
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

59 | P a g e

www.ijacsa.thesai.org

An Object-Oriented Smartphone Application for

Structural Finite Element Analysis

B.J. Mac Donald

Faculty of Engineering and Computing

Dublin City University, Dublin 9, Ireland

Abstract—Smartphones are becoming increasingly ubiquitous

both in general society and the workplace. Recent increases in

mobile processing power have shown the current generation of

smartphones has equivalent processing power to a

supercomputer from the early 1990s. Many industries have

abandoned desktop computing and are now entirely reliant on

mobile devices. Given these facts it is logical that smartphones

are considered as the next platform for finite element analysis

(FEA). This paper presents an architecture for a smartphone

FEA application using object-oriented programming. A MVC

design pattern is adopted and a demonstration FEA application

for the Android smartphone platform is presented.

Keywords—Objected-oriented programming; Finite Element

Method; Java; Android

I. INTRODUCTION

Since the introduction of smartphones in 2007 they have
had a profound effect on lifestyles by significantly changing
the way that people live, work and learn. Smartphones have
become the dominant mobile device for communication
information and entertainment. In many cases smartphones
(and associated tablets) have become the dominant computing
platform in many industries. Smith [1] demonstrates that in
excess of 46% of American adults own a smartphone and the
rate of ownership rises to in excess of 60% when college
graduates and high income households (in excess of $75,000)
are considered. When considering these statistics, it is
reasonable to assume that the majority of engineers, scientists
and analysts will own, or have access to, a smartphone (or
related tablet).

Many smartphone users are unaware of the computing
power available in their devices and/or the potential of the
smartphone as a platform for finite element analysis. Fig. 1
shows a comparison of computing power (in mega-flops) for
different processors. The leftmost line (a) links the processing
power of three supercomputers (Cray C1, Cray C90 and Cray
Jaguar). The centre line (b) shows the processing power of
desktop PC processors over time (Intel 386, Intel Pentium and
Intel Core i7). The final line (c) illustrates the increase in
computing power of mobile processors commonly used in
Android smartphones and tablets. It is clear from fig. 1 that
comparing a current high end mobile processor (e.g. Nvidia
Tegra 4 which is built on ARM technology) with desktop and
supercomputer processors, shows that current mobile processor
capability is on par with desktop processors from circa 2008
and supercomputer processors from the early 1990’s. Rajovic
et al [2] discusses the development of mobile processor power

in comparison to supercomputers and suggests that multicore
clusters of mobile processors may actually represent the future
of high powered computing.

Given that fig. 1 shows that a current mobile device is
approximately equivalent in computing power to an early
1990’s supercomputer or a late 2000’s desktop and,
considering the pioneering finite element analyses work done
on these machines at the time, it is reasonable to consider
current smartphones as capable of performing useful finite
element analyses.

Fig. 1. Development in Computing Power (Mflops) since 1970. Trend lines
show (a) supercomputers, (b) desktop PC’s and (c) mobile processors.

There are currently two major operating systems available
for smartphones: iOS (Apple Inc.) and Android (Google Inc.).
Both of these platforms are based on objected-oriented
programming languages: objective-C in the case of iOS and
Java in the case of Android. Hence, any finite element code
written for smartphones must be object-oriented.

Zimmermann et al. [3] described the governing principles
for object-oriented finite element programming, before
describing an implementation using SmallTalk [4] and C++
[5]. A number of authors [6-9] have described object-oriented
implementations of the finite element method using C++.

Following the popularisation of Java in the late 1990’s a
number of researchers began to explore the possibilities of
writing FEA codes using Java. Many researchers, however,
were reluctant to engage with Java as it had a reputation for
slow performance in comparison to more established non-
object-oriented languages. In order to investigate this
Nikishkov [10] compared the performance of a Java FEA code

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

60 | P a g e

www.ijacsa.thesai.org

with a similar code written in C. It was found that with the use
of proper coding and tuning it is possible to obtain similar
performance from the Java and C finite element codes. In a
subsequent presentation, Nikishkov [11] described the design
of an object-oriented Java finite element code for the 2D and
3D analysis of elastic and elasto-plastic structural solids. The
code was developed using Java 1.5 and utilised the Java3D API
to allow for visualisation of the results. A user interface was
not developed and model specification was handled via an
input text file which was read using a scanner.

This paper describes an object-oriented smartphone
application written in Android, which is effectively a subset of
Java. Android was chosen as it is an open source platform
which runs on many devices including smartphones, tablets,
netbooks and smart televisions. Graphical user interface (GUI)
design on Android is relatively straightforward as the Android
API contains a multitude of classes that can easily be sub-
classed to allow for complex displays and user inputs.

II. DESIGN OF THE FE APPLICATION

In order to simplify the discussion that follows we will
initially consider a very simple finite element application that
only solves 2D truss problems. The code outlined here may
easily have additional classes defined which will allow the
analysis of different structural problems using different types
of finite element. The requirements for the application are
shown in table I.

 REQUIREMENTS FOR A SIMPLE SMARTPHONE FE APPLICATION TABLE I.

No Description

1 Function without error on the majority of Android devices

2 Use the device touchscreen to allow user input

3 Allow for FEA of 2D Truss problems

4 Allow the user to define nodes by their coordinates

5 Allow the user to define linear trusses by linking two nodes

6 Allow the user to define individual element properties

7 Allow the user to place a constraint on any node in either the x or
y direction

8 Allow the user to place a force on any node in either the x or y
direction

9 Allow the user to easily edit the model definition by changing

properties

10 Easily and efficiently solve the finite element problem and

present the results

11 Allow for sharing of the results via email, social media, etc.

A Model-View-Controller (MVC) software architecture
pattern was used to design the application. Fig. 2 shows an
overview of the MVC pattern where we attempt to separate the
representation of information from the interaction that the user
has with this information. The model part of the pattern
typically consists of data, logic and functions and, in this case,
we can readily identify that our finite element classes belong
here. We will designate a model package to contain the classes
which describe the finite element model. The view part of the
MVC pattern is used to output some representation of data to
the user such as an image on a screen or a text listing etc. The
controller part of the pattern takes input from the user and uses
this input to send messages to the model or view. It is clear
from fig. 2 that the user effectively interacts with the view part
of the MVC pattern.

The view is also responsible for receiving user input and
passing it to the controller. On a smartphone this is quite easy
to grasp as the touchscreen on an Android device is used to
both display the app and receive touch gestures. The controller
receives user input from the view and acts accordingly. In most
cases the controller will update the model state however it is
also possible that the controller will just change the view
without changing the model, for example, if a cosmetic change
to the interface was requested by the user. The model stores
data in its properties, implements application methods and
implements the application logic. The model changes its state
based on instructions from the controller. When the model
changes its state it informs the view which updates
accordingly.

Fig. 2. Overview of the MVC Pattern

All Android applications must have a class designated as a
“Main Activity” which is the entry point into the application –
much in the same way as a class with a main() method is for a
standard Java application. In this case we have named this class
TrussActivity and this class must extend (i.e. be a subclass
of) the android.app.Activity class. An Activity is an
application component that provides a screen with which users

can interact. By sub classing android.app.Activity our
TrussActivity class will gain access to all the features of
the Android API and be capable of displaying information on
the device screen and receiving user input via touch gestures
etc.

Android and Java classes are typically organised into
Packages which contain classes that have a similar function or
theme as discussed above. For illustration purposes we assume

the package name: com.example.simpletruss. The
TrussActivity class will be placed in this package making
its full name: com.example.simpletruss.Truss
Activity. Another package is used to hold the classes that

may be used to define a finite element model. These classes are
Java classes and are not specific to Android and hence may be
reused for any Java application. In this case, a package named
“model”: com.example.simpletruss.model is used to
hold the finite element classes. Fig. 3 shows a basic schematic
of the structure of the Android FEA app: illustrating the
packages used and the classes which these packages contain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

61 | P a g e

www.ijacsa.thesai.org

The TrussActivity class will take user input and create
objects from the classes contained in the com.example.
simpletruss.model package and will call methods from
these classes in order to build and solve the finite element
model.

The classes within the com.example.simpletruss.
model package are largely self-explanatory. The Node class is
used to create Node objects and contains helper methods
associated with the manipulation of Node objects. The
Truss2D class is a subclass of the LineElement class which
in turn is a subclass of the Element class. These classes are
used to create Element objects. The Assembly class is used to
create an assembly of finite elements and contains methods to
create a global stiffness matrix, global force vector and a global
nodal displacement vector. The TrussSolver class contains
methods that can take these assembled global matrices and use
them to obtain a solution to a finite element problem. The
TrussPost class contains methods that can further process the
obtained solution to obtain derived results such as element
stress and strain. The FeConstants class contains a list of
symbolic constants that may be used by all other classes within
the package.

Fig. 3. Schematic of the Packages and Classes in the Android Application

By resolving the MVC pattern shown in fig. 1 with the
schematic shown in fig. 2 it is clear that the
com.example.simpletruss.model package will function exactly
as the model is described in the MVC pattern. The
TrussActivity class provides a method of linking into the
Android API by sub classing android.app.Activity. Each
Activity must implement the onCreate() method inherited from
the superclass. In its simplest form the onCreate() method will
be:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_layout);
}

The final line in the above code snippet calls the superclass
method setContentView() to set the View that will be
shown to the user when the application is started. This layout is
usually specified in an XML layout file named
main_layout.XML. This XML layout file may be edited to
display the buttons, text fields, checkboxes, images, etc. that
make up the applications GUI.

Effectively, the onCreate() method links us into the
Android API via android.app.Activity and provides us with a
View using setContentView() via android.view.View.

The controller part of the MVC pattern will consist of the
other methods contained in TrussActivity which are not
inherited from the superclass. These are methods which are
custom written for the FE application. These methods are
summarised in table II.

 CONTROLLER METHODS IN TRUSSACTIVITY TABLE II.

Method Description

addNode() Creates a Node object using user input from

a dialog box

deleteNode() Deletes a Node object from the database

using a dialog box

addElement() Creates an Element object using a dialog

box

deleteElement() Deletes an Element object from the database

addConstraint() Sets a constraint on a Node object using a

dialog box

deleteConstraint() Modifies a constraint on a Node object

addForce() Sets a force on a Node object using a dialog

box for user input

deleteForce() Modifies a force on a Node object

calculate() Uses the database of Node and Element

objects to create an assembly of finite

elements, solves the global problem and then

creates a new View to display the results,

simultaneously saves the results to a text file

for sharing

Each of the methods described in Table II performs two
basic functions: instructing the view what view to provide (add
a node dialog, delete a force dialog, results screen etc.) and
processing user input from this view and using it to change the
state of the model (add a new node object, change the force on
a node object, etc.).

So, in summary, the com.example.simpletruss.model
package contains the Model, the onCreate() method in
TrussActivity class and its associated XML files contain the
View and the other methods in TrussActivity class define the
controller. This is illustrated in fig. 4

Fig. 4. A MVC Implementation for the FE Smartphone Application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

62 | P a g e

www.ijacsa.thesai.org

III. MODEL

The subsections below describe the classes in the model
package which is responsible for building the finite element
model and solving the global problem.

A. Node

The Node class is common to all finite element types and
will be unchanged regardless of the element type used. A
description of the Node class is shown in table III.

 DESCRIPTION OF THE NODE CLASS TABLE III.

Each node object has an id, array of global coordinates,
array of applied forces and an array of boundary conditions.
Each of these arrays has three members of double precision
numbers: for the x, y and z directions.

The Node constructor creates a node object using its id and
its x, y and z coordinates. Nodes may be defined in 2D space
by setting z equal to zero. Public getter and setter methods are
provided in order to allow for reporting and modification of a
nodes properties. A number of helper methods are provided to
quickly determine if a node has an applied load or boundary
condition. These methods return a Boolean value and are
generally used to aid in the graphical display of loads and
boundary conditions. Finally, helper methods are provided
which allow for display of the node and its associated applied
forces and boundary conditions in the applications GUI.

B. Element Classes

The Element class is an abstract class for all finite element
types. A description of the Element class is shown in table IV.
Each element object must have an id, a list of nodes that define
the element and an elastic modulus. Several abstract methods
(shown in italics) are provided which must be implemented by
any subclasses: these methods provide for reporting of element
properties and assembly of the elements stiffness matrix and
strain displacement matrix.

 DESCRIPTION OF THE ELEMENT ABSTRACT CLASS TABLE IV.

The LineElement class is a subclass of the Element class
and, as such must implement its abstract methods. Table V
shows a description of the LineElement class.

 DESCRIPTION OF THE LINEELEMENT CLASS TABLE V.

Each LineElement object is defined by two Node objects
and its cross sectional area. The constructor creates
LineElement objects using this data. Several getter and setter
methods are provided to allow for reporting and modification
of element properties. Finally, three helper methods are
provided which calculate the element length and its direction
cosines, l and m.

The Truss2D class is a subclass of both LineElement and
Element (via the class hierarchy). A 2D truss is obviously a
line element and so inherits all the properties and methods of
its superclass. The Truss2D class is primarily concerned with
implementing methods specific to 2D truss finite elements.
Table V shows a description of the Truss2D class. Since most
of the methods required for a 2D truss have already been
implemented in the superclass’s, the Truss2D class is relatively
short. It essentially consists of a constructor which simply calls
the constructor of the superclass and two methods which
calculate the element stiffness matrix and strain displacement
matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

63 | P a g e

www.ijacsa.thesai.org

 DESCRIPTION OF THE TRUSS2D CLASS TABLE VI.

C. Assembly Class

The Assembly class essentially consists of five methods
which assemble the global problem equations. The global
stiffness matrix is assembled from the individual element
stiffness matrices and placed into a 2D array of double
precision numbers. Similarly the global force vector and global
displacement vector are assembled by interrogating each
element to find its constituent Node objects and their relevant
force and boundary condition data. Two further methods are
used to assemble global data which will be useful during post-
processing of results. An ArrayList of element strain-
displacement matrices and an ArrayList of element elastic-
modulii are produced by calling these methods. The Assembly
class is written in a non-element specific manner so that it may
be used with any element type, not just the truss elements
being considered here.

D. TrussSolverClass

The TrussSolver class contains one method named
calculateDisplacements() which returns the solved nodal
displacement vector to the calling method or class. A direct
equation solver performs solution of the system equation using
symmetric LDU decomposition of the matrix.

E. TrussPost Class

The TrussPost class contains a number of methods for post-
processing the results from a truss analysis. The strains()
method is used to return an array of doubles which effectively
gives the strain in each element in the finite element model.
Similarly, method stress() provides an array listing the axial
stress in each element in the finite element model. Finally,
method reactionForces() is used to return an array listing the
reaction forces at each node in the finite element model.

F. A Note on the Model Classes

Clearly, there are several possibilities available for class
construction and interaction when using an objected-oriented
approach. The above description attempts to take the four
principles of object-oriented design (Encapsulation,
inheritance, polymorphism and abstraction) into account at all
times. It could be argued that the Assembly, Solver and Post-
Processor classes could be either combined into one class, or,
are not really classes at all and their methods should be
combined into other classes (e.g. one of the element classes).
Alternatively, these methods could be placed in a class which
contains only a list of static methods and thus does not require
instantiation in order to call the methods. Both of these
strategies, however, would remove the flexibility of the
software and make it more difficult to add additional element
types to the finite element application.

IV. VIEW

As described in section II, each screen in Android is
represented using an XML layout file. It is also possible to
create the layout dynamically during program execution but, in
most cases, it is preferable to define an XML layout in
advance. Fig. 5 shows the main screen used for building the
finite element model in the completed smartphone application.

Fig. 5. Graphical User Interface (GUI) for the Smartphone Application Pre-

Processor

The screen layout is divided into a number of steps that the
user is required to complete in order to successfully build a
finite element model. The layout was constructed in this
manner in order to avoid user confusion and also, as one of the
aims of the application was for it to be used as an educational
tool to teach FEA to new users. In the first step a drop down
menu (known as a “Spinner” in Android) is used to capture the
user’s preference in terms of unit system. The selected unit
system is used to prompt the user for input quantities during
the model generation and also during the display of results. The
user is offered three choices: no units (which is the default), the
SI system (Kg-m-sec) or the Imperial system (lb-ft-sec). Step 2
requires the user to pick an element type: currently there are
three options available: 1DTruss, 2DTruss and Beam. The
class system for a 2D truss analysis was discussed in section
III. A 1D truss can be easily formed by simply setting the
appropriate coordinates and DOF to zero. A beam element was
implemented by adding additional classes to the structure
discussed in section III and, for the sake of clarity, will not be
discussed here. Step 3 requires the user to specify nodal
coordinates. Touching on either the add node or delete node
button opens a dialog box which allows the user to define the
nodal coordinates. Similarly the add element, delete elements,
add constraint, delete constraint, add nodal force and delete
nodal force buttons all open appropriate dialog boxes for the
user to interact with. The two lower buttons allow for the
application of distributed loads if a beam element type has
been selected – if a truss element is selected then these buttons

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

64 | P a g e

www.ijacsa.thesai.org

will display a warning. Fig. 6 shows examples of the “Add
Node” and “Add Element” dialogs.

Fig. 6. Dialog Boxes are Used to Capture User Input

During the XML definition of the buttons shown in fig. 5 a
method name in TrussActivity is required in order to link the
button to that method. For example the “Add a Node” button
definition contains a reference to the addNode() method in
TrussActivity. When the button is touched/clicked then the
relevant method is called and the object reference of the View
calling the method is passed as a parameter to the method.

The full suite of Android’s user interface was utilised to
capture input from the user: including spinners, checkboxes,
radio-buttons, textboxes etc. Touching the application icon at
the top of the screen slides a menu out from the left hand side
which allows the user to navigate through the application, as
shown in fig. 7.

Fig. 7. Smartphone FE Application Navigation Menu

Touching the “File” button allows the user to load or save a
model and clear the database. The “Build” button brings up the
pre-processor screen shown in fig. 5. The “Display Model”
button is used to show a graphical representation of the model,
as shown in fig. 8. The “Examine” button is used for post-
processing the results from the finite element model. The other
buttons in fig. 7 are largely self-explanatory.

Each of the screens described above are created using XML
layout files which specify the relative position of the various
UI elements. These layouts are displayed by the corresponding
Android activity class when required. In some cases, such as
with dialogs, the display is created dynamically using only
Java code without the need for a XML layout to be defined in
advance. This is achieved using one of the many “builder”
classes provided with the Android API. The graphical display
of the model is also created dynamically by filling an empty
frame layout with a Canvas object when the user requests the
model be displayed.

Fig. 8 shows a typical graphical display from a 2D Truss
problem. In this case three nodes and two elements have been
used. Node numbers are displayed near the associated nodes.
Constraint and load symbols are placed on relevant nodes,
using the helper methods described in section III. A facility for
zooming in/out and an option to fit the finite element model to
the screen are provided in the lower right corner of the GUI.

Fig. 8. Graphical Display of a 2D Truss Problem. Note display of constraint
symbols on left hand side and load arrow symbols on the right.

V. CONTROLLER

The TrussActivity class is the main activity for a truss
analysis. As mentioned above, the first task of TrussActivity is
to call the onCreate() method from its superclass. This method
is called when the application is started and is responsible for
providing the View for the Activity by linking to the
appropriate XML layout file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

65 | P a g e

www.ijacsa.thesai.org

The main task of TrussActivity is to act as controller in the
MVC pattern and to take user input in order to use the Model
classes to construct a finite element model. Table VII shows a
description of the TrussActivity class, focusing on the methods
dealing with control. A number of EditText object references
are initially described as private class variables. EditText’s are
editable text boxes that are used to obtain user input. In this
case they are required to capture nodal coordinates, element
properties, etc. Two ArrayList objects are defined which
effectively act as the finite element model database. The nodes
ArrayList holds a list of currently defined Node objects and the
elements ArrayList holds a list of currently defined
LineElement objects. ArrayLists are effectively mutable arrays
and so allow for the addition and subtraction of objects from
the list as required. Two integer variables are defined in order
to conveniently hold the number of currently defined nodes and
elements.

 DESCRIPTION OF THE TRUSSACTIVITY CLASS TABLE VII.

The addNode() method is triggered by the user touching the
“Add a Node” button on the main screen (fig. 5). An object
reference to the View that requested the method to be called is
passed in as the parameter v. This reference is required as it
tells the addNode() method how/where to update the View if
required.

Each of the methods shown below the addNode() method
in table VII follow a standard procedure so the addNode()
method will be used to illustrate this procedure. The addNode()
method begins by creating a dialog box in the current View in
order to obtain user input. The method then sets up a listener

to listen for either the cancel or OK buttons in the dialog box to
be touched by the user. If the cancel button is touched then the
dialog is simply dismissed and control is returned to the calling
method. If the OK button is touched then data entered by the
user is checked for viability. If the data is not viable then a
message is displayed to the user explaining why this is the
case. If the data is viable then a new Node object is created
using the object constructor in the Node class. This Node
object is then added to the nodes ArrayList and the numNodes
variable is incremented by 1 before returning control to the
calling method.

Some of the other methods require more checks before
displaying a dialog requesting user input. The addElement()
method, for example, first checks that at least two Node objects
have been defined before allowing the user to proceed. In each
case where a problem is encountered an explanatory message is
presented to the user.

Fig. 9. Typical Results Display

The calculate() method begins solution of the finite element
model. Before attempting to form the global assembly a
number of checks are carried out to ensure the model is ready
for solution: at least one element is defined, at least on DOF is
constrained, at least one nodal force has been specified, etc. In
each case an appropriate message is displayed to the user if a
problem is encountered. If no problems are found then
assembly of the global system of equations proceeds as
described in section III. The assembled problem is then solved
using the TrussSolver class which returns an Array containing
the solved global displacement Vector. A quick check is
performed to ensure that the returned array is not empty
(indicating a failed solution). If this is the case then a message
regarding the mathematical un-stability of the finite element
model, together with some advice on how to fix the model is
presented to the user. If the global displacement vector is valid

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

66 | P a g e

www.ijacsa.thesai.org

then the printTrussResults() method is called and results are
automatically post-processed and displayed to the user. Fig. 9
shows a typical display of results from a simple 2D truss
analysis.

VI. CONCLUSION

 The architecture of a demonstration finite element
analysis application for an Android smartphone has been
presented. The application has been designed according to
object-oriented principles using a MVC design pattern.
Smartphone user interfaces provide exciting opportunities to
revolutionise the generation and analysis of finite element
models. In this case the objective was to produce a functioning
finite element application which could also be used as an
educational tool to teach new users basic FEA principles. The
Android platform makes it relatively easy to design an intuitive
and educational user interface. The architecture provided here
can easily be expanded to include more complex elements and
analysis capabilities. The demonstration application is
available for free download [12].

REFERENCES

[1] A. Smith, 46% of American Adults are now Smartphone Owners, Pew
Internet, 2012 (http://pewinternet.org/Reports/2012/Smartphone-Update-
2012.aspx)

[2] N. Rajovic, P. Carpenter, I. Gelado, N. Puzovic and A. Ramirez, Are
Mobile Processors Ready for HPC?, edaWorkshop13, Dresden,
Germany, May 14-16, 2013.

[3] T. Zimmermann, Y. Dubois-Pélerin and P. Bomme, Object-oriented
Finite Element Programming: I. Governing Principles, Computer
Methods in Applied Mechanics and Engineering, 1992, 98, No. 2, pp.
291-303.

[4] T. Zimmermann, Y. Dubois-Pélerin and P. Bomme, Object-oriented
Finite Element Programming: II. A Prototype Program in Smalltalk,
Computer Methods in Applied Mechanics and Engineering, 1992, 98,
No.3, pp. 361-397.

[5] T. Zimmermann, Y. Dubois-Pélerin and P. Bomme, Object-oriented
Finite Element Programming: II. An Efficient Implementation in C++,
Computer Methods in Applied Mechanics and Engineering, 1993, 108,
No.1-2, pp. 165-183.

[6] P. Donescu & Tod. A Laursen, A Generalized Object-Oriented
Approach to Solving Ordinary and Partial Differential Equations Using
Finite Elements, Finite Elements in Analysis and Design, 1996, 22, pp.
93-107

[7] J. Besson & R. Foerch, Large Scale Object-oriented Finite Element
Code Design, Computer Methods in Applied Mechanics and
Engineering, 1997, 142, pp. 165-187.

[8] G.C. Archer, G. Fenves & C. Thewalt, A New Object-oriented Finite
Element Analysis Program Architecture, Computers and Structures,
1999, 70, pp. 63-75

[9] B. Patzák & Z. Bittnar, Design of Object-oriented Finite Element Code,
Advances in Engineering Software, 2001, 32, 759-767

[10] G.P.Nikishkov, Yu.G.Nikishkov and V.V.Savchenko, Comparison of C
And Java Performance In Finite Element Computations, Computers and
Structures, 2003, 81, pp. 2401-2408

[11] G.P.Nikishkov, Object oriented design of a finite element code in Java.
Computer Modeling in Engineering and Sciences, 2006, 11, No. 2, pp.
81-90

[12] https://play.google.com/store/apps/details?id=ie.jion.fetab

