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Abstract—It seems that the term dependence methods devel-
oped using the expected mutual information measure (EMIM)
have not achieved their potential in many areas of science,
involving statistical text analysis or document processing. This
study examines the reasons for the failure and highlights potential
problems of applications. Several interesting questions are arisen,
including, does a term provide any information if it occurs in all
the sample documents? how the mutual information of two terms,
under their status values, makes contribution to EMIM? are two
terms highly dependent for their co-occurrence if they receive a
high positive EMIM value? what may imply for dependence of
two term pairs when they receive the same EMIM value? how
can properly verify two terms to be high dependent for their co-
occurrence? how can properly apply EMIM? does the size of the
sample set matter? This study attempts to answer these questions
in order to clarify confusions caused by the problems and/or
suggest solutions to the problems. Some interesting examples are
provided to clarify our viewpoints.

Index Terms—text analysis; term dependence; term co-
occurrence; the expected mutual information measure (EMIM).

I. INTRODUCTION

The expected mutual information measure (EMIM) quan-
tifies how much knowing one of two variables reduces our
uncertainty about the other. The effectiveness of measuring
the mutual information of terms (MIT) is an active research
subject in many areas of science. This subject has been
motivated by the concern: to developed a variety of techniques
in order to assign a ‘dependence’ (‘relatedness’, ‘proximity’,
‘association’) value to each term pair, and then to make some
decision based on those values. Many studies have used EMIM
for a variety of tasks in, for instance, feature selection [1]–
[4], document classification [5], face image clustering [6],
noise and redundancy reduction [7], multi-modality image
registration [8], information retrieval [9]–[13].

Despite the attractiveness of EMIM, however, it seems that
the term dependence methods developed using EMIM have
not achieved their potential. There may be two main issues for
this. First, it is practically difficult to estimate the probability
distributions required in EMIM. Second, different estimations
conclude to different properties of EMIM and it is theoretically
challenging to apply EMIM without clearly understanding the
properties. This study focuses on the second issue.

There exist potential problems in applying EMIM. This
study examines the reasons for the failure by analysing the

properties, particularly when considering the binary probabil-
ity estimation, denoted by PΞ(δi) and PΞ(δi, δj), widely used
in many areas of science. We highlight eight problems through
respective eight questions below: For two arbitrary distinct
terms ti and tj (where I(δi; δj) is EMIM and emim(δi; δj)
is a simplified form, which will be given in the next section),

Q1: does ti provide any information on tj if it occurs in all
the sample documents?

Q2: what is a fact given from the relation between I(δi; δj)
and emim(δi; δj)?

Q3: how the mutual information of ti and tj , under their status
values, makes contribution to I(δi; δj)?

Q4: are ti and tj highly dependent for their co-occurrence if
(ti, tj) receives a high positive value of I(δi; δj)?

Q5: what may imply for dependence of two term pairs (ti, tj)
and (t′i, t

′
j) when I(δi; δj) = I(δ′i; δ

′
j)?

Q6: how can properly verify ti and tj to be high dependent
for their co-occurrence?

Q7: how can properly apply emim(δi; δj)?
Q8: does the size of the sample set matter?

This study attempts to answer the above questions in order
to clarify confusions caused by the problems and/or suggest
solutions to the problems. As it will be seen from this study,
for instance, the occurrence of a term in all samples (which
may be regarded as a good term in some applications) does not
provide any information about the occurrence of other terms
in the samples; two terms receiving a high positive EMIM
value may not be necessarily high dependent for their co-
occurrence; two term pairs receiving the same EMIM value
may be dependent of each other in different implications; an
inequality has to be verified, in order to properly apply EMIM
or emim, to ensure two terms are high dependent for their co-
occurrence. Some interesting examples are provided to clarify
our viewpoints, and each question Qk is answered through a
corresponding remark Remark-k (k = 1, 2, ..., 8).

The remainder of the paper is organized as follows. Section
2 gives notation, the expressions of EMIM and emim. Section
3 considers the properties of EMIM and answers Q1 and
Q2. Section 4 analyses the properties of four MIT measures,
derived from EMIM, and answers Q3–Q7. Section 5 explains
the sensitivity to the size of the sample set and answers Q8.
Conclusions are drawn in Section 6 and detailed proofs of all
the theorems given in this study are presented in Appendix.
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II. BACKGROUND

This section gives notation, expressions of EMIM and its
simplified form.

Let D be a collection of documents, Ξ ⊆ D a sample set
of documents interested, and V be a vocabulary of terms used
to index individual documents in D. Denote Vd ⊆ V as the
set of terms occurring in document d, and V

Ξ
⊆ V as the set

of terms occurring in at least one of sample documents in Ξ.
In order to clarify our idea presented in this study, let us first

give term state value distributions. A term is usually thought
of having its state values present or absent in a document
or a set of documents. For an arbitrary term t ∈ V , it will
be convenient to introduce a variable δ taking values from set
Ω = {1, 0}, where δ = 1 expresses that t is present and δ = 0
expresses that t is absent. Denote tδ = t, t̄ when δ = 1, 0,
respectively. We call Ω = {1, 0} a state value space, and each
element in Ω a state value, of the term t. Thus, for a given term
t ∈ Vd, its state distribution, denoted by Pd(δ) = P (tδ|d), is
over Ω. Similar discussions can be given to P

Ξ
(δ) = P (tδ|Ξ)

over Ω for t ∈ V
Ξ

, and to P
Ξ
(δi, δj) = P (tδii , t

δj
j |Ξ) over

Ω × Ω = {(1, 1), (1, 0), (0, 1), (0, 0)} for (ti, tj) ∈ VΞ
× V

Ξ

(where i 6= j).
There exists dependence between two terms if the state

value of one of them provides mutual information about the
probability of the state value of another. The study [14] also
showed that there is a relationship between the frequencies (or
probabilities) and the mutual information of terms. Therefore,
term t taking some state value δ should be looked upon as
complex because another state value of t, and state values of
many other terms, may be dependent on this state value [?].

To enable to analyse and understand the properties of EMIM
and its a simplified form, let us further denote n

Ξ
(t) as the

number of samples in Ξ in which t occurs, and n
Ξ
(ti, tj)

as the number of samples in Ξ in which ti and tj co-occur
(where i 6= j). Then, under the binary assumption, using the
statistics of the sample frequencies concerning the set Ξ, we
can introduce the following two theorems, which are essential
for estimating probability distributions required in EMIM.
Theorem 2.1 For an arbitrary term t ∈ V , the state value
distribution, denoted by P

Ξ
(δ), given by

PΞ(δ = 1) = PΞ(t) =
nΞ(t)

|Ξ|

PΞ(δ = 0) = PΞ(t̄) = 1− nΞ(t)

|Ξ|

(1)

is a probability distribution over Ω. For two arbitrary distinct
terms ti, tj ∈ V , the state value distribution, denoted by
PΞ(δi, δj), given by

PΞ(δi = 1, δj = 1) = PΞ(ti, tj) =
nΞ(ti, tj)

|Ξ|

PΞ(δi = 1, δj = 1) = PΞ(ti, tj) =
nΞ(ti, tj)

|Ξ|

PΞ(δi = 0, δj = 1) = PΞ(t̄i, tj) =
nΞ(tj)− nΞ(ti, tj)

|Ξ|
PΞ(δi = 0, δj = 0) = PΞ(t̄i, t̄j)

=
|Ξ| − nΞ(ti)− nΞ(tj) + nΞ(ti, tj)

|Ξ|

(2)

is a probability distribution over Ω×Ω. And P
Ξ
(δi) and P

Ξ
(δj)

are the marginal distributions of P
Ξ
(δi, δj).

Theorem 2.2 For two arbitrary distinct terms ti, tj ∈ V ,
suppose PΞ(δ) and PΞ(δi, δj) are given in Eq.(1) and Eq.(2),
respectively. Then P

Ξ
(δi, δj) is absolutely continuous with

respect to product P
Ξ
(δi)PΞ

(δj) for δi, δj = 1, 0.
With Theorems 2.1 and 2.2, we can now substitute Eq.(1)

and Eq.(2) into EMIM:

IΞ(δi; δj) =
∑

δi,δj=0,1

PΞ(δi, δj) ln
PΞ(δi, δj)

PΞ(δi)PΞ(δj)
(3)

where ln is the natural logarithm, which measures the amount
of information that δj provides about δi, and vice versa.

In order to give a simplified form of EMIM, denoted by
emim

Ξ
(δi; δj), let us adopt the notation given in [15]:

n1· = nΞ(ti)

n·1 = nΞ(tj)

n11 = nΞ(ti, tj)

n10 = nΞ(ti)− nΞ(ti, tj)

n01 = nΞ(tj)− nΞ(ti, tj)

n0· = |Ξ| − nΞ(ti)

n·0 = |Ξ| − nΞ(tj)

n00 = |Ξ| − nΞ(ti)− nΞ(tj) + nΞ(ti, tj)

(4)

Then we can write

emimΞ(δi; δj) = n11 ln
n11

n1·n·1
+ n10 ln

n10

n1·n·0
+

n01 ln
n01

n0·n·1
+ n00 ln

n00

n0·n·0
(5)

which is well-known to many researchers, in particular, to in-
formation retrieval (IR) researchers. It was initially introduced
by van Rijsbergen in his earlier book and papers [15], [16].

We will give the relation between EMIM and emim and
provide an example to illustrate the computation involved in
EMIM and emim in next section. In what follows, we will
always assume, when mentioning two arbitrary terms ti, tj ∈
V , that they are distinct terms (i.e., i 6= j).

III. PROPERTIES OF EMIM

In order to enable us to gain an insight into I
Ξ
(δi; δj) and

emimΞ(δi; δj), this section introduces three theorems. These
give interesting properties of EMIM and emim, and then give
answers to questions Q1 and Q2.
Theorem 3.1 For two arbitrary terms ti, tj ∈ V , suppose
P

Ξ
(δ) and P

Ξ
(δi, δj) are given in Eq.(1) and Eq.(2), respec-

tively. Then IΞ(δi; δj) = 0 if nΞ(ti) = |Ξ| or nΞ(tj) = |Ξ|.
Remark-1: Theorem 3.1 tells us, when EMIM is used with
the estimation given Eq.(1) and Eq.(2), that the occurrence of
ti in all samples does not provide any information about the
occurrence of tj in the samples. Thus, ti and tj are statistically
independent of one another with respect to Ξ. Consequently,
in order to capture the dependence information of terms, we
should always avoid many terms having n

Ξ
(t) = |Ξ| and take

the sample set Ξ with a relatively larger size satisfying, for
instance,

|Ξ| ≥ α+ β ×max{nΞ(t) | t ∈ VΞ}

where α, β ≥ 1 are integers. ♦
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Theorem 3.2 For two arbitrary terms ti, tj ∈ V , suppose
I

Ξ
(δi; δj) and emim

Ξ
(δi; δj) are given in Eq.(3) and Eq.(5),

respectively. Then

IΞ(δi; δj) =
1

n
× emimΞ(δi; δj) + ln(n) (6)

where n = |Ξ|.
Remark-2: Theorem 3.2 gives the relation between I

Ξ
(δi; δj)

and emimΞ(δi; δj). Many applications use emimΞ(δi; δj),
rather than IΞ(δi; δj), as a scale factor 1

n and a constant ln(n)
are independent of all term pairs (ti, tj) ∈ V×V , and thus they
are eliminated for simplifying computation. It is clear that an
essential difference between Eq.(3) and Eq.(5) is: the former is
normalized by n but the latter is not. An important fact given
by the above relation to notice is: IΞ(δi; δj) ≥ 0 cannot infer
emimΞ(δi; δj) ≥ 0. Theorem 3.3 below is interesting. ♦
Theorem 3.3 For two arbitrary terms ti, tj ∈ V , suppose
emim

Ξ
(δi; δj) is given in Eq.(5). Then emim

Ξ
(δi; δj) ≤ 0.

Example 3.1 Suppose Ξ = {d1, d2, d3} ⊆ D is a sample
set, Vd1

= {t1, t2, t4, t5, t6, t8}, Vd2
= {t1, t3, t4, t5, t6, t7}

and Vd3 = {t2, t4, t6}. From nΞ(t1, t2) = 1, nΞ(t1) = 2 and
n

Ξ
(t2) = 2, we have

IΞ(δ1; δ2) =
1

3
ln

1
3

2
3

2
3

+
2− 1

3
ln

2−1
3

2
3

(
1− 2

3

)
+

2− 1

3
ln

2−1
3

(1− 2
3
) 2

3

+
3− 2− 2 + 1

3
ln

3−2−2+1
3(

1− 2
3

)(
1− 2

3

)
=

1

3
ln

3

4
+

1

3
ln

3

2
+

1

3
ln

3

2
+ 0 ln 0

≈ −0.0959 + 0.1352 + 0.1352− 0.0000

= 0.1745

emimΞ(δ1; δ2) = 1× ln
1

2× 2

+ (2− 1) ln
2− 1

2× (3− 2)

+ (2− 1) ln
2− 1

(3− 2)× 2

+ (3− 2− 2 + 1) ln
3− 2− 2 + 1

(3− 2)× (3− 2)

= ln
1

4
+ ln

1

2
+ ln

1

2
+ 0 ln

0

1
≈ −1.3863− 0.6931− 0.6931− 0.0000

= −2.7725.

Also, with the expression given in Eq.(6), we can see

1

3
× emimΞ(δ1; δ2) + ln(3)

≈ 1

3
× (−2.7725) + 1.0986

≈ 0.1745 = IΞ(δ1; δ2)

which verifies the relation between I
Ξ
(δ1; δ2) and emim

Ξ
(δ1;

δ2) for terms t1 and t2. 4

IV. PROPERTIES OF MIT MEASURES

This section gives four measures of mutual information of
terms (MIT), and then clarifies our viewpoints, which are used
for answering questions Q3–Q7. The answers are essential for
guiding practical applications.

Following the studies in [17] [18], we express EMIM given
in Eq.(3) with the sum of four items,

mitΞ(tδii , t
δj
j ) = PΞ(δi, δj) ln

PΞ(δi, δj)

PΞ(δi)PΞ(δj)
(7)

where δi, δj = 0, 1, each of which can be regarded as ‘mutual
information of terms, ti and tj , in support of dependence
rejecting independence under state value (δi, δj). Thus, we
can regard it as a general form of a MIT measure, computing
the extent of the contributions made by ti and tj under
the corresponding state values to I

Ξ
(δi; δj). The four MIT

measures and example below enable a simple answer to the
third question.
Example 4.1 Substituting the probability distributions given
in Eq.(1) and Eq.(2) into the MIT measure in Eq.(7), we
can write four concrete MIT measures for δi, δj = 0, 1. For
instance, taking δi = 1 and δj = 1, we can write the first item
of IΞ(δi; δj):

mitΞ(ti, tj) = mitΞ(tδi=1
i , t

δj=1

j )

= PΞ(ti, tj) ln
PΞ(ti, tj)

PΞ(ti)P (tj)
(8)

=
nΞ(ti, tj)

|Ξ| ln
( n

Ξ
(ti,tj)

|Ξ|
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ|

)
which is the MIT measure of terms ti and tj for their
occurrence in Ξ. Also, if taking δi = 1 but δj = 0, then
we have the second item of I

Ξ
(δi; δj):

mitΞ(ti, t̄j) = mitΞ(tδi=1
i , t

δj=0

j )

= PΞ(ti, t̄j) ln
PΞ(ti, t̄j)

PΞ(ti)P (t̄j)

=
nΞ(ti)− nΞ(ti, tj)

|Ξ| ln
( n

Ξ
(ti)−nΞ

(ti,tj)

|Ξ|
n

Ξ
(ti)

|Ξ|

(
1− n

Ξ
(tj)

|Ξ|

))
which is the MIT measure of term ti occurring but term tj
not occurring in Ξ. 4
Remark-3: The expressions Eq.(3) and Eq.(7) tell us, in order
to measure the term mutual information, we have to consider
the mutual information under the individual state values. That
is, we need to measure the extent of the contribution made
by the respective four state value pairs (δi, δj) using the
corresponding measure mit

Ξ
(tδii , t

δj
j ), where δi, δj = 0, 1, to

the expected mutual information. ♦
Generally, each MIT measure, mit

Ξ
(tδii , t

δj
j ), can be posi-

tive or negative (which can be seen in Example 3.1). The fol-
lowing theorem, which considers the relation between n

Ξ
(ti,tj)

|Ξ|

and n
Ξ

(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| , is interesting.
Theorem 4.1 For two arbitrary terms ti, tj ∈ V , the four
measures, mit

Ξ
(tδii , t

δj
j ), where δi, δj = 0, 1, given in Eq.(7)

have the following property.
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(1) if n
Ξ

(ti,tj)

|Ξ| =
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) = 0, mitΞ(ti, t̄j) = 0,

mitΞ(t̄i, tj) = 0, mitΞ(t̄i, t̄j) = 0.

(2) if n
Ξ

(ti,tj)

|Ξ| >
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) > 0, mitΞ(ti, t̄j) ≤ 0,

mitΞ(t̄i, tj) ≤ 0, mitΞ(t̄i, t̄j) > 0.

(3) if n
Ξ

(ti,tj)

|Ξ| <
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) < 0, mitΞ(ti, t̄j) ≥ 0,

mitΞ(t̄i, tj) ≥ 0, mitΞ(t̄i, t̄j) < 0.

Remark-4: By the property given in Theorem 4.1, it can
be easily seen, when n

Ξ
(ti,tj)

|Ξ| <
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| , that the
positive value I

Ξ
(δi; δj) is dominated by the positive quantities

mit
Ξ
(ti, t̄j) and/or mit

Ξ
(t̄i, tj). Thus, the higher value the

IΞ(δi; δj) has, the larger quantities the mitΞ(ti, t̄j) and/or
mitΞ(t̄i, tj) provide, and the more they indicate that ti and tj
are highly dependent under state values (1, 0) and (0, 1), and
that they should not co-occur in samples in Ξ. Consequently,
a high positive value of I

Ξ
(δi; δj) may not indicate that ti

and tj are highly dependent for their occurrence, namely, that
the occurrence (absence) of term ti accompanies the absence
(occurrence) of term tj . ♦

The answer to the fourth question is now apparent. We can
clarify our viewpoint by an example below, which can also
help to answer the fifth and sixth questions.
Example 4.2 Suppose Ξ = {d1, d2, d3}, Vd1

= {t1, t2, t3, t4,
t5}, Vd2 = {t1, t4, t5, t7} and Vd3 = {t4, t7, t8}. Then, it has
|Ξ| = 3, n

Ξ
(t1) = 2, n

Ξ
(t2) = 1, n

Ξ
(t1, t2) = 1, and

IΞ(δ1; δ2) =
1

3
ln

1
3

2
3
· 1

3

+
1

3
ln

1
3

2
3
· 2

3

+
0

3
ln

0
3

1
3
· 1

3

+
1

3
ln

1
3

1
3
· 2

3

≈ 0.1352− 0.0959− 0.0000 + 0.1352 = 0.1745.

In this case, the value I
Ξ
(δ1; δ2) is dominated by both the

quantities mitΞ(t1, t̄2) and mitΞ(t̄1, t2), and t1 and t2 are
highly dependent for their co-occurrence in set Ξ. Also, from
n

Ξ
(t5) = 2, n

Ξ
(t7) = 2 and n

Ξ
(t5, t7) = 1, it has

IΞ(δ5; δ7) =
1

3
ln

1
3

2
3
· 2

3

+
1

3
ln

1
3

2
3
· 1

3

+
1

3
ln

1
3

1
3
· 2

3

+
0

3
ln

0
3

1
3
· 1

3

≈ −0.0959 + 0.1352 + 0.1352− 0.0000 = 0.1745.

In this case, the value I
Ξ
(δ5; δ7) is dominated by both the

quantities mit
Ξ
(t5, t̄7) and mit

Ξ
(t̄5, t7), and t5 and t7 are

highly dependent for their not-co-occurrence in set Ξ. 4
Remark-5: It can be seen, from Example 4.2, that two term
pairs (t1, t2) and (t5, t7) receive the same value, I

Ξ
(δ1; δ2) =

I
Ξ
(δ5; δ7). However, the implications of the dependence infor-

mation under the individual state values are entirely different:
terms t1 and t2 provide the information highly supporting
for either their co-occurrence or none of them occurrence
(i.e., co-not-occurrence); whereas terms t5 and t7 provide the
information highly supporting for one of them occurrence but
another not occurrence (i.e., not-co-occurrence). ♦
Remark-6: In a practical application, we normally concen-
trate on the statistics of co-occurrence of terms. That is, the

dependence under which we are really interested is state value
(δi, δj) = (1, 1). In this case, what we need is:
• to use the measure mit

Ξ
(ti, tj) given in Eq.(8), and for

every (ti, tj) ∈ V × V , to verify an inequality,
nΞ(ti, tj)

|Ξ| >
nΞ(ti)

|Ξ| ×
nΞ(tj)

|Ξ| (9)

• to select those term pairs (ti, tj) satisfying the above
inequality as they guarantee both mit

Ξ
(ti, tj) > 0

(i.e., co-occurrence) and mitΞ(t̄1, t̄2) > 0 (i.e., co-not-
occurrence).

Then, we remove the term pairs not carrying the information
supporting not-co-occurrence. ♦
Example 4.3 (Example 4.2 continued). Consider terms t1 and
t2, we have

3

9
=

1

3
=
nΞ(t1, t2)

|Ξ| >
nΞ(t1)

|Ξ|
nΞ(t2)

|Ξ| =
2

3

1

3
=

2

9

From which we know that mitΞ(t1, t2) > 0, mitΞ(t1, t̄2) <
0, mit

Ξ
(t̄1, t2) < 0, mit

Ξ
(t̄1, t̄2) > 0, and that t1 and t2 are

statistically dependent for their co-occurrence in Ξ, Also, if
we consider terms t5 and t7, then n

Ξ
(t5) = 2, n

Ξ
(t7) = 2,

n
Ξ
(t5, t7) = 1, and

3

9
=

1

3
=
nΞ(t5, t7)

|Ξ| <
nΞ(t5)

|Ξ|
nΞ(t7)

|Ξ| =
2

3

2

3
=

4

9

From which we know that mit
Ξ
(t5, t7) < 0, mit

Ξ
(t5, t̄7) >

0, mit
Ξ
(t̄5, t7) > 0, mit

Ξ
(t̄5, t̄7) < 0, and that t5 and t7 are

highly dependent for their not co-occurrence in Ξ). 4
The following two Corollaries give properties of the MIT

measures, that is, of the individual items of I
Ξ
(δi; δj) and

emimΞ(δi; δj). Their proofs are given in the proofs of Theo-
rem 3.2 and Theorem 3.3, respectively.
Corollary 4.1 For two arbitrary terms ti, tj ∈ VΞ , if nΞ(ti) =

i , t
δj|Ξ| or n

Ξ
(tj) = |Ξ|, then mit

Ξ
(tδi j ) = 0 for δi, δj = 0, 1.

Corollary 4.2 For two arbitrary terms ti, tj ∈ VΞ , the
individual items of emimΞ(δi; δj) are always non-positive.
Remark-7: In order to apply emim(δi; δj) properly, let us
compare the first item of IΞ(δi; δj) given in Eq.(8) and the first
item of emim

Ξ
(δi; δj) given in Eq.(5). Note that we have

nΞ(ti, tj)

|Ξ| =
n11

n
and

nΞ(ti)

|Ξ|
nΞ(tj)

|Ξ| =
n1·

n

n·1
n

Thus, from the expressions in the respective ln functions of
the two first items:
• from the relation between n

Ξ
(ti,tj)

|Ξ| and n
Ξ

(ti)

|Ξ|
n

Ξ
(tj)

|Ξ|
given in Theorem 4.1, we can infer all the signs of
mitΞ(tδii , t

δj
j ) for δi, δj = 1, 0, and then determine

whether term pair (ti, tj) is statistically dependent under
the individual state values.

• however, the inference and determination cannot be made
from the relation between n11 and n1·n·1 ; in fact, by
Corollary 4.2, we know that the individual items of
emim

Ξ
(δi, δj) are always non-positive.

Therefore, to solve the problem arisen by Q7, with Remark-6,
we need to verify Eq.(9) or, equivalently, to verify a simpler
inequality,

n11 = nΞ(ti, tj) >
1

|Ξ|nΞ(ti)nΞ(tj) =
1

n
n1·n·1 (10)

which is a straightforward way to the solution. ♦
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TABLE I
THE DEPENDENCE VALUES AGAINST SIZES OF Ξ

|Ξ| mit
Ξ

(t1, t4) mit
Ξ

(t1, t̄4) mit
Ξ

(t̄1, t4) mit
Ξ

(t̄1, t̄4) I
Ξ

(δ1, δ4)

3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.1438 0.0000 -0.1014 0.1733 0.2157
5 0.2043 0.0000 -0.1176 0.2043 0.2910
6 0.2310 0.0000 -0.1155 0.2027 0.3182
7 0.2421 0.0000 -0.1089 0.1923 0.3255
8 0.2452 0.0000 -0.1014 0.1798 0.3236
9 0.2441 0.0000 -0.0941 0.1675 0.3175

10 0.2408 0.0000 -0.0875 0.1562 0.3095
15 0.2146 0.0000 -0.0637 0.1145 0.2654
20 0.1897 0.0000 -0.0497 0.0896 0.2296
30 0.1535 0.0000 -0.0343 0.0621 0.1813
50 0.1125 0.0000 -0.0212 0.0384 0.1297

100 0.0701 0.0000 -0.0108 0.0196 0.0789
1000 0.0116 0.0000 -0.0011 0.0020 0.0125

10000 0.0016 0.0000 -0.0001 0.0002 0.0017
n

Ξ
(t1) = 2, n

Ξ
(t4) = 3, n

Ξ
(t1, t4) = 2

V. SIZE OF SAMPLE SET

The binary estimation methods derive their importance from
the fact that their simplicity of computation easily enables
us to have an insight into the term dependence. However,
the methods may be sensitive to the size of the sample set.
This sections explains the sensitivity, using the probability
estimation given in Eq.(1) and Eq.(2) as an example, and gives
an answer to the last question Q8 through a simple example.
Example 5.1 (Example 4.2 continued) Suppose we have a
sample set Ξ ⊆ D = {d1, d2, ..., d10000}. Consider two terms
t1 and t4 with fixed numbers nΞ(t1, t4) = 2, nΞ(t1) = 2 and
n

Ξ
(t4) = 3. Then, when |Ξ| = 3, by Theorem 3.1,

IΞ(δ1; δ4) =
∑

δ1,δ4=1,0

mitΞ(tδ11 , t
δ4
4 )

= 0.0000− 0.0000− 0.0000 + 0.0000 = 0.0000.

Next, taking |Ξ| = 10, then

IΞ(δ1; δ4) =
2

10
ln

2
10

2
10

3
10

+
2− 2

10
ln

2−2
10

2
10

(
1− 3

10

)
+

3− 2

10
ln

3−2
10

(1− 2
10

) 3
10

+
10− 2− 3 + 2

10
ln

10−2−3+2
10(

1− 2
10

)(
1− 3

10

)
=

2

10
ln

10

3
+ 0 ln 0 +

1

10
ln

10

24
+

7

10
ln

10

8
≈ 0.2408− 0.0000− 0.0875 + 0.1562 = 0.3095.

There are more dependence values of t1 and t4 against the
increasing sizes of Ξ in Table I, in which, the numbers
underlined are the maximum (in absolute values) for the
corresponding EMIM and MIT measures. As it can been
seen from Table I, the values vary as changing of |Ξ| and
the variation tells us about the behaviour of the individual
measures. 4

The five different measures give us useful information; each
indicates a different aspect about the dependence of terms and
so should be interpreted in an appropriate way. Let us now

carefully examine Table I to look at what insight it can give
regarding |Ξ| for terms t1 and t4.

- When |Ξ| = 3, it has n
Ξ
(t4) = |Ξ|, namely, t4 occurs in

all samples in Ξ. In this case, the occurrence of t4 does
not provide any information about the occurrence of t1
in samples. Thus, t1 and t4 is statistically independent of
each other, and mitΞ(tδ11 , t

δ4
4 ) = 0 for δ1, δ4 = 1, 0, so

I
Ξ
(δ1; δ4) = 0.

- As increasing of |Ξ|, the individual dependence values in
each of the columns are increasing (in absolute values)
till to the maximum. This is because if t1 or t4 occur in
several (not many) samples, and also co-occur in some of
these, then the values indicate that t1 and t4 are dependent
to some extent.

- For larger and larger |Ξ|, t1 and t4 co-occur in less and
less samples in Ξ (compared with |Ξ|) and they receive
lower and lower dependence values. The values drop
greatly when |Ξ| = 100 and almost are equal to zero
when |Ξ| = 10000 = |D|.

Generally, when the numbers n
Ξ
(ti, tj), n

Ξ
(ti) and n

Ξ
(tj) are

fixed, we have mit
Ξ
(tδii , t

δj
j )→ 0 (for δi, δj = 1, 0) and hence

I
Ξ
(δi; δj)→ 0, when |Ξ| → ∞. The mathematical reason for

this is simple. As it can be seen from the probability estimation
given in Eq.(2) and the MIT measures given Eq.(7),

- except the last one, the individual probabilities P
Ξ
(δi,

δj) approach 0, so the corresponding measures mit
Ξ

(tδii , t
δj
j ) approach 0 × ln(α|Ξ|) = 0 (where α is a

constant), as |Ξ| → ∞.
- the last probability P

Ξ
(δi = 0, δj = 0) approaches 1, so

the measure mit
Ξ
(tδi=0
i , t

δj=0
j ) approaches 1× ln 1 = 0,

as |Ξ| → ∞.
Remark-8: It worth mentioning that the binary estimation
method given in Eq.(1) and Eq.(2) rely on statistics nΞ(t),
n

Ξ
(ti, tj) and |Ξ|; it is thus sensitive to the sample size. A

large sample size might overwhelm useful statistical informa-
tion carried by those important terms having smaller statistics
(or, concentrating in a few documents), thereby weaken and
dilute the potential capability of EMIM and the MIT measures.
♦
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The sample size is an important feature of any empirical
study, and generally a larger sample size leads to increased
precision when estimating unknown (probability distribution)
parameters. According to study given in [19], an appropriate
sample size for a qualitative research depends on a number
of factors, including: the quality of the data, the scope of the
study, the nature of the topic, the amount of useful informa-
tion obtained from the participants (samples), the qualitative
method, experimental design and settings, and so on. It seems
not clear at present how to determine an appropriate sample
size against a set of term pairs in practical applications. It
would be helpful to consider appropriateness of the sample
size prior to determining some probability estimation method
for applying EMIM in a specific application.

CONCLUSION

This study examined the reasons for the failure of applying
EMIM and highlighted some potential problems of applica-
tions. We attempted to clarify confusions caused by the prob-
lems and/or suggest solutions to the problems by analysing a
various of properties of IΞ(δi; δj) and emimΞ(δi; δj). The key
points of this study were emphasised and formally discussed
through a series of remarks, some of them are listed as follows.
• The occurrence of term t in all samples does not provide

any information about the occurrence of other terms in the
samples; in order to effectively capture the dependence
information of terms, we should always avoid many terms
having n

Ξ
(t) = |Ξ|.

• It can be seen, from the relation given in Eq.(6), that
I

Ξ
(δi; δj) ≥ 0 cannot infer emim

Ξ
(δi; δj) ≥ 0; in fact,

we have emim
Ξ
(δi; δj) ≤ 0 for two arbitrary terms

ti, tj ∈ V .
• Two term pairs, (ti, tj) and (t′i, t

′
j), receiving the same

EMIM value, I
Ξ
(δi; δj) = I

Ξ
(δi′ ; δj′), may be dependent

of each other in entirely different implications under the
individual state values.

• A high positive value of IΞ(δi; δj) may not be necessary
to indicate that ti and tj are highly dependent for their
occurrence; we should always verify the inequality given
in Eq.(9) to ensure mit

Ξ
(ti, tj) > 0, and that terms are

high dependent for their co-occurrence.
• In order to apply emim(δi; δj) properly, we should

always verify the inequality given in Eq.(10).
• The binary estimation method given in Eq.(1) and Eq.(2)

is sensitive to the sample size; a large sample size might
overwhelm useful statistical information carried by those
terms concentrating in a small number of documents.

It is essential for this study to point out that different prob-
ability estimations may conclude to different properties of
EMIM and the MIT measures, and therefore it is theoretically
challenging to apply EMIM without clearly understanding
the properties. A widely used binary estimation method is
considered in this study as a good example to reveal practical
application problems and to clarify our viewpoints. A more
general discussion on this subject can be found in our another
study [18]. Due to its generality, this study can be regarded as

a useful tool for many areas of science, involving statistical
text analysis and document processing.
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APPENDIX

Theorem 2.1 Suppose P
Ξ
(δ) and P

Ξ
(δi, δj) are given in

Eq.(1) and Eq.(2), respectively. Then P
Ξ
(δ) and P

Ξ
(δi, δj) are
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probability distributions on Ω and Ω×Ω, respectively; P
Ξ
(δi)

and P
Ξ
(δj) are the marginal distributions of P

Ξ
(δi, δj).

Proof. For arbitrary terms t, ti, tj ∈ V (where i 6= j), using
the statistics of the document frequencies concerning the set
Ξ, it is easy to estimate the probability distributions.

First, notice that the (total) number of documents in the
sample set is |Ξ|. Thus, the probability that t occurs in some
sample is n

Ξ
(t)

|Ξ| as the number of samples in which t occurs
is n

Ξ
(t), and thus the probability that t does not occur is

1− n
Ξ

(t)

|Ξ| . Therefore, we can write a probability distribution,
P

Ξ
(δ), over Ω as expressed by Eq.(2).

Second, with the size of the sample set, the probability that
ti and tj co-occur is n

Ξ
(ti,tj)

|Ξ| as the number of samples in
which ti and tj co-occur is n

Ξ
(ti, tj); the probability that

ti occurs but tj does not occur is n
Ξ

(ti)−nΞ
(ti,tj)

|Ξ| as the
number of samples in which ti occurs but tj does not occur
is nΞ(ti) − nΞ(ti, tj); similarly, the probability that ti does
not occur but tj occurs is n

Ξ
(tj)−n

Ξ
(ti,tj)

|Ξ| ; the probability

that neither of ti nor tj occur is n
Ξ

(t̄i,t̄j)

|Ξ| , where nΞ(t̄i, t̄j) =

|Ξ| − nΞ(ti) − nΞ(tj) + nΞ(ti, tj) is the number of samples
in which none of ti and tj occur. Therefore, we can write a
probability distribution, P

Ξ
(δi, δj), over Ω × Ω as expressed

by Eq.(3).

Finally, it is easy to see: P
Ξ
(δi = 1) =

∑
δj=1,0 PΞ

(δi =

1, δj) =
n

Ξ
(ti)

|Ξ| and P
Ξ
(δi = 0) =

∑
δj=1,0 PΞ

(δi = 0, δj) =

1 − n
Ξ

(ti)

|Ξ| . Hence, PΞ(δi) is the marginal distributions of
PΞ(δi, δj). A similar discussion may be given for PΞ(δj).

An alternative way to derive P
Ξ
(δi, δj) is to use a con-

ditional probability formula. The conditional probability of
observing tj occurs, given that ti occurred, is P

Ξ
(δj =

1|δi = 1) =
n

Ξ
(ti,tj)

n
Ξ

(ti)
, since before the observation there were

n
Ξ
(ti) documents in Ξ, in which ti occurred. The conditional

probability of observing tj does not occur, given that ti
occurred, is P

Ξ
(δj = 0|δi = 1) = 1− n

Ξ
(ti,tj)

n
Ξ

(ti)
, and similarly,

we have P
Ξ
(δi = 0|δj = 1) = 1 − n

Ξ
(ti,tj)

n
Ξ

(tj) . Then, we can
immediately write the expressions:

PΞ(δi = 1, δj = 1) = PΞ(δi = 1)PΞ(δj = 1|δi = 1)

=
nΞ(ti)

|Ξ|
nΞ(ti, tj)

nΞ(ti)

=
nΞ(ti, tj)

|Ξ|
PΞ(δi = 1, δj = 0) = PΞ(δi = 1)PΞ(δj = 0|δi = 1)

=
nΞ(ti)

|Ξ|

[
1− nΞ(ti, tj)

nΞ(ti)

]
=
nΞ(ti)

|Ξ| −
nΞ(ti, tj)

|Ξ|
PΞ(δi = 0, δj = 1) = PΞ(δj = 1)PΞ(δi = 0|δj = 1)

=
nΞ(tj)

|Ξ|

[
1− nΞ(ti, tj)

nΞ(tj)

]

=
nΞ(tj)

|Ξ| −
nΞ(ti, tj)

|Ξ|
PΞ(δi = 0, δj = 0) = 1− PΞ(δi = 1, δj = 1)

− PΞ(δi = 1, δj = 0)

− PΞ(δi = 0, δj = 1)

= 1− nΞ(ti)

|Ξ| −
nΞ(ti)

|Ξ| +
nΞ(ti, tj)

|Ξ| .

The results are in agreement with one given in Eq.(2).
It worth mentioning that the reason why we give the detailed

proofs of Theorem 2.1 is to interpret mathematical meaning
of the estimation of the probability distributions. The proof
may be greatly simplified by directly using the nature of the
expressions given in Eq.(1) and Eq.(2), that is,

PΞ(δ) ≥ 0 and PΞ(δi, δj) ≥ 0

for δ, δi, δj = 1, 0, and∑
δ=1,0

PΞ(δ) = 1 and
∑

δi,δj=1,0

PΞ(δi, δj) = 1

Therefore, P
Ξ
(δ) and P

Ξ
(δi, δj) are probability distributions.

Theorem 2.2 Suppose P
Ξ
(δ) and P

Ξ
(δi, δj) are given in

Eq.(1) and Eq.(2), respectively. Then P
Ξ
(δi, δj) is absolutely

continuous with respect to product P
Ξ
(δi)PΞ

(δj), denoted by
PΞ(δi, δj)� PΞ(δi)PΞ(δj), for δi, δj = 1, 0.
Proof. For two arbitrary terms ti, tj ∈ V , according to
whether P

Ξ
(ti) = 1 and/or P

Ξ
(tj) = 1, there are four cases

to be considered, that is,
(C1) 0 < P

Ξ
(ti) < 1 and 0 < P

Ξ
(tj) < 1,

(C2) P
Ξ
(ti) = 1 but 0 < P

Ξ
(tj) < 1,

(C3) 0 < P
Ξ
(ti) < 1 but P

Ξ
(tj) = 1,

(C4) PΞ(ti) = 1 and PΞ(tj) = 1.
We first prove (C1) and then prove (C2). Similar proofs can
be given to (C3) and (C4).
In order to prove (C1), let us further consider four cases:
(a) ti, tj ∈ VΞ ;
(b) ti ∈ VΞ

but tj 6∈ VΞ
;

(c) ti 6∈ VΞ
but tj ∈ VΞ

;
(d) ti, tj 6∈ VΞ

.
Notice that, for (a), P

Ξ
(δi, δj) � P

Ξ
(δi)PΞ

(δj) as 0 <
P

Ξ
(δi), PΞ

(δj) < 1 for δi, δj = 0, 1 by Eq.(1). We now prove
(b), and similar proofs can be given for (c) and (d). The proof
is to verify four distinct state values, respectively.
On one hand, when ti ∈ VΞ

but tj 6∈ VΞ
, it has 0 < P

Ξ
(ti) <

1, PΞ(tj) = 0, and PΞ(ti, tj) = 0 by Eq.(1). Thus, by Eq.(3),

PΞ(δi = 1, δj = 1) = 0

PΞ(δi = 1, δj = 0) = PΞ(ti) > 0

PΞ(δi = 0, δj = 1) = 0

PΞ(δi = 0, δj = 0) = 1− PΞ(ti) > 0

On the other hand, by Eq.(2), we have 0 < P
Ξ
(δi) < 1 for

δi = 1, 0 when ti ∈ VΞ ; PΞ(δj = 1) = 0 and PΞ(δj = 0) = 1
when tj 6∈ VΞ

. Thus,

PΞ(δi = 1)PΞ(δj = 1) = 0

PΞ(δi = 1)PΞ(δj = 0) = PΞ(δi = 1) > 0

PΞ(δi = 0)PΞ(δj = 1) = 0

PΞ(δi = 0)PΞ(δj = 0) = PΞ(δi = 0) > 0
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Therefore, P
Ξ
(δi, δj)� P

Ξ
(δi)PΞ

(δj) for δi, δj = 1, 0.
In order to prove (C2), let us suppose we are given ti, tj ∈ VΞ

satisfying nΞ(ti) = |Ξ| and nΞ(tj) < |Ξ| (namely ti occurs in
all samples in Ξ, but tj does not). In this case, it has PΞ(ti) =
1 and 0 < P

Ξ
(tj) < 1, and n

Ξ
(tj) = n

Ξ
(ti, tj). Thus,

(a) PΞ(δi = 1) · PΞ(δj = 1) > 0 since PΞ(δi = 1) = 1,
and 0 < PΞ(δj = 1) < 1. Thus, PΞ(δi = 1, δj = 1) �
P

Ξ
(δi = 1) · P

Ξ
(δj = 1) for (δi, δj) = (1, 1).

(b) P
Ξ
(δi = 1) · P

Ξ
(δj = 0) > 0 since P

Ξ
(δi = 1) = 1

and 0 < P
Ξ
(δj = 0) < 1. Thus, P

Ξ
(δi = 1, δj = 0) �

PΞ(δi = 1) · PΞ(δj = 0) for (δi, δj) = (1, 0).
(c) PΞ(δi = 0) · PΞ(δj = 1) = 0 since PΞ(δi = 0) = 0

and 0 < P
Ξ
(δj = 1) < 1. Also, P

Ξ
(δi = 0, δj = 1) =

1
|Ξ|
[
n·1−n11

]
= 0. Thus, P

Ξ
(δi = 0, δj = 1)� P

Ξ
(δi =

0) · P
Ξ
(δj = 1) for (δi, δj) = (0, 1).

(d) P
Ξ
(δi = 0) · P

Ξ
(δj = 0) = 0 since P

Ξ
(δi = 0) = 0

and 0 < P
Ξ
(δj = 0) < 1. Also, P

Ξ
(δi = 0, δj = 0) =

1
|Ξ|
[
|Ξ|−n

1·−n·1+n
11

]
= 1
|Ξ|
[
(|Ξ|−n

1·)−(n·1−n11
)
]

=

0. Thus, P
Ξ
(δi = 0, δj = 0)� P

Ξ
(δi = 0) · P

Ξ
(δj = 0)

for (δi, δj) = (0, 0).
Therefore, P

Ξ
(δi, δj)� P

Ξ
(δi) · PΞ(δj) for δi, δj = 1, 0.

Theorem 3.1 Suppose PΞ(δ) and PΞ(δi, δj) are given
in Eq.(1) and Eq.(2), respectively. Then IΞ(δi; δj) = 0 if
n

Ξ
(ti) = |Ξ| or n

Ξ
(tj) = |Ξ|.

Proof. We prove that each item of I
Ξ
(δi; δj) is zero for

nΞ(ti) = |Ξ|. A similar proof can be given to nΞ(tj) = |Ξ|.
Notice that, we have nΞ(tj) = nΞ(ti, tj), Thus,

1) for (δi, δj) = (1, 1), with n11 = nΞ(ti, tj) = nΞ(tj), it
has

n11

|Ξ| ln
(n11

|Ξ|

/nΞ(ti)

|Ξ|
nΞ(tj)

|Ξ|

)
=
n11

|Ξ| ln
n11

1× nΞ(tj)
=
nΞ(ti, tj)

|Ξ| ln 1 = 0

2) for (δi, δj) = (1, 0), with n10 = nΞ(ti) − nΞ(ti, tj) =
|Ξ| − n

Ξ
(tj), it has

n10

|Ξ| ln
(n10

|Ξ|

/nΞ(ti)

|Ξ|
(
1− nΞ(tj)

|Ξ|
))

=
n10

|Ξ| ln
n10

1×
(
|Ξ| − nΞ(tj)

) =
n10

|Ξ| ln 1 = 0

3) for (δi, δj) = (0, 1), with n01 = nΞ(tj) − nΞ(ti, tj) =
n

Ξ
(tj)− nΞ

(tj) = 0, is has

n01

|Ξ| ln
(n01

|Ξ|

/(
1− nΞ(ti)

|Ξ|
)nΞ(tj)

|Ξ|

)
=

0

|Ξ| ln
0

0× nΞ(tj)
= 0 ln

0

0
= 0

4) for (δi, δj) = (0, 0), with n
00

= |Ξ| − n
Ξ
(ti)− nΞ

(tj) +
n

Ξ
(ti, tj) = |Ξ| − |Ξ| − n

Ξ
(tj) + n

Ξ
(tj) = 0, it has

n00

|Ξ| ln
(n00

|Ξ|

/(
1− nΞ(ti)

|Ξ|
)(

1− nΞ(tj)

|Ξ|
))

=
0

|Ξ| ln
0

0×
(
|Ξ| − nΞ(tj)

) = 0 ln
0

0
= 0

The proof is completed.

Theorem 3.2 Suppose I
Ξ
(δi, δj) and emim

Ξ
(δi, δj) are given

in Eq.(3) and Eq.(5), respectively. Then

IΞ(δi, δj) =
1

n
× emimΞ(δi, δj) + ln(n)

where n = |Ξ|.
Proof. With the above notation n

11
, n

1· and n·1 given in
Eq.(5), we can write an alternative, but fully equivalent,
expression:

IΞ(δi; δj) =
n11

n
ln
( n11

n1·n·1
n
)

+
n1· − n11

n
ln
( n1· − n11

n1·(n− n·1)
n
)

+
n·1 − n11

n
ln
( n·1 − n11

(n− n1·)n11

n
)

+
n− n1· − n·1 + n11

n
×

ln
(n− n1· − n·1 + n11

(n− n1·)(n− n·1)
n
)

=
[ n11

n
ln

n11

n1·n·1

+
n1· − n11

n
ln

n1· − n11

n1·

(
n− n·1

)
+
n·1 − n11

n
ln

n·1 − n11(
n− n·1

)
n·1

+
n− n1· − n·1 + n11

n
×

ln
n− n1· − n·1 + n11(
n− n1·

)(
n− n·1

) ]
+
[ n11

n
+
n1· − n11

n
+
n·1 − n11

n
+

n− n1· − n·1 + n11

n

]
× ln(n)

=
[
n11 ln

n11

n1·n·1

+
(
n1· − n11

)
ln

n1· − n11

nΞ(ti)
(
n− n·1

)
+
(
n·1 − n11

)
ln

n·1 − n11(
n− n1·

)
n·1

+
(
n− n1· − n·1 + n11

)
×

ln
n− n1· − n·1 + n11(
n− n1·

)(
n− n·1

) ]
× 1

n
+ ln(n)

= emimΞ(δi; δj)×
1

n
+ ln(n)

The proof is completed.
Theorem 3.3 Suppose emimΞ(δi, δj) is given expression
Eq.(5). Then emim

Ξ
(δi, δj) ≤ 0.

Proof. We prove each item of emimΞ(δi; δj) non-positive.
The proof is simple with an inequality a

a1·a2
≤ 1 if a ≤ a1

and a ≤ a2.

1) we have n11

n
1·n·1

≤ 1 since,

n11 = nΞ(ti, tj) ≤ nΞ(ti) = n1·

n11 = nΞ(ti, tj) ≤ nΞ(tj) = n·1
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2) we have n
10

n1·n·0
≤ 1 since,

n10 = nΞ(ti)− nΞ(ti, tj) ≤ nΞ(ti) = n1·

n10 = nΞ(ti)− nΞ(ti, tj) ≤ |Ξ| − nΞ(ti, tj)

≤ |Ξ| − nΞ(tj) = n·0

3) the proof is similar to 2).
4) we have n

00

n
0·n·0

≤ 1 since,

n00 = |Ξ| − nΞ(ti)− nΞ(tj) + nΞ(ti, tj)

= |Ξ| − nΞ(ti)−
[
nΞ(tj)− nΞ(ti, tj)

]
≤ |Ξ| − nΞ(ti) = n0·

n00 = |Ξ| − nΞ(tj)−
[
nΞ(ti)− nΞ(ti, tj)

]
≤ |Ξ| − nΞ(tj) = n·0

The proof is completed.
Note that the fact that the individual items of emim

Ξ
(δi, δj)

are non-positive can also be seen directly by the relations:

n1· = n11 + n10 , n0· = n01 + n00 ,

n·1 = n11 + n01 , n·0 = n10 + n00 .

Theorem 4.1 Suppose the four measures, mit
Ξ
(tδii , t

δj
j ),

where δiδj = 0, 1, are given in Eq.(7). Then we have the
following property.
(1) If n

Ξ
(ti,tj)

|Ξ| =
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) = 0, mitΞ(ti, t̄j) = 0,

mitΞ(t̄i, tj) = 0, mitΞ(t̄i, t̄j) = 0.

(2) If n
Ξ

(ti,tj)

|Ξ| >
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) > 0, mitΞ(ti, t̄j) ≤ 0,

mitΞ(t̄i, tj) ≤ 0, mitΞ(t̄i, t̄j) > 0.

(3) If n
Ξ

(ti,tj)

|Ξ| <
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| then

mitΞ(ti, tj) < 0, mitΞ(ti, t̄j) ≥ 0,

mitΞ(t̄i, tj) ≥ 0, mitΞ(t̄i, t̄j) < 0.

Proof. The proof of (1) is obvious. We only prove (2) here.
A similar proof can be given to (3).

Now, substituting PΞ(δ) and PΞ(δi, δj) in Eq.(1) and Eq.(2)
into mit

Ξ
(tδii , t

δj
j ) in Eq.(7), we can rewrite the four MIT

measures as follows (also see Example 4.1):

mitΞ(ti, tj) = PΞ(ti, tj) ln
PΞ(ti, tj)

PΞ(ti)PΞ(tj)

mitΞ(ti, t̄j) =
(
PΞ(ti)− PΞ(ti, tj)

)
ln
PΞ(ti)− PΞ(ti, tj)

PΞ(ti)
(
1− PΞ(tj)

)
mitΞ(t̄i, tj) =

(
PΞ(tj)− PΞ(ti, tj)

)
ln
PΞ(tj)− PΞ(ti, tj)(
1− PΞ(ti)

)
PΞ(tj)

mitΞ(t̄i, t̄j) =
(
1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)

)
×

ln
1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)(

1− PΞ(ti)
)(

1− PΞ(tj)
)

Thus, on one hand, from n
Ξ

(ti,tj)

|Ξ| >
n

Ξ
(ti)

|Ξ|
n

Ξ
(tj)

|Ξ| , we have

PΞ(ti, tj) > PΞ(ti)PΞ(tj)

PΞ(ti)− PΞ(ti, tj) < PΞ(ti)− PΞ(ti)PΞ(tj)

= PΞ(ti)
(
1− PΞ(tj)

)
PΞ(tj)− PΞ(ti, tj) < PΞ(tj)− PΞ(ti)PΞ(tj)

= PΞ(tj)
(
1− PΞ(ti)

)
1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)

> 1− PΞ(ti)− PΞ(tj) + PΞ(ti)PΞ(tj)

=
(
1− PΞ(ti)

)(
1− PΞ(tj)

)
which are equivalent respectively to

PΞ(ti, tj)

PΞ(ti)PΞ(tj)
> 1

PΞ(ti)− PΞ(ti, tj)

PΞ(ti)
(
1− PΞ(tj)

) < 1

PΞ(tj)− PΞ(ti, tj)

PΞ(tj)
(
1− PΞ(ti)

) < 1

1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)(
1− PΞ(ti)

)(
1− PΞ(tj)

) > 1

then we obtain

ln
PΞ(ti, tj)

PΞ(ti)PΞ(tj)
> 0

ln
PΞ(ti)− PΞ(ti, tj)

PΞ(ti)
(
1− PΞ(tj)

) < 0

ln
PΞ(tj)− PΞ(ti, tj)

PΞ(tj)
(
1− PΞ(ti)

) < 0

ln
1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)(

1− PΞ(ti)
)(

1− PΞ(tj)
) > 0

On the other hand, for t, ti, tj ∈ VΞ
, from

0 < PΞ(t) =
nΞ(t)

|Ξ| ≤ 1

0 ≤ 1− PΞ(t) < 1

PΞ(ti) =
nΞ(ti)

|Ξ| ≥
nΞ(ti, tj)

|Ξ| = PΞ(ti, tj)

PΞ(tj) =
nΞ(tj)

|Ξ| ≥
nΞ(ti, tj)

|Ξ| = PΞ(ti, tj)

we obtain

PΞ(ti, tj) > PΞ(ti)PΞ(tj) > 0

PΞ(ti)− PΞ(ti, tj) ≥ 0

PΞ(tj)− PΞ(ti, tj) ≥ 0

1− PΞ(ti)− PΞ(tj) + PΞ(ti, tj)

>
(
1− PΞ(ti)

)(
1− PΞ(tj)

)
≥ 0

Hence, from the above four rewritten MIT measures, we can
see that the four inequalities in (2) hold.
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