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Abstract—At present, many of the algorithms used and 

proposed for digital imaging biometric systems are based on 

mathematical complex models, and this fact is directly related to 

the performance of any computer implementation of these 

algorithms. On the other hand, as they are conceived for general 

purpose digital imaging, these algorithms do not take advantage 

of any common morphological features from its given domains. 

In this paper we developed a novel algorithm for the 

segmentation of the pupil and iris in human eye images, whose 

improvement’s hope lies in the use of morphological features of 

the images of the human eye.  Based on the basic structure of a 

standard biometric system we developed and implemented an 

innovation for each phase of the system, avoiding the use of 

mathematical complex models and exploiting some common 

features in any digital image of the human eye from the dataset 

that we used. Finally, we compared the testing results against 

other known state of the art works developed over the same 

dataset. 

Keywords—Biometric System; Digital Image Processing; Pupil 
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I. INTRODUCTION 

The purpose of Biometrics is the research of features that 
enable the univocal identification for each human being [1]. 

Since some time ago, the human iris is considered as a 
biometric because it has some special features against other 
biometrics [2] [3]. For example, the iris biometrical features 
are present in the human from the 3rd month of gestation, and 
it remains almost identical until individual‟s death. On other 
hand, any physical contact is not necessary to take an iris 
sample and the sample‟s forgery is practically remote (or at 
least too troublesome). In the iris visual pattern there is more 
biometrical information (for univocal human identification) 
than in a fingerprint [2] [3] [4]. Besides, the human iris 
diameter is very regular, varying between 11.5mm and 12mm 
from one individual to another, although, by the lens effect 
caused by the cornea we could measure 13mm of horizontal 
length [5]. This fact is really important, because it gives us an 
anatomical max value of 6.5mm for the iris radius in any eye 
image. Fig. 1 shows iris, pupil and sclera of the human eye. 

 

Fig. 1. Human eye‟s basic sections.  

A complete standard biometric system based on iris 
recognition  (BSI) consists of  four phases [6]: 

A. Segmentation.  

B. Normalization. 

C. Extraction. 

D. Matching. 

Almost every latest technique used for iris recognition and 
human identification shares a common origin, related from the 
beginning to the statistical analysis of digital imaging [7]. 
Many of the best algorithms for digital images treatment, 
filtering, and compression owe their success to this statistical 
approach, because, among other reasons, by modeling images 
as mathematical objects, theoretical developments, such as  
Fourier, Wavelet, Hugh transformations and Gabor filters 
could then be applied, obtaining in many cases excellent results 
[8] [9] [10] [11] [12] [13].  

Thus, most of the latest Iris biometric systems currently use 
these complex mathematical tools to accurately obtain the 
edges of the iris (Segmentation phase), and employ generic 
entropies (like Hamming Distance [14]) later, during the 
Matching phase. Aversely, the application of these statistical 
model-based algorithms in biometric systems may depend on 
filtering, pre-treatments, matrix calculus and other operations 
that could be costly in terms of computer implementations. 
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In this paper we developed a novel algorithm for the 
segmentation of the pupil and iris in human eye images, whose 
improvement‟s hope lies in the use of morphological features 
of the images of the human eye. Considering an image as a 
data structure and not as a mathematical object only, we 
proposed an original alternative for each one of the four phases 
of a biometric system based on the iris recognition. Our 
proposal introduces improvements in the performance of the 
system by drastically decreasing the complexity of the 
segmentation, in order to get lower computational cost 
compared to other similar algorithms. We implemented the 
system in an appropriate imaging framework in order to 
compare our results with other actual developments. 

The rest of the paper is organized as follows: Section II, 
presents a brief description of the Database, equipment and 
basic definitions and notations used in this work. In Section III 
we explain our iris segmentation algorithm in detail. Section 
IV and V are about the improvement of the Normalization and 
Extraction phases respectively. Section VI shows the results of 
our study. Conclusions and future scopes will appear in 
sections VI and VII respectively. 

II. MATERIALS, DEFINITIONS AND NOTATIONS 

We used CASIA iris image database version 1.0 [15]; 
because it is used today in  most of the developing works in the 
area of Iris Recognition [8] [16] [17] [18]. This database 
includes 7 different samples per individual and includes data of 
108 individuals; 4 for testing stage and 3 for training stage. The 
images of the Database have some common features, which 
became morphological invariants for our development: 

1) In every sample (image) of the dataset, there is exactly 

one eye. 

2) The pupil in the sample will look like a regular dark 

discoid.  

3) In each sample, the pupil represents the biggest dark 

region of the image. 

4) All the samples of the dataset are taken maintaining the 

same distance between sensor (camera) and target 

(individual’s eye); therefore, all the images share 

approximately the same spatial resolution. 

5) We know the spatial resolution parameter of the 

dataset; then, we can estimate in pixels the max value for the 

iris diameter (remember the 13mm max value, section I). 
In this work we used the following equipment: 

 Hardware: Sony(R) Vaio(TM) notebook VPCEB13-EL 
model. (CPU Intel(R) Core(TM) i3 M330 @2.13GHz, 
2GB RAM).  

 Software: RSI-IDL(R) y RSI-ENVI(R) 4.7 suite [19]. 

Finally, in this section, we present some definitions and 
notations used in this work. 

 We represent an ocular image of n x m pixels as a 
brightness value matrix I  of  n x m dimension (n 
columns and m rows). To refer to the element in column 
i,  and row j  of  matrix I, we use the standard notation: 

I[i,j], where i and j are natural numbers, with i n-1, 

and  0j m-1. Lower values in the matrix will be 
related to darker pixels in the image. 

 We use "cell" or "pixel" to denote an element of matrix 
I, which is associated to a brightness value and its 
coordinate pair in I. 

 The pupil segmentation of the ocular image I is the 
smallest circle that contains the pupil in I, which is 
represented with the pair (c,r), where c is the coordinate 
pair of its center and r its radius measured by adjacent 
pixels.  

 The iris segmentation of the ocular image I is the 
geometric circular crown S = (c,r,R) such that: the pair 
(c,r) is the pupil segmentation of I, and R  is the 
distance (in straight line pixels) from c  to a pixel from 
the limit iris-sclera on I. 

III. IRIS SEGMENTATION. A NOVEL PROPOSAL 

To delimit the iris in an ocular image, we need to find the 
appropriate c, r, and R parameters. First, let us note that R 
parameter is a constant for every sample (ocular image) in a 
dataset since we choose the anatomic max value of 13mm for 
the iris diameter as an outside diameter for all our iris 
segmentations. Then, we calculated R using the spatial 
resolution parameter of the dataset (see v in Section I). Thus, R 
was defined indeed as the necessary amount of adjacent pixels 
to cover 6.5mm in the image. 

To determine c and r parameters, which are not constants at 
all, note that c will vary from a sample to another according to 
the eye's position in the image, and r will be determined by the 
pupil dilatation in each sample. As we defined in the previous  
section, c and r parameters are obtained by calculating the 
pupil segmentation of the image. So, at this point, we reduced 
the problem of iris segmentation to obtain the pupil 
segmentation. 

A. Locating the pupil. “CRUZ” algorithm 

Let i = ( ix , iy ) the coordinate pair of a pixel pi located 

inside the pupil of image I. Let us trace four paths from i. Two 
will draw up the vertical trace (north and south paths), and the 
other two will compose the horizontal trace (east and west 
paths).  Each path will end when the difference between the 
brightness value of the next pixel and value of the current pixel 
pi is greater than τ (tolerance).  

 

 

 

 

 

 

 

 

Fig. 2. In red, the coordinate pair i. In green, the traces made by CRUZ 

algorithm. In violet, the horizontal and vertical traces. 
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Our idea was to approximate the pupil by mean of a perfect 
circle. To estimate the center c of the circle, the horizontal and 
vertical traces, and some geometrical principles were used:  

Consider the perpendicular line that passes through the 
middle point of horizontal trace (vertical violet line in Fig.2) 
and the perpendicular line that passes through the middle point 
of vertical trace. As you can see in Fig.2, the intersection of 

both lines approximates the pupil center. Now formally: let TN, 
TS, TE, TW be the lengths (in pixels) of the north, south, east 
and west  paths respectively obtained by CRUZ algorithm 

initialized  with  i = (xi, yi).   

Let   us   define  the center  c = (xc, yc) as follows:  

 2
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Let  I  be the matrix of a given ocular image, and i = (xi,yi) 
be the coordinate pair of some pixel located inside the pupil of 
that image. A pseudo-code for CRUZ algorithm from  i could 
be: 

1. TN, TS, TE, TW← 0 

2. while I[xi  ,yi] – I[xi  , yi-TN]| ≤ τ and TN < yi 

3. do TN←TN+ 1 

4. while I[xi, yi] – I[xi  , yi+TS]| ≤ τ and yi+TS < M–1 

5. do TS←TS+ 1 

6. while I[xi, yi] – I[xi+TE, yi]|≤τ and xi+TE < N–1 

7. do TE←TE+ 1 

8. while I[xi, yi] – I[xi-TW  , yi]|≤ τ and TW  < xi 

9. do TW←TW+ 1 

10. Calculate  xc given by (1)  

11. Calculate yc given by (2) 

12. c←(xc, yc) 

13. return c, TN, TS, TE, TW. 

The CRUZ algorithm outputs are the center c=(xc, yc) and 
the lengths (in pixels) of the four paths. Thus, after CRUZ 
algorithm running, we have a possible center for the circle; but 
we still need to determine the radius r to complete the pupil 
segmentation.  At first we could approximate r as half trace 
(whatever vertical or horizontal trace), but there is a detail we 
have to consider: The real pupil in the sample is not a perfect 
disc, since it has irregular edges, sometimes depending on light 
conditions, other times varying from an individual to another. 
This fact determines at least the next two issues: 

1) After CRUZ algorithm running, the lengths of the 

traces could be different, so we would have to establish 

criteria to obtain r from the traces. 

2) The farther from the real center of the pupil the initial 

coordinate pair i is, the worse the estimation by c of the real 

center will be. 
If the pupil were a perfect disc, both traces would measure 

the same; and a half-length trace would measure the radius r of 
our interest. In this case, CRUZ algorithm would obtain the 
exact center of the disk starting from any coordinate pair of the 
pupil, no matter how far from the center it is. 

The second issue suggests that we will obtain a better 
center c (closer to the real center) if the starting position i is 
already near the pupil center. Therefore, let 'c*' be the center 
calculated by CRUZ algorithm running. Therefore, to fix the 
second issue we will run CRUZ algorithm again, just from 'c*' 
as initial position. In other words, the first execution will get us 
closer to the real center, and the second will give us a very 
good estimation of it. 

 

Fig. 3. Graphical CRUZ algorithm execution from the estimated center. 

Finally, to attack the first issue, we decided to choose as 
radius r the minimum from the four paths given by a third 
CRUZ execution from the last center obtained (see Fig.3). This 
will guarantee that our pupil segmentation does not include iris 
pixels. Summary: To obtain our pupil segmentation (c,r), we 
will use CRUZ algorithm (double run) to obtain c, and again to 
obtain r, always assuming that the first run starts from a 
coordinate pair inside the pupil (the second and third run start 
from the center calculated by the earlier run). 

B. Improving CRUZ  algorithm 

Since the pupil represents the biggest dark area in any 
sample (see iii, Section I), if we choose a set of regular spaced 
positions from the image, most of the darker pixels will be 
from the pupil. Other dark pixels could come from eyelashes or 
some kind of noise. Therefore, we used that fact as follows:  If  
CRUZ  algorithm is executed from a dark pixel that is not in 
the pupil (eyelashes, noise, etc.), the horizontal and vertical 
traces will be too tiny or too different from each other.  

Therefore, we redefined the criterion to determine if a trace 

is adequate with  parameter, which specifies a minimum 
value for pupil radius. On the other hand, to determine if both 
traces are alike enough, we fixed a criterion of "expected 

circularity" introducing  parameter as a percent of desired 
similarity. We applied these rejection criteria over an ordered 
list C of coordinate pairs  (candidates to be from pupil). If a 
candidate is rejected, we pass to the next in C list. If not, we 
assumed that we have found a coordinate pair i as we needed to 
apply CRUZ algorithm. To minimize the number of 
comparisons, we could define C as a selection of regular 
spaced pixels (fig. 4) and then order them by bright level, 
starting from the darkest one. 

We introduced the following definitions: 

Let C={  } be the ordered finite list of pixels defined above 

such that: oc is the darkest one and ic is darker than 1ic . We 

will use the symbol “CRUZ[x]” to denote the execution of 
CRUZ algorithm initialized with the sample‟s pixel „x‟.  
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Fig. 4. Regular spaced pixels on a sample. 

Finally, the pupil segmentation algorithm is defined by the 
next nine steps: 

1. i← 0 ; TN, TS, TE, TW← 0 ; c← (0,0) 

2. CRUZ[ ic ]  (1st CRUZ running: each execution 

updates Ti’s and c) 

3. while T
 
(  -rejection criterion)  

4. do i←i+1  ;CRUZ[ ic ]  (try next candidate) 

5. CRUZ[c]   (2nd  CRUZ running: to improve c (c*)). 

6. CRUZ[c]   (3rd  CRUZ running: to recalculate r) 

7. If  
100min


MaxTT     ( -rejection criterion) 

8. Then  i←i+1  ; go to 2  (try next candidate). 

9. else return ( c, minT ).   

IV. NORMALIZATION: IMPROVEMENT OF THE SECOND 

PHASE  

The purpose of this section is to provide some kind of 
standardization of samples, in pursuit of obtaining 
improvements to further stages of a BSI. 

Most of the normalization methods consist in obtaining a 
feature matrix smaller than the original I sample [5] [6] [8] [20] 
[21] [22]. Dougman [5] proposed to build a normalized matrix, 
N, based on an iris sub-circumferences selection. To build the 

matrix N this methodology uses polar representation with and 
r parameters, where:  

 r (radial resolution) is the amount of regular spaced 
sub-circumferences to take from the circular crown 
given by the previous phase. These circumferences will 
be the rows of  matrix N. 

 angular resolution is the amount of regular spaced 
radios to take from the iris segmentation; these radios 
will be the columns of  matrix N. 

 

 
Fig. 5. Graphic  representation of  Daugman  method. Left:  original  

sample. Right:  normalization of the original sample.  

 

Fig. 6. Selected pixels by normalization with parameters  ‘’=65 and „r‟=15. 

Daugman's normalization is based on an arbitrary selection 
of regular spaced pixels. The risk of this method is that it  may 
produce a weak representative selection of iris texture. In 

addition, attacking this issue by and r increasing, will result 
in a bigger N matrix, and so, in a higher computational cost. In 
this work we proposed an improvement of Daugman's 
normalization. This new normalization procedure is based on 
the use of the sample mean and involves all of the pixels inside 
the iris. We decided to use the sample mean, because after 
several proofs we obtained better results than using other 
statistic functions for example median or standard deviation. 
Our normalization method produces the M normalized matrix 
as follows: 

1) Apply Daugman's method with appropriate parameters 

in order to produce an output matrix N that contains the whole 

of pixels of iris image. Note that matrix N will be redundant. 

2) Divide N on n x m sub-matrices according to a grid of    

n x m blocks. 

3) Define the M normalized matrix  as  M[i,j]  equal  to  

the  sample mean of the values in the  N sub-matrix of block 

(i,j), with i{0,1,..n-1} and j{0,1,..,m-1}. 
Figure 7 shows schematically the method for obtaining the 

M normalized matrix. 
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Fig. 7. Above, the matrix N from step 1, which contains all the pixels from 

the original sample. Overlapped in red, the grid of n x m blocks. Below, the 

final normalized matrix M obtained by computing the sample mean of each 

block. 

Formally: Let and rN be the Daugman‟s input 

parameters  such that applying unwrapping over an iris image, 
the output matrix N contains all the pixels of the image. Let 

VH  , be the horizontal and vertical lengths of every block 

respectively, defined by: 
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Our normalization matrix M is defined by: 

                                       [   ]  
jiB ,
                                    (7) 

where  i{0,1,..n-1} and j{0,1,,m-1} and: 

                                   ],[, yxNB ji                                     (8) 

with: 
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V. IMPROVING THE EXTRACTION PHASE 

The target of the Extraction phase in BSI is to find the 
biometric interest feature inside the normalized sample, and 
save it to build the so called "biometric code". This step is not 
really essential, since the normalized samples of the previous 
phase could be already used to identify persons. Anyway, we 
developed an additional new improvement of the BSI taking 
advantage of this phase and inspired by the following issue: If 
two samples have different base light level, the matching phase 
could fail even when the samples came from the same 
individual. 

We defined our feature vector (biometric code) attempting 
to keep the change relation from one pixel to another as 
follows: 

                        ],[],1[],[ jiMjiMjiD                   (9) 

where M is the normalized matrix obtained after applying 
(7), and D is a matrix of dimension [(n-1) x m], called 
differential matrix. 

Now, let us suppose that M1 and M2 are two normalized 
samples to be compared; suppose that M2 is the same that M1 
but adding a constant k to every element of M1. Note that we 
will get the same feature vector D for both M1 and M2 . This 
means that D can fix the base light issue successfully, and the 
matching phase will take advantage of this improvement. 

VI. RESULTS AND VALIDATION 

We ran CRUZ algorithm in CASIA database version 1.0. 
The   success-failure criterion in pupil segmentation stage was  
based on geometrical circle properties. Additionally, the 
success in the segmentation process was visually verified. We 
obtained a 100% effectiveness in 4.45 seconds (approximately 
5 milliseconds per sample). We calculated an "average 
stepping" of 1.067. This parameter measures the number of 
pixels that CRUZ algorithm discarded before obtaining the 
center and radius of the circle in the pupil segmentation 
process.  

The Matching phase results were evaluated according to the 
following two criteria: 

 Individual‟s Matching criterion: We counted one 
success every time our method matched an individual 
with any of its testing samples. (Success over number of 
individuals).  

 Sample‟s Matching criterion: We counted one success 
every time our method matched a sample with the right 
individual. (Success over number of samples). 

Matching phase task is to measure the level of similarity 
between two biometric codes to establish whether these came 
from the same individual or not. As in most of the works in this 
area ([6] [8] [21]),  we used Hamming distance to compare two 
iris codes. Given D1 and D2, two differential matrices of [(n-1) 
x m] dimension, the Hamming distance between D1 and D2 is 
defined as follows: 
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where B is a constant that indicates the amount of bits 

necessary to represent every D1 (or D2) element,  

corresponds to XOR operator and “ | |1 ” counts no-nulls bits in 
binary representation. 

Our Matching results compared to another development 
presented in [6] are summarized in Table 1. 

TABLE I.  MATCHING RESULTS 

 

Methods 

Parameters 

Computational 

Cost (milliseconds) 

Matching 

Effectiveness 

Daugman [5] 285 99,90% 

LiMa and Tan [21] 95 99,23% 

Boles and Boashashe [22]  55 93,20% 

Wavelet Multiscale [8] 81 99,60% 

Our Method 73 95.8% ~ 100%
(a)

 

a. 95.8% effectiveness for “sample‟s matching” criterion, and 100%  for “individual‟s matching” 

criterion. 
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VII. CONCLUSIONS 

A. Segmentation 

Our results are highly positive because the analysis and 
segmentation of 756 images in the entire dataset only takes 
4.45 seconds in a low profile standard laptop. The value 
obtained for average stepping shows that the first pixel selected 
by the CRUZ algorithm was already inside the pupil in most of 
the cases. 

B. Matching 

The computational cost of our methodology is lower than 
in most of the methods presented in [8]. The Matching 
effectiveness in CASIA database Version 1.0 is superior or 
equal to 95.8%. When we used the individual‟s matching 
criterion, our method reached the 100% of matching 
effectiveness. In consequence, we were capable of identifying 
all the individual of the CASIA database  version 1.0 [15].    

C.  Globals 

In general we verified informal ideas such as: 

 “It was possible to resolve the segmentation problem in 
a very much simpler way and without complex 
mathematical models” 

 “Most of the existing methods put a big effort and high 
complexity into taking the most accurate segmentation, 
we committed to improving the other steps of the 
system awaiting for competent results” 

Indeed, we obtained competitive results spending fewer 
computing resources on the segmentation step (resigning 
perhaps some accuracy), and proposing then some prior 
improvements before comparison by Hamming. 

In other words, we achieved a drastic complexity reduction 
by segmenting the inner pupil edge with our CRUZ algorithm 
and taking advantage of anatomical standards for the outer 
edge, opposing the possible accuracy loss in segmentation 
through improvements implemented in the normalization step 
and the use of  differential matrix before comparison. 

VIII. FUTURE SCOPES 

At present the problem of matching based on iris 
segmentation is a matter of big interest in the forensic and 
security areas. The behavior of our proposal using color images 
of faces is still being a pending matter. Likewise, the study of 
the effectiveness of our matching method, considering other 
measures of similarity between biometric codes, is matter an 
interesting open problem to be addressed in the future. The 
analysis of CRUZ algorithm performance using another 
database is also a pending issue.   
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