
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

89 | P a g e

www.ijacsa.thesai.org

Fast Vertical Mining Using Boolean Algebra

Hosny M. Ibrahim

Information Technology Department

Faculty of Computer and

Information, Assiut University

Assiut, Egypt

M. H. Marghny

Computer Science Department

Faculty of Computer and

Information, Assiut University

Assiut, Egypt

Noha M. A. Abdelaziz

Information System Department

Faculty of Computer and

Information, Assiut University

Assiut, Egypt

Abstract—The vertical association rules mining algorithm is

an efficient mining method, which makes use of support sets of

frequent itemsets to calculate the support of candidate itemsets.

It overcomes the disadvantage of scanning database many times

like Apriori algorithm. In vertical mining, frequent itemsets can

be represented as a set of bit vectors in memory, which enables

for fast computation. The sizes of bit vectors for itemsets are the

main space expense of the algorithm that restricts its

expansibility. Therefore, in this paper, a proposed algorithm that

compresses the bit vectors of frequent itemsets will be presented.

The new bit vector schema presented here depends on Boolean

algebra rules to compute the intersection of two compressed bit

vectors without making any costly decompression operation. The

experimental results show that the proposed algorithm, Vertical

Boolean Mining (VBM) algorithm is better than both Apriori

algorithm and the classical vertical association rule mining

algorithm in the mining time and the memory usage.

Keywords—association rule; bit vector; Boolean algebra;

frequent itemset; vertical data format

I. INTRODUCTION

Data mining is defined as “The non trivial extraction of
implicit, previously unknown and potentially useful
information from databases” [1]. Association rules mining is an
active research topic in the data mining field, which is the key
step in the knowledge discovery process [2, 3]. Mining
frequent itemsets (FIs) is the most important task in mining
association rules. Furthermore, frequent itemsets detection can
be used in other data mining tasks like classification and
clustering [4-6]. Therefore a lot of mining frequent itemsets
algorithms has been proposed. None of these methods can
outperform other methods for all types of datasets with every
minimum support [7, 8]. The well-known (FIs) mining
algorithms are based on either horizontal or vertical data
structures. Some of the horizontal based algorithms are
Apriori, AprioriTid and FP-growth. Apriori is a level-wise
algorithm that adopts an iterative method to discover frequent
itemsets, in which k frequent itemsets is created by joining k-1
frequent itemsets, and then remove itemsets that contain non-
frequent items. Non frequent items are detected by scanning
the database once for each itemset to calculate its support. This
is the most important shortcoming of Apriori algorithm [9].
AprioriTid has been proposed to improve Apriori algorithm‟s
efficiency by reducing the overhead of I/O by scanning the
database only once in the first iteration [9]. FP-growth
algorithm mines frequent item sets by scanning the database
only two times without candidate generation. It also
compresses the data set into a data structure called FP-tree. FP-

growth finds all the frequent item sets by searching the FP-tree,
recursively [10]. Eclat, BitTableFI and IndexBitTableFI are
some examples of vertical based (FIs) mining methods. Eclat
uses a structure called Tidset, which store the transaction
identifiers for each itemset. The support of an itemset X can be
fast derived as the cardinality of the Tidset of the itemset.
Thus, the support(X) = |Tidset(X)|. It also proposed the way of
computing Tidset(XY) by the intersection operator between

Tidset(X) and Tidset(Y). That is, Tidset(XY) = Tidset(X) ∩

Tidset(Y) [11]. In BitTableFI [12] each item occupied |T| bits,
called a bit vector, where |T| is the number of transactions in D.
The bit vector of a new itemset XY from the two itemsets X
and Y could be easily derived by the AND operation on the
two bit vectors of X and Y. Because the length of the two bit
vectors was the same, the result would be a bit vector with the
same length of |T| bits. Dong and Han used the BitTable to
mine frequent itemsets based on the level-wise concept in the
Apriori algorithm [9]. Their approach was named BitTableFI
[12]. Note that in the Apriori algorithm, the supports were
computed by re-scanning databases, while in the BitTableFI
approach, they were derived by the intersection of bit vectors.
The support of an itemset could be found by counting the
number of „1‟ bits in its corresponding bit vector. Later, in
Song et al. [13], Index-BitTableFI employed index array to
improve the algorithm. From the above discussion, the
following points can be concluded: vertical association rule
algorithms conquer some disadvantages of horizontal ones,
vertical association rule algorithms need memory space too
much when the dataset is too large. In order to overcome this
issue, in this paper, a proposed algorithm that depends on a
simple representation of frequent itemsets, which is,
compressing the support sets bitmap of data itemsets that to be
sent to memory, so as to save the space required by the
algorithm. It contributes to reducing not only the execution
time but also the required memory. The rest of this paper is
organized as follows; Section II briefly revisits some
association rule background information. The difference
between vertical and horizontal data formats are listed in
Section III. Boolean Algebra rules and theories are given in
section IV. In Section V, the new algorithm, VBM algorithm
is proposed. Section VI analyzes the performance of the
proposed algorithm and conclusion is given in Section VII.

II. BASIC CONCEPTION

Association rule mining involves detecting items which
tend to occur together in transactions and the association rules
that relate them [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

90 | P a g e

www.ijacsa.thesai.org

 Support (A⇒B) = P(A∪B). (1)

Confidence (A⇒B) = P(B|A)=
Support(𝐴∪𝐵)

Support(𝐴)
 (2)

 =
Support_Count(𝐴∪𝐵)

Support_Count(𝐴)

Consider I= {i1, i2,………,im} as a set of items. Let D, the
task relevant data, is a set of database transactions where each
transaction T is a set of items such that T is a subset of I. Each
transaction is associated with an identifier, called TID. Let A
be a set of items. A transaction T is said to contain A if and
only if A⊆T. An Association Rule is an implication of the form

A⇒B, where A⊂I, B⊂I, and A∩B=φ.

Rule support and confidence are two measures of rule
interestingness. They respectively reflect the usefulness and
certainty of discovered rules.

The rule A⇒B holds in the transaction set D with support s,
where s is the percentage of transactions in D that contain A∪B
(i.e., the union of sets A and B, or say, both A and B). This is
taken to be the probability, P(A∪B). That is,

The rule A⇒B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that
also contain B. This is taken to be the conditional probability;
P(B |A) .That is,

The definition of a frequent pattern relies on the following
considerations. A set of items is referred to as an itemset
(pattern). An itemset that contains K items is a K-itemset. The
set {X, Y} is a 2-itemset. The occurrence frequency of an
itemset is the number of transactions that contain the itemset.
This is also known as the frequency or the support count of an
itemset [15]. An itemset satisfies minimum support if the
occurrence frequency of the itemset is greater than or equal to
the minimal support threshold value defined by the user [16].
The number of transaction required for the itemset to satisfy
minimum support is therefore referred to as the minimum
support count. If an itemset satisfies minimum support, then it
is a frequent itemset.

A minimum support threshold and a minimum confidence
threshold can be set by users or domain experts. Rules that
satisfy both a minimum support threshold (min_support) and
minimum confidence threshold (min_confidence) are called
strong. The objective of association rule mining is to find rules
that satisfy both a minimum support threshold (min_support)
and minimum confidence threshold (min_confidence) .Thus
the problem of mining association rules can be reduced to that
of mining frequent itemsets.

In general, the problems of association rules can be divided
into two sub ones [17, 18]:

1) Find out all the frequent itemsets in database D

according to the minimum support.

2) Generate association rules from frequent itemsets with

the limitations of minimal confidence.
Since the second step is much less costly than the first and

the overall performance of mining association rules is

determined by the first step, here we are concentrating only on
the first step.

III. VERTICAL ASSOCIATION RULES MINING

Horizontal and vertical data formats are two common kinds
of data formats to be adopted in frequent itemsets mining.
Horizontal structure is the data distribute way by most
association rules mining algorithm, its dataset is made up of a
series of transactions, each of them includes transaction‟s ID
TID and relevant transaction‟s inclusive itemsets. However,
vertical structure is that the dataset is made of a series of items;
each of the items has its TID-list that is the ID list including all
transaction of this item [19]. Table I shows transaction
database. Fig. 1 and 2 show respectively horizontal and vertical
structures for database in Table 1.

TABLE I. A TRANSACTION DATABASE

Fig. 1. Horizontal structure

Fig. 2. Vertical structure

Algorithms for mining frequent itemsets based on the
vertical data format are usually more efficient than those based
on the horizontal, because the former often scan the database
only once and compute the supports of item sets fast [20].

IV. BOOLEAN ALGEBRA

Boolean algebra which was developed by George Boole in
1854, is an algebraic structure defined by a set of elements, B
(i.e. B is defined as a set with only two elements 0 and 1 in two

TID Item
1 A, C, D

2 A, B, D, E

3 B, C, E

4 A, B, C, D

5 C, D, E

6 A, B, C, D, E

D

C

D

E

D

E

B

C

E

A

1
B

C

A

1
B

C

D

A

1

A

1
C

B

D

E

5

3

4

6

2

1

6

4

3

5

5

5

3

4

2

4

6

6

5

2

3

4

6

2

1

1

2

1

E

C

D

B

A

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

91 | P a g e

www.ijacsa.thesai.org

valued Boolean algebra), together with two binary operators,
(+) and (•), providing that the following postulates are
satisfies[21]:

Note:

 Here is listed only the postulates which are of interest
to that work not all Boolean algebra postulates.

 In two valued Boolean algebra, zero and one define the
elements of the set B, and variables such as x and y
merely represent the elements.

1. (a) The element 0 is an identity with respect to +; that is,
x + 0 = 0 + x = x.

1. (b) The element 1 is an identity with respect to •; that is,
x • 1 = 1 • x = x.

2. (a) The structure is commutative with respect to +; that
is, x + y = y + x.

2. (b) The structure is commutative with respect to •; that
is, x • y = y • x.

3. For every element x ∈ B, there exists an element xʹ ∈
B (called the complement of x) such that (a) x + xʹ = 1 and (b)
x • xʹ = 0.

Duality principal of Boolean algebra states that: every
algebraic expression deducible form the postulates of Boolean
algebra remains valid if the operators and identity elements are
interchanged, simply interchange OR and AND operators and
replace 1‟s by 0‟s and vice versa as shown in parts a and b in
the above postulates.

Some important theorems that were derived from the above
postulates:

1: (a) x + x= x.

 (b) x • x= x.

2: (a) x + 1= 1.

 (b) x • 0= 0.

3: involution (xʹ) ʹ = x.

4: DeMorgan (a) (x + y) ʹ = xʹyʹ.

 (b) (x y) ʹ = xʹ + yʹ.

V. VERTICAL BOOLEAN MINING ALGORITHM (VBM)

This section divided into three subsections the first
subsection V.A. describes the schema of bitmap used and its
compression function. The intersection methods of the
compressed vectors are described in V.B. Finally the detailed
steps of the algorithm are illustrated in the last subsection V.C.

A. Schema of bitmap used and its compression function

This algorithm is based on vertical data format but instead
of representing each item with a bit vector of fixed length equal
to the total number of transactions, it uses compression
function that works as described below.

The primary goal of the compression function is to make
each vector starts and ends with consecutive zeros and then it
gets rid of these zero bits to compress the vector.

For each bit vector in the bitmap the compression function
examines the start and the end of that vector. Three cases could
be found:

Case1: the vector starts and ends with sequence of zeros.

Case2: the vector starts and ends with sequence of ones.

Case3 (a): the vector starts with sequence of ones and ends

with zeros.

Case3 (b): the vector starts with sequence of zeros and

ends with ones.

Fig. 3. Example of transactions before and after compression

In case 1, the compression function does not change the
vector form. In case 2, the compression function sets the vector
in its complement form to make it starts and ends with
sequences of zeros as in case 1. In the third case the
compression function counts the number of sequential zeros
and the number of sequential ones in the front and tail of the
vector. The compression function leaves the vector in its
original form if the number of zeros counted is greater than
number of ones and puts it in the complement form in the
opposite case.

For all three cases given in Fig. 3, the algorithm uses a new
data structure for vectors. The vector consists of three
elements. The first element, flag, Boolean value which
indicates either the vector is in the original form (i.e. when
flag=0) or complement form (i.e. when flag=1). The second
element, removed (abbreviated as rem), binary value
representing the number of zeros or ones removed from the
beginning of the bit vector.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

92 | P a g e

www.ijacsa.thesai.org

The third element, data, list of bits representing the
remaining bits after removing sequences of zero bits or one bits
at the front and the tail of the old vector.

B. How to intersect two compressed bit vectors and calculate

their support

Fundamental idea: In order to enhance algorithm‟s
operation speed after compressing bitmap, the algorithm makes
use of Boolean algebra's rules and postulates to intersect two
compressed bit vectors and to calculate their support fast
without making any decompression operation for itemsets‟ bit
vectors.

During intersecting two compressed bit vectors according
to the schema illustrated above one of the following three cases
will be occured:

Case 1: the two vectors are in the original form (i.e.
flag1=flag2=0).

Initially, the decimal equivalents of the “rem” values of the
two vectors are compared and the larger is used as the “rem”
value of the resulting vector. Then AND operations are
performed for the data parts of the two bit vectors. These
operations start at position zero for the vector of larger “rem”.
The starting point for the AND operation in the other vector is
the difference between the decimal equivalents of vectors‟
“rem” values. If an initial resulting value is 0, then the “rem”
value of the outcome vector is increased by 1 until the first
non-zero resulting value is reached. Next, from the position of
non-zero bit, all the resulting bits by the AND operation are
kept in the outcome vector‟s data part except the last
consecutive zero bits. Finally the resulting vector‟s flag value
is set to zero indicating that the result of intersecting two
original bit vectors is a vector in the original form. An example
is given below to illustrate the intersection operation on case 1.
Assume there are two vectors in the original form: {0, 11, {1,
1, 1, 0, 0, 1}} and {0, 111, {1, 1, 0, 1, 0, 1, 1, 1}} and their
intersection is to be found. Both vectors are in the original form
because their flags equals to 0. Because the “rem” value (111)
of the second vector which is corresponding to 7 in decimal is
larger than that (11) of the first that means 3 in decimal system,
the AND operation then begins from position (7-3= 4) of first
vector and position (0) of the second, at which the result of 0
and 1 is 0. The resulting “rem value” increased by one to be 8.
Then, the result of next bits 1 AND 1 is 1 not equals to zero.
The rest bits of the second vector are automatically removed
because they haven‟t corresponding bits in the first vector
which means that those bits in the first vector were zero bits so
that the compression function removed them, and the results
are all 0. The resulting vector is then {0, 1000, {1}}.The
process is shown in Fig. 4.

Case 2: one vector is in the original form and the other is in
the complement form (i.e. flag1=0, flag2=1 or vice versa).

The result of intersecting two vectors in different forms as
in this case is a vector in the original form so the outcome
vector‟s flag value is set to zero. The “rem” value of the
resulting vector initially equals to that of the vector in the
original form whether it is the larger or not. Then the decimal
equivalents of the “rem” values of the two vectors are
compared, if the “rem” value of the original vector is the

larger, the AND operations start at position zero for data part
of the original vector and from position equals to the difference
between original vector‟s “rem” and complement vector‟s
“rem” for data part of the complement vector. If an initial
resulting value is 0, then the “rem” value of the outcome vector
is increased by 1 until the first non-zero resulting value is
reached. But if the complement vector‟s “rem” is the lager, the
first complement vector‟s “rem” value minus original vector‟s
“rem” value bits of the original vector are added to the data
part of the resulting vectors as they are, because those bits are
corresponding to bits of value 1 that were removed from the
complement vector in its original form and according to
Boolean algebra postulates element 1 is an identity element
with respect to AND operation. Next, AND operations are
performed between the bits of the original vector and the
complement of bits in the complement vector and the resulting
bits are kept in the outcome vector‟s data part except the last
continuous zero bits. An example is given below to illustrate
the intersection operation on this case. Two vectors are given
the first is in the original form: {0, 11, {1, 1, 1, 0, 0, 1}} and
the second is in the complement form {1, 111, {1, 0, 0, 0, 0, 1,
1, 1}} as shown by their flags, and their intersection is to be
found. Initially the “rem” value of the resulting vector will be 3
because the “rem” value of the original vector is (11) that
means 3 in decimal system. Then the first 4 bits in the original
vector will be put in the data part of the resulting vector,
because those bits in the original vector were actually
corresponding to 4 ones in the complement

Fig. 4. Intersection Example

vector before compression (i.e. 7-3=4 where 7 is the “rem” of
complement vector greater than 3, “rem” value of original
one). Next the AND operation starts at bit number 4 in the
original vector and position (0) of the complement one, at
which the result of 0 and 1 is 0. The resulting position then
moves backward to 8. Then, the result of next bits 1 and 1 is 1
not equals to zero. The rest bits of the second vector are
automatically removed because they haven‟t corresponding
bits in the first vector which means that those bits in the first
vector were zero bits so that the compression function removed
them, and the results are all 0. The resulting vector is then {0,
11, {1,1,1,0,0,1}}.The process is shown in Fig. 5 and the
opposite is given in Fig. 6 for vectors
{0,11,{1,1,1,0,0,1,1,1}}and {1,10,{1,1,1,0,1,0,1}}with result
equals{0,101,{1,0,0,0,1,1}}.

Case 3: the two vectors are in the complement form (i.e.
flag1=flag2=1).

In this case the resulting vector of intersecting two vectors
in the complement form is a vector in the complement form,
but in some cases this complemented vector may require

1

&

1 1 1 0 0 1

1 1 1 1 0 1 0 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

93 | P a g e

www.ijacsa.thesai.org

transforming to the original form according to some conditions
that will be described in the algorithm in section V part c.

Depending on Demorgan theory illustrated in section IV,
the algorithm follows steps that are exactly the opposite to
those that were followed in case 1. Case 3 intersection steps
are illustrated here by an example shown in Fig. 7.

Fig. 5. Intersection Example

Fig. 6. Intersection Example

Note that: In Fig. 5 and 6 the algorithm automatically puts

any bit above sign (

) in the data part of the resulting bit

vector and removes any bit below sign (

) without actually

making AND operation to those bits with 0 and 1, depending
on Boolean algebra rules illustrated above in order to save
execution time.

Fig. 7 shows {1,11,{1,0,1,0,1,0,0,1}} and
{1,100,{1,1,0,0,1,0,1}} two compressed bit vectors in the
complement form assuming that the original length of the bit
vectors before compression is 15 bit.

The result is to be obtained by the following steps:

1) The “rem” value of the resulting vector equals to the

smallest “rem” value of the two vectors
As rem1=11< rem2=100 (i.e. 3 < 4 in decimal system),

therefore the resulting “rem” value=3.

2) The (rem2-rem1) first bits of the vector with the

smallest “rem” value are placed as they are in the data part

of the resulting vector according to postulate 1(a) in section

IV , because those bits are actually corresponding to zeros in

rem2.
As rem2-rem1= 4-3= 1 bit therefore first bit only of the

first vector is to be put in the first bit of the data part of the
resulting vector as shown in Fig. 7.

3) Since the intersection operation of two original vectors

is accomplished through AND operations, therefore the

opposite is done here according to Demorgan theory (i.e.

(x•y)ʹ=xʹ+yʹ) aforementioned in section IV, using An OR

operations between each two corresponding bits till reaching

the end of one of the bit vectors as shown in Fig. 7.

4) If the bits of one of the vectors finished before the

other, the remaining bits of the longer vector will be placed as

they are in the data part of the resulting vector, because those

bits are actually corresponding to zeros of the shorter vector

as discussed in step 2.

5) Finally the resulting vector is equals to

{1,11,{1,1,1,0,1,1,0,1}}.

C. How VBM algorithm works

The main steps of the algorithm can be summarized as
follows.

First Step: Scan the database once, obtain a compressed bit
vector for each data item by the aforementioned method and
set up the result in the structure that were described in section
V.A, and calculate support of each data item to produce
frequent 1-itemsets and its related compressed bitmap.

Hint: support of items represented by vectors in the
original form is calculated by counting the number of set bits in
the data part of that vector (i.e. number of “1” bits). But
support of items represented by complemented vectors is

Fig. 7. Intersection Example

equals to the total number of transactions minus the number of
set bits in the data part of the bit vector.

Second step: In order to get the higher order candidate and
frequent (k+1)-itemsets Fk+1 for each k>1, given a frequent k-
itemset Fk, the algorithm uses Depth-first method to join each
two itemsets if they have the same first k-1 items (excluding
just the last item) and the last item of first k-itemset comes
before the last item of the second k-itemset in Fk, and applies a
modification of the intersection function, which works on three
components of the bit vector consisting of the flag part,
removed value and the data part, so that obtaining higher order
frequent (k+1)-itemsets does not require rescanning the
database again.

Third step: the intersection function first checks flags of
both bit vectors to be intersected to detect which type of
intersection needs to be followed as illustrated in section V.B,
in section V.B. cases 1 and 2 are straightforward but case 3
may return vector either in the original or complement form.
Case 3 returns vector in the complement form if the rem values
of both vectors aren‟t equal to zero and the total of the length
of the data part of the bit vectors plus the decimal equivalents
of their rem values (i.e. number of removed zeros) is less than
the total number of transactions, because this means that both
original vectors were starting and ending with ones so the

&

1

0

&

 & !

!!

1 1 1 0 0 1

1 1 1 0 0 0 0 1

1 1 1 0 0 1

1

&

1

0

&

 & !

1 1 1 0 0 1

1 0 0 0 1 1

1 1 1 1 0 1 0

1

||

0 1 1 1 1 0 1 1

0 1 1

0 1 0 1 0

1 1 0 1 0 1 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

94 | P a g e

www.ijacsa.thesai.org

result will for sure starts and ends with ones, so the resulting
vector should be returned as it is (i.e. in the complement form).
Case 3 returns vector in the original form (i.e. case 3 will return
the complement of the complemented vector section IV
Theorem3 involution) if one of the previous conditions aren‟t
satisfied.

Examples on case 3:

a) intersection method returns complement vector:

the result of intersecting {1,11,{1,0,1,0,1,0,0,1}} and
{1,100,{1,1,0,0,1,0,1}} equals {1,11,{1,1,1,0,1,1,0,1}}.

b) intersection method returns original vector: the

result of intersecting {1,0,{1,1,1,0,1,1,1}} and

{1,101,{1,1,0,0,1,0,1,1,1,1}} equals {0,11,{1,0,0,0,1,1,0,1}}.

Forth step: after detecting which type of intersection needs
to be followed, the intersection operation is accomplished as
illustrated in details in section V.B. to obtain the resulting bit
vector. Then support count is calculated for the result. If
support count>= min_support the result is added to frequent
k+1 itemset or removed otherwise.

Finally, this process will be continued until there aren‟t any
longer frequent (k+1)-itemsets, then the algorithm ends.

The proposed VBM approach and the schema of bit vectors
used consume less time for computing the intersection among
compressed bit vectors and for counting the number of 1 bits in
the resulting bit vector due to their shorter lengths so the
number of bits to be checked is smaller than in the case of
classical vertical association rule mining algorithms.

VI. EXPERIMENTAL RESULTS

All experiments were performed on an Intel Core 2 Duo
(2×2 GHz), with 3GBs RAM of memory and running
Windows vista and algorithms were coded using java
programming language. Three real databases

1
 used

previously in the evaluation of frequent itemsets mining
algorithms [22, 23, 24] are used for the experiments, with
their characteristics shown in Table II. Due to the huge
amounts of the resulting frequent itemsets the method
org.apache.commons.io.FileUtils.contentequals from package
commons-io-2.4.jar downloaded from apache library

2
 is used

to compare the results of the new algorithm with those of the
Apriori algorithm and classical vertical association rule mining
algorithm without compressed bitmap, to make sure that the
results are correct.

Fig. 8 to 10 show the comparison of the execution time of
the VBM algorithm, Apriori algorithm and the classical

vertical association rules algorithm without compressed
bitmap, along with different minimum supports. It could be
observed that the VBM algorithm was always faster than the
other two in all the results.

Next, experiments were conducted to compare between the
VBM total memory usage (in MBs) and the vertical association
rules algorithm without compressed bitmap. The VBM
algorithm compression percentage is also calculated. The
results for the three databases under different min_support
values are shown in Table III.

From Fig. 8 to 10 we can see that the mining time of VBM
algorithm is far from Apriori algorithm but not faraway from
the mining time of vertical association rules algorithm without
compressed bitmap. But VBM decreased much in memory
used by frequent itemsets bitmap than vertical association rules
algorithm without compressed bitmap as illustrated in Table
III.

Regarding execution time, the non-parametric wilcoxon
significance test has been performed to proof the efficiency of
the VBM algorithm for the three datasets. The results of the
test are given in Table IV. The VBM algorithm showed
significant results when compared to Apriori algorithm and the
vertical association rules algorithm as p-value<0.05 in all
cases.

The given results show that the strength of the proposed
algorithm (VBM) lies in its ability to decrease much in mining
time than horizontal association rule mining algorithm and

TABLE II. CHARACTERISTICS OF DATASETS

Dataset
No. of

transactions

No. of

Items

Average

Transaction

Length

Chess
3196 75 37

Mushroom
8124 119 23

Connect
67557 129 43

decrease much in memory space than vertical ones. So the
proposed algorithm is better than both of them.

As observed from results the reduction in memory and
mining time of the proposed algorithm is significantly affected
by the content of dataset. The reduction in memory & time
cannot be achieved unless the records in the bitmap starts &
ends with sequences of zeros and ones as illustrated in section
V.A.

1 http://fimi.cs.helsinki.fi/data
2 http://commons.apache.org/proper/commons-io/[Accessed 19/7/2014]

http://fimi.cs.helsinki.fi/data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

95 | P a g e

www.ijacsa.thesai.org

TABLE III. MEMORY USAGE OF THE VBM AND VERTICAL ASSOCIATION

RULE ALGORITHM

Fig. 8. Execution time of the three algorithms for chess dataset under

different min_support values

Fig. 9. Execution time of the three algorithms for connect dataset under
different min_support values

Fig. 10. Execution time of the three algorithms for mushroom dataset under

different min_support values

TABLE IV. EXECUTION TIME SIGNIFICANCE TEST

0
300
600
900

1200
1500
1800
2100
2400
2700

85 80 75 70 65

Ti
m

e
(s

e
c)

Min. Support %

Chess

VBM
algorithm

vertical
association
rule algorithm

apriori

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

98 94 90 86

Ti
m

e
(s

e
c)

Min. Support %

connect

VBM algorithm

vertical
association
rule algorithm

apriori

0

500

1000

1500

2000

2500

3000

3500

50 40 30 20 10

Ti
m

e
(s

e
c)

Min. Support %

mushroom

VBM algorithm

vertical
association
rule algorithm

apriori

DataSet
Minimum

Support

No.

Frequen

t

Itemsets

Memory

Usage of

Dataset in

Vertical

Associatio

n Rules

Algorithm

(MBs)

Memory

Usage of

Dataset

in VBM

Algorith

m (MBs)

Compres

sion

Percenta

ge

Chess

65% 111239 42.9 31.8 25.8%

70% 48731 18.57 13.92 25%

75% 20993 8 5.91 26%

80% 8227 3.13 2.26 27.8%

85% 2669 1.02 0.74 27%

Mushroo
m

10% 574431 556 350.28 37%

20% 53583 51.89 34.14 34.2%

30% 2735 2.6 1.76 32%

40% 565 0.54 0.35 35.2%

50% 153 0.15 0.104 30.5

Connect

86% 105047 845 591.5 30%

90% 27127 218 156.31 28.3%

94% 4223 34 24.14 29%

98% 180 1.44 1.045 27.4%

P-value of: Chess Mushroom Connect

VBM vs. Vertical 0.007 0.014 0.002

VBM vs. Apriori 0.001 0.008 0.001

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

96 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION

This paper proposes a new algorithm that uses a new data
structure for compressed bitmap that allows fast computing of
support count. So this algorithm relieves the contradiction
between vertical association rules algorithm‟s run speed and
memory space to a certain extent. The contributions could be
divided into two parts. First contribution is using new data
structure to compress bit vector of transaction list representing
each frequent item set in only one database scan. Second In
order to enhance algorithm‟s operation speed after bitmap
compression, the algorithm makes use of Boolean algebra
theories and postulates to perform bit vectors‟ intersection
operation and calculate support count without need to decode
the compressed bit- vectors. Therefore, frequent itemsets is
generated quickly. The experimental results indicate that the
proposed algorithm is much more efficient than Apriori and the
classical vertical algorithm for mining association rules in
terms of mining time and memory usage. When the database
does not contain consecutive bits of zeros and ones at the start
and the end of large number of its transactions, the VBM
algorithm may suffer the problem of memory scarcity. So
solving this memory problem will be the target addressed in
one of our future works. We may use transaction partitioning to
solve this mentioned problem or search for other techniques.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: concepts and Techniques. San
Francisco, CA : Morgan Kaufmann Publishers, 8-131-20535-5, 2010.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” Proceedings of the ACM
SIGMOD International Conference on Management of Data,Washington
DC, pp. 207-216. May 1993.

[3] Y. Tong, L. Chen,Y. Cheng, “Mining frequent itemsets over
uncertain databases,” Proceeding of the VLDB Endowment, Vol. 5(11),
pp.1650-1661, Aug. 2012.

[4] J. Han and M. Kamber , Data mining: concepts and techniques. Morgan
Kaufmann Publishers, 1-55860-901-6, 2006.

[5] M. H. Marghny, R. M. Abd El-Aziz and A. I. Taloba, “An Effective
evolutionary clustering algorithm: hepatitis C case study,” Computer
Science Department, Egypt, International Journal of Computer
Applications, vol. 34, No.6, pp. 0975-8887, 2011.

[6] M. H. Marghny and A. I. Taloba, “Outlier detection using improved
genetic K-means,” International Journal of Computer Applications, vol.
28, No.11, pp. 33-36, 2011.

[7] M. H. Marghny, and A. A. Shakour, “Fast, simple and memory efficient
algorithm for mining association rules,” International Review on
Computers & Software, 2007.

[8] M. H. Margahny and A. A. Shakour, “Scalable algorithm for mining
association rules,” ICCST, 2006.

[9] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” Proceedings of the 20th International Conference on
Very Large Data Bases, Sep. 1994.

[10] J. Han, J. Pei, Y. Yin, “Mining frequent patterns without candidate
generation," in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, ACM Press, pp. 1-12, 2000.

[11] MJ. Zaki, S. Parthasarathy, M. Ogihara and W. Li, “New algorithms for
fast discovery of association rules,” 3rd Int. Conf. Knowl. Disc. Data
Min. (KDD), pp. 283-286, 1997.

[12] J. Dong and M. Han, “BitTableFI: An efficient mining frequent itemsets
algorithm,” Knowl.-Based Syst., Vol. 20(4), pp. 329 – 335, 2007.

[13] W. Song, B. Yang and Z. Xu, “Index-BitTableFI: An improved
algorithm for mining frequent itemsets,” Knowl.-Based Syst., Vol.
21(6), pp. 507-513, 2008.

[14] A. T. Bjorvand, “Object Mining: A Practical application of data mining
for the construction and maintenance of software components,”
Proceedings of the Second European Symposium, PKDD-98, pp. 121-
129, 1998.

[15] A. Tiwari, R. K. Gupta and D. P. Agrawal, “Cluster based partition
approach for mining frequent itemsets,” Journal of Computer Science,
Vol. 9(6), pp. 191-199, 2009.

[16] M. Houtsma and A. Swami, “Set oriented mining for association rules in
relational databases,” 11th International conference on Data
Engineering, pp. 25-33, 1995.

[17] T. Y. Lin, Hu. Xiaohua and E. Louie, “A fast association rule algorithm
based on bitmap and granular computing fuzzy systems,“ FUZZ '03,
Vol. 12(1), pp. 25-28 May 2003.

[18] T. Karthikeyan and N. Ravikumar, “A survey on association rule
mining,” International Journal of Advanced Research in Computer and
Communication Engineering, Vol. 3(1), pp. 5223-5227 Jan 2014.

[19] Liu Yang and Mei Qiao, “A Bitmap compression algorithm for vertical
association rules mining,” 2008 International Symposium on Computer
Science and Computational Technology (ISCSCT). (IEEE), pp. 101-
104, 2008.

[20] V. Bay, H. Tzung-Pei and L. Bac, “Dynamic bit vectors: An efficient
approach for mining frequent itemset,” Scientific Research & Essays,
Vol. 6(25), pp. 5358-5368, 2011.

[21] M. Morris Mano & M. D. Ciletti : Digital Design, Chapter (2), Pearson
Prentice Hall. 0-13-277420-8. pp. 38-43, 2013.

[22] YU. Xiaomei , H. Wang,”Improvement of Eclat algorithm based on
support in frequent itemset mining,” journals of computer, Vol. 9(9), pp.
2116-2123, Sep 2014.

[23] Y. Dejnouri, Y. Geraibia, M. Mehdi, A. Bendjoudi and N. Nouali-
Taboudjemat, “An efficient measure for evaluating association rules,”
Proceeding of the 6th international conference of soft computing and
pattern recognition (SoCPaR), IEEE explore, pp. 406-410, Aug. 2014.

[24] Z. Khan, F. Haseen, S. T. A. Rizvi and M. ShabbirAlam, “ Enhanced
BitApriori algorithm: an intelligent approach for mining frequent
itemset,” Proceeding of the 3rd international conference on frontiersof
intelligent computing: Theory and Application (FICTA), Vol. 327, pp.
343-350, Springer, 2015.

