.  

The choice of the specific parameter values is not critical 
to the performance of both algorithms. For the evaluation 
purpose, the normalized root mean squared errors (NRMSE) is 
determined in the form 

NRMSE= 



N

ˆ
N 1

211

i

iaa
a

            (15) 

where a is the data set of optimal channel output states, 
iâ  

is the data set of estimated channel output states in the i
th

 
simulation, and N is the total number of independent 
simulations (N=10). 

 PARAMETERS USED IN SIMULATIONS TABLE II. 

 CFCM 

with U 

Proposed CFCM 

with UG 

Maximum number of iteration  100 100 

Threshold for FF variation  10-3 10-3 

Exponent for partition matrix U  2 1 

Random initial channel states  [-0.5 0.5] [-0.5 0.5] 

The values of NRMSEs after 10 independent simulations 
for each of three channels are averaged and illustrated in Fig. 
4. The proposed CFCM with UG comes with lower NRMSE 
for all three channels, and the performance differences are 
more severe in higher noise levels. As mentioned in the last 
part of Section 5 with Fig. 3, the clustering procedure with the 
Gaussian weighted partition matrix UG in the proposed 
modification makes it possible that, the closer located patterns 

near the optimal states have relatively higher values of kf  

than by clustering with U in the ordinary CFCM. 

Consequently, those patterns with higher kf  are more 

influential in the clustering process.  

This effectiveness of Gaussian weighted partition matrix 
UG is more critical in case of lower SNR because the type of 
corrupted noise in the channel is AWGN. Therefore the 
proposed CFCM with UG is highly effective to find the 
optimal channel states when the received patterns are heavily 
corrupted by AWGN.  

A sample of 1,000 received symbols under 0dB SNR for 
Channel 3 and its desired channel states constructed from the 
estimated channel output states by the proposed and the 
ordinary CFCM are illustrated in Fig. 5. 

 

(a ) for channel 1 

 

 (b) for channel 2 

 

(c) for channel 3 

Fig. 4. NRMSEs by the proposed CFCM with UG and by the ordinary 

CFCM with U. 

 

(a) optimal channel states for channel 3    (b) received patterns under 0 dB SNR 
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(c) estimated states by CFCM with U      (d) estimated states by CFCM with UG 

 

(e) fitness variations by CFCM with U  (f) fitness variations by CFCM with UG 

Fig. 5. A sample of received symbols under 0dB SNR for Channel 3 and its 
sixteen desired channel states estimated by the proposed CFCM with UG and 

the ordinary CFCM with U. 

Because of the use of UG, the proposed CFCM produces 
more accurate channel states from the noise-corrupted 
received patterns as shown in Fig. 5(d), and its fitness value 
by (10) during the clustering procedure approaches the 
optimal fitness value more closely as in Fig. 5(f). In addition, 
the relative search time (RST) of the proposed CFCM with UG 
is evaluated. It is calculated by (16) and included in Table 4. 

U   withCFCM of  time  search

U   withCFCM of  time  search U   withCFCM of  time  search
STR G   (16) 

As shown in Table 3, the values of RST for all three 
channels with different noise levels are almost zero, which 
means the search time difference between two algorithms is 
not significant where the proposed CFCM provides much 
better performance in terms of NRMSE. Additionally, some of 
RST for Channel 3, especially with low SNRs, are negative 
(faster search time for the proposed CFCM). It is caused by 
using the UG in the clustering procedure, which reduces the 
number of convergence epochs in heavy noise circumstances. 

 RELATIVE SEARCH TIME (RST) FOR ALL THREE CHANNELS TABLE III. 
WITH DIFFERENT NOISE LEVELS 

Channel SNR RST 

Channel 1 0.0 dB 0.5588 

2.5 dB 0 

5.0 dB 0.0690 

7.5 dB -0.1429 

10 dB -0.1923 

Channel 2 0.0 dB 0.4653 

2.5 dB 0.2 

5.0 dB 0 

7.5 dB -0.1724 

10 dB -0.1154 

Channel 3 

 

0.0 dB 0.2700 

2.5 dB -0.4061 

5.0 dB -0.2829 

7.5 dB -0.4291 

10 dB -0.2098 

Finally, the bit error rates (BER) with the optimal and the 
estimated channel states are evaluated by using the Bayesian 
equalizer and they are summarized in Table 4. Even though 
the BER with the estimated channel states realized by the 
proposed CFCM with UG is close enough to the one with the 
optimal channel states for all three channels, its performance 
does not dominate in terms of BER as much as it does in terms 
of NRMSE. Furthermore, especially for low SNRs, the BERs 
even with the optimal states are also relatively high. It is 
caused by the fact that the decision function of Bayesian 
equalizer shown in (7) is easily affected by heavy noise (high 

noise variance 2

e ) even though the desired channel states can 

be estimated with high accuracy by using the proposed 
algorithm. For this reason, several nonlinear equalization 
techniques such as fuzzy or neural network implementations 
of Bayesian equalizer should be considered to improve the 
BER in next study. 

 AVERAGED BER(%) (NO. OF ERRORS/NO. OF TRANSMITTED TABLE IV. 
SYMBOLS). 

Channel SNR 
with optimal 

states 

Ordinary 

CFCM 

with U 

Proposed 

CFCM 

with UG 

Channel 1 0.0 dB 19.8 21.6 20.1 

2.5 dB 15.3 15.4 15.4 

5.0 dB 10.7 10.6 10.6 

7.5 dB 6.69 6.81 6.80 

10 dB 2.77 2.79 2.75 

Channel 2 0.0 dB 19.3 21.6 19.2 

2.5 dB 13.6 13.7 13.7 

5.0 dB 8.95 9.17 9.08 

7.5 dB 4.52 4.57 4.57 

10 dB 1.79 1.76 1.76 

Channel 3 0.0 dB 22.1 23.0 22.5 

2.5 dB 16.1 16.9 16.5 

5.0 dB 11.7 12.6 11.8 

7.5 dB 7.94 8.22 7.88 

10 dB 4.89 5.28 4.97 

VII. CONCLUSIONS 

The determination of an unknown channel states only from 
received patterns is critical in blind linear/nonlinear channel 
equalization problems. In this paper, for the estimation of 
desired channel states of an unknown digital channel under 
severe noise-corrupted communication environments, a 
modification of CFCM with Gaussian weighted partition 
matrix is presented and successfully evaluated with both of 
linear and nonlinear channels. Especially even when the 
received symbols are significantly corrupted by a heavy 
AWGN, it can estimate the channel output states with 
relatively high accuracy and substantial speed. Therefore, in 
the presence of heavy AWGN, the Bayesian equalizer with the 
proposed CFCM can be a possible solution for blind channel 
equalization. In future works, the evaluation of this method 
with higher order channels is included. In addition, as 
mentioned at the end of the last section, a further study on the 
implementation methods of Bayesian equalizer should be 
included to improve the BER under the presence of severe 
noise.  

REFERENCES 

[1] J. G. Proakis, Digital Communications, Fourth edition, McGraw-Hill, 
New York, 2001. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 7, 2014 

58 | P a g e  

www.ijacsa.thesai.org 

[2] H. Gazzah and K. A. Meraim, “Blind ZF equalization with controlled 
delay robust to order over estimation”, Signal Processing, vol.83, 
pp.1505-1518, 2003. 

[3] Yun Ye and Saman S. Abeysekera, “Efficient blind estimation and 
equalization of non-minimum phase communication channels via the use 
of a zero forcing equalizer”, Signal Processing, vol. 86, pp.1019-1034, 
2006. 

[4] J.R. Barry, E. A. Lee and D. G. Messerschmitt, Digital Communication,  
3rd ed. Norwell, MA: Kluwer, 2004. 

[5] D. Erdogmus, D. Rende, J.C. Principe and T.F. Wong, “Nonlinear 
channel equalization using multilayer perceptrons with information 
theoretic criterion”, Proc. of IEEE workshop Neural Networks and 
Signal Processing, pp. 443-451, MA, U.S.A., 2001. 

[6] N. Xie and H. Leung, “Blind equalization using a predictive radial basis 
function neural network,” IEEE Transactions on Neural Networks, vol. 
16, no. 3, pp. 709-720, 2005. 

[7] M. Mimura and T. Furukawa, “ A recurrent RBF network for non-linear 
channel,”  Proc. of 2001 IEEE ICASSP, vol. 2, pp.1297-1300, UT., 
U.S.A., 2001.. 

[8] G. A. Barreto and L. G. M. Souza, “Adaptive filtering with the self-
organizing map: A performance comparison,” Neural Networks, vol. 19, 
no.  6, pp. 785–798, 2006. 

[9] S. Han, “Blind Equalization of Linear/Nonlinear Channels by SOM”, 
International Journal of Informaation Technology and Network 
Application, vol. 2, no. 3, pp. 19-27, 2012. 

[10] A.K. Pradhan, S.K. Meher and A. Routray, “Communication channel 
equalization using wavelet network,” Digital Signal Processing, vol. 16, 
no. 4, pp. 445-452, July, 2006. 

[11] B. Mitchinson and R. F. Harrison, “Digital communications channel 
equalization using the kernel adaline,” IEEE Transactions on 
Communications, vol. 50, no. 4, pp. 571–576, 2002. 

[12] I. Santamaria, C. Pantaleon, L. Vielva and J. Ibanez, “Blind Equalization 
of Constant Modulus Signals Using Support Vector Machines”, IEEE 
Trans. Signal Processing, vol. 52, pp.1773-1782, 2004. 

[13] H. Lin and K. Yamashita, “Hybrid simplex genetic algorithm for blind 
equalization using RBF networks”, Mathematics and Computers in 
Simulation, vol. 59, pp.293-304, 2002. 

[14] S. Han, W. Pedrycz and C. Han, “Nonlinear Channel Blind Equalization 
Using Hybrid Genetic Algorithm with Simulated Annealing”, 
Mathematical and Computer Modeling, vol. 41, pp.697-709, 2005. 

[15] S. Han, I. Lee and W. Pedrycz, “Modified fuzzy c-means and Bayesian 
equalizer for nonlinear blind channel”, Applied Soft Computing, vol. 9, 
pp.1090-1096, 2009. 

[16] S. Han, S. Park and W. Pedrycz “Conditional fuzzy clustering for blind 
channel equalization”, Applied Soft Computing, vol. 11, pp.2777-2786, 
2011. 

[17] W. Pedrycz, “Conditional Fuzzy Clustering in the Design of Radial 
Basis Function Neural Networks”, IEEE Trans. Neural Networks, vol. 9, 
pp.601-612, 1998. 

[18] K. Yoon, K. Kwak and S. Kim, “Nonlinear channel equalization using 
fuzzy clustering adaptive neuro-fuzzy filter”, Journal of Korea 
Electronics Engineers Society, vol. 38, pp.35-41, 2001. 

[19] S. Chen, B. Mulgrew and S. McLaughlin, “Adaptive Bayesian equalizer 
with decision feedback”, IEEE Trans. Signal Processing, vol. 41, 
pp.2918-2927, 1993. 

[20] H. Lin and K. Yamashita, “Blind equalization using parallel Bayesian 
decision feedback equalizer”, Mathematics and Computers in 
Simulation, vol. 56, pp.247-257, 2001. 

[21] S.K. Patra and B. Mulgrew, “Fuzzy techniques for adaptive nonlinear 
equalization”, Signal Processing, vol. 80, pp.985-1000, 2000.

 


