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Abstract—Nowadays, many HPC systems use the multi-core
system as a computational node. Predicting the communication
performance of multi-core cluster systems is complicated job, but
finding out it is important to use multi-core system efficiently. In
the previous study, we introduced the simple linear regression
models for predicting the communication costs in collective I/O.
In the models, however, because it is important to get the
communication characteristics of the given system, we designed
cFireworks, an MPI application to measure the communication
costs of HPC systems. In this paper, we explain the detail
concept and experimental results of cFireworks. The performance
evaluation showed that the expected communication costs with
the linear regression models generated by using the output of

cFireworks are reasonable to use.
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I. INTRODUCTION

Because modern HPC systems consist of multi-core com-
putational nodes, the systems frequently issue the complex
intra-node and inter-node communications. In such systems,
predicting the communication performance is difficult, but it
is an important process to use HPC systems efficiently.

Collective I/O is the specialized I/O which provides the
functions of single-file based parallel I/O. As the number of
processes and the size of a problem increase, the importance of
collective I/O is also emphasized. The most well known paral-
lel programming library, the message passing interface (MPI),
also supports collective I/O and it follows the two-phase I/O
scheme in order to improve the collective I/O performance[1],
[2], [3], [4]. The two-phase I/O consists of data exchange phase
and I/O phase. In terms of data exchange phase, it has to
generate a number of complicated communication operations
and they become some parts of collective I/O overheads.

In the previous study[5], we have shown it is possible to
improve the performance of collective I/O by reducing the
communication costs. Furthermore, we also have demonstrated
that finding out the expected communication costs before
launching an application is important to reduce the commu-
nication costs in collective I/O. We used the linear regression
models for predicting the communication costs and it was
important to understand the communication characteristics of
given systems in order to get the reasonable linear regression
model. For this reason, we considered making cFireworks, an
MPI application to measure the communication characteristics
of multi-core cluster systems and partially introduced the

basic concept of cFireworks in the previous work[5]. In this
paper, we explain the more detail and improved concept of
cFireworks and draw the experimental results with different
kinds of multi-core cluster systems.

This paper is organized as follows. The previous research
on communication model is summarized in Section II. Section
III presents the main concept of cFireworks. The results of
performance evaluations are described in Section IV. Finally,
the conclusions are presented in Section V.

II. COMMUNICATION MODEL

When someone want to understand the process of com-
munications or communication costs, it is helpful to use a
valid communication model. In this section, we explain some
communication models, such as the classical one and the linear
regression model for collective I/O communications.

The LogP model is very well-known communication
model which uses four parameters: L, o, g, and P stand for la-
tency, overhead, bandwidth, and processors respectively[6][7].
It assumes a message passing procedure in distributed memory
system and is intended for short messages. Many variants
of LogP have been introduced as the system environments
change[8][9].

Nowadays, many HPC systems use the multi-core sys-
tem as a computational node. Communications in multi-core
cluster systems are classified into two groups: intra-node
and inter-node communications. In those multi-core cluster
systems, because each core can communicate simultaneously,
the communication media should be shared. Vienne et al.[10]
suggested a predictive model for concurrent communication
in multi-core systems. It sets several elementary sections of
conflict parts and gets the communication time by predicting
the cost of each section.

In some case, such as collective I/O, it is possible to expect
the communication costs involving all processors by obtaining
the communication time in the bottlenecked computational
node[5]. Especially, data exchange time in collective I/O is
proportional to the communication time in the hot-spot node.
The simple linear model which uses the number of intra- and
inter-node communications was introduced in order to expect
the communication time in a node. The primary role of the
prediction function in the study was predicting the relative
performance of a given node set rather than obtaining accurate
performance of the set. For this reason, they used a simple and
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(a) The first version (b) The modified version

Fig. 1: Basic concept of cFireworks. The dotted lines represent a node; the circle in the center indicates the root process. cFireworks
iterates to measure the communication time as an increase in the number of intra-node and inter-node communications

intuitive approach. The data exchange time in node ni can be
described as:

Tni
(cai, cei) = α · cai + β · cei + γ (1)

where cai is the number of intra-node communications within
ni and cei is the number of inter-node communications of ni.

III. cFireworks

In the previous study, we discovered that the data exchange
time of collective I/O was determined by the communication
time of the most overloaded node. Furthermore the commu-
nication time is represented by α, β and γ in equation (1).
Because these values are related with the characteristics of the
given system and communication procedures, it is necessary to
identify the communication characteristics of the given system.
For this reason we created a test program called cFireworks,
in order to measure the appropriate communication parameters
for the system.

Figure 1 shows the basic concept of the cFireworks test.
In the first version of cFireworks, a process acts as a hot spot.
In the real world, however, some processes in the same node
can concurrently participate in the intra- and inter-node com-
munications. For this reason, we designed the second version
of cFireworks reflecting this situation. In the modified version,
cFireworks has multiple hot spot processes. The processes are
assigned to sub-groups and the processes send or receive data
to their hot spot process in the sub-group. In this way, the
program generates multiple concurrent communications in a
node.

Algorithm 1 explains the pseudo code of cFireworks. It
measures the communication time of a node by varying the
number of intra- and inter-node communications. There is a
simple double loop for increasing the number of intra- and
inter-node communications (line 2, 3, 16, and 17)

and the communication times with each number of commu-
nication pair are measured in every iteration.

There are two kinds of procedures to post asynchronous
communications. In case of the first procedure intra-node
communications are posted first (line 5 and 9), while
the second procedure issues inter-node communications first
instead of the intra-node ones (line 19 and 23). In other
words, in the first measurement method, it generates the
intra-node communications and then launches the inter-node
communications; whereas in the second method, the inter-
node communications are called first instead of the intra-
node communications. In many cases, calling the intra-node
communications first shows slightly better performance.

IV. PERFORMANCE EVALUATION

All experiments in this study were performed with Tachyon
cluster systems1. Table I describes the specifications of
Tachyon I and II system. A computational node of Tachyon
I has four quad core CPUs, AMD’s Barcelona. Each CPU
is equipped with 2 Mbytes L3 cache memory, DDR2 mem-
ory controllers and HyperTransport controller. Tachyon II is
equipped with Intels Nehalem CPU which has an 8 Mbytes
shared cache memory and DDR3 memory controllers.

A. Results of the cFireworks tests

Figures 2, 3, and 4 show the results of the cFireworks in
the Tachyon I and II cluster system with a message size of 4
Mbytes. In order to reduce the number of iterations, cFireworks
measures the communication time with a pair of intra- and

1They are KISTI’s fourth supercomputers and the phase I system is ranked
at 130 in the list of TOP500 most powerful supercomputers published in June
2008, and the phase II system is ranked at 14 in the list released in November
2009[11].
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TABLE I: Specifications of KISTI Tachyon cluster systems

Hardware Software
Tachyon I Tachyon II Tachyon I Tachyon II

CPU AMD Opteron 2.3GHz Intel Xeon 2.93GHz OS CentOS 4.6 RedHat Enterprise 5.3
No. of nodes 188 3,176
No. of CPU cores 3008 25,408 MPI MVAPICH2 1.4
No. of CPU cores/node 16 8
No. of CPU sockets/node 4 2 File System Lustre 1.6.6 Lustre 1.8.1.1
Socket to socket bandwidth 8GB/s 25.6GB/s
Memory 32GB/node 24GB/node Queue Scheduler SGE 6.1u5 SGE 6.2u5
Interconnection network InfiniBand 4× DDR InfiniBand 8× QDR

Algorithm 1 cFireworks algorithm

1: procedure INTRA FIRST ⊲ Intra-node communication first
2: for x = 0; x < half star; x++ do

⊲ increase the no. of inter-node comm.
3: for y = 0; y < half star; y++ do

⊲ increase the no. of intra-node comm.
4: ...
5: for z = 0; z < numprocs; z++ do

⊲ post the intra-node comm. first
6: MPI Irecv(recv buff,...,);
7: end for

8: ...
9: for z = 0; z < numprocs; z++ do

10: MPI Isend(send buff,...,);
11: end for
12: end for

13: end for

14: end procedure

15: procedure INTER FIRST ⊲ Inter-node communication first
16: for x = 0; x < half star; x++ do

⊲ increase the no. of inter-node comm.
17: for y = 0; y < half star; y++ do

⊲ increase the no. of intra-node comm.
18: ...
19: for z = numprocs - 1; z ≥ 0; z- - do

⊲ post the inter-node comm. first
20: MPI Irecv(recv buff,...,);
21: end for
22: ...
23: for z = numprocs - 1; z ≥ 0; z- - do

24: MPI Isend(send buff,...,);
25: end for
26: end for

27: end for

28: end procedure

inter-node communications. That is, the hot spot process in
Fig. 1 has the same number of ingress links and egress links
for intra- or inter-node communications, respectively. For this
reason, we’ve used a linear regression model obtained from
the measured data considering equation (1) in order to cover
every possible number of communications in a node. Figure
2a, 3a, and 4 illustrate the regression models derived from the
data: the values of their coefficient of determination, R2, are
approximately 0.98s.

In case of Tachyon I, Figs. 2 and 3 show that the increasing
rates of the communication time had altered when there were
more than two pairs of intra-node communications. That is,
when the number of intra-node communications is in the
range of 2 and 7, the graph shows the rapid increases in
communication time unlike the results between 0 and 2. We
checked the system throughput with the measured data and

could find that when the number of intra-node communications
was less than 2, the throughput of the node still increased.
If, however, it was more than two, the throughput remained
steady and didn’t increase further. Consequently, the condition
of that the number of intra-node communications reaches two
is a criterion to determine whether the throughput of a node
is saturated or not. For this reason, we’ve split the linear
regression model into two variants: one for when throughput of
the node is not saturated and another for when the throughput is
saturated. By subdividing the regression model, the correctness
of the model is improved. For example, when the number of
intra-node communications is in the range of 2 and 7, R2s are
approximately 0.99s.

B. Validation test for cFireworks

In this section, we introduce the results of validation tests.
The results of cFireworks were used for predicting the commu-
nication costs of collective I/O. In order to generate collective
I/O workload, we used the MPI-Tile-IO benchmark[12] and
validated whether the linear regression models can provide
a good indicator or not by comparing the execution time
of MPI-Tile-IO and the results of cFireworks. In the test, a
4×4 array was distributed to 16 processes, which wrote and
read an 1 GB file. If the selected nodes have the different
number of processes, the communication times in collective
I/O are different according to the sequence of the nodes[5].
The performance was measured using four types of node sets
that had 16 processes from the eight nodes as described in
Table II and Figure 5.

Figure 6 shows the communication cost of the MPI-Tile-
IO and the expected values obtained by the linear regression
models. In order to focus on the data exchange phase itself,
the execution time without the file I/O phase was measured2.
In terms of collective I/O, if the size of I/O request is larger
than the collective buffer size, collective I/O iterates the data
exchange and I/O phases multiple times. We assumed that the
data exchange time for a single iteration is proportional to the
entire data exchange time and the linear regression models are
used for predict the time for a single iteration. This is the
reason why there is a gap between the measured data and the
predicted ones in those figures.

2In most of MPI library, the write and read operations have the same
communication workloads in the data exchange phase; however, unlike the
read operation, the write operation has additional routines for post write and
read modify write. Therefore, this causes the write operation to use more time
than the read operation.
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Fig. 2: Results of the cFireworks and their linear regression models (Tachyon I, intra-node communication first)
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Fig. 3: Results of the cFireworks and their linear regression models (Tachyon I, inter-node communication first)
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TABLE II: Test cases for the evaluation of the prediction functions

Expected Communication Costs
Tachyon I Tachyon II

Tests Node set Intra-node Inter-node Intra-node Inter-node
comm. first comm. first comm. first comm. first

T16-01 {4,4,2,2,1,1,1,1} 0.052138 0.051513 0.015699 0.016514
T16-02 {1,1,1,1,2,4,4,2} 0.040519 0.040198 0.013773 0.014291
T16-03 {1,1,2,2,1,1,4,4} 0.052138 0.051513 0.015699 0.016514
T16-04 {1,1,1,4,4,2,2,1} 0.034710 0.034541 0.012810 0.013180
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Fig. 5: Data distribution of each test cases in Table II
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Fig. 4: Results of the cFireworks and their linear regression
models (Tachyon II)

As seen in Table II and Fig. 6, the prediction values and
measured date of Tachyon II are much less than those of
Tachyon I. That is, the communication costs of Tachyon II
are lower than those of Tachyon I because the communication
performance of Tachyon II is much higher.

The result of the experiment also demonstrates that the
regression model can provide reasonable predictions in gen-
eral. As seen in Table II, we used four kinds of test sets
for the experiments. Because each node set has the different
order of nodes communication patterns in collective I/O are
also changed. In other words, each test case has the different
number of intra- and inter-node communications in a hot spot
node and this hot spot node determines the communication
time of collective I/O. We input the number of communications
in hot spot node of each test into our regression model and
compared the results with the measured data.

The experimental results in Fig. 6 showed that our regres-
sion model could generate the reasonable prediction values.
Because the predicted values are proportional to the real
measured data in a greater or less degree, it is possible to
use our regression model as a prediction model which can
find a good node set without MPI execution. The performance
differences among node sets in Tachyon II are not significant
but the linear regression model still can tell the expected
communication performance of Tachyon II.

V. CONCLUSION

Although predicting the communication performance of
multi-core cluster systems is troublesome task, finding out
the expected communication performance is important. In
this study, we introduced cFireworks, an MPI application to
measure the communication costs of HPC systems and the
outputs of cFireworks were used for generating the linear
regression models for predicting the communication costs. The
results of performance evaluation showed that the expected
communication costs with the linear regression models are rea-
sonable to use. Furthermore, they also proved that cFireworks
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Fig. 6: Expected values and real data exchange times (Tachyon
I and Tachyon II)

is simple and intuitive to use and helpful to generate the linear
regression models.
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