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Abstract—The vertical association rules mining algorithm is 

an efficient mining method, which makes use of support sets of 

frequent itemsets to calculate the support of candidate itemsets. 

It overcomes the disadvantage of scanning database many times 

like Apriori algorithm. In vertical mining, frequent itemsets can 

be represented as a set of bit vectors in memory, which enables 

for fast computation. The sizes of bit vectors for itemsets are the 

main space expense of the algorithm that restricts its 

expansibility. Therefore, in this paper, a proposed algorithm that 

compresses the bit vectors of frequent itemsets will be presented. 

The new bit vector schema presented here depends on Boolean 

algebra rules to compute the intersection of two compressed bit 

vectors without making any costly decompression operation. The 

experimental results show that the proposed algorithm, Vertical 

Boolean Mining (VBM) algorithm is better than both Apriori 

algorithm and the classical vertical association rule mining 

algorithm in the mining time and the memory usage. 

Keywords—association rule; bit vector; Boolean algebra; 

frequent itemset;  vertical data format 

I. INTRODUCTION 

Data mining is defined as “The non trivial extraction of 
implicit, previously unknown and potentially useful 
information from databases” [1]. Association rules mining is an 
active research topic in the data mining field, which is the key 
step in the knowledge discovery process [2, 3]. Mining 
frequent itemsets (FIs) is the most important task in mining 
association rules. Furthermore, frequent itemsets detection can 
be used in other data mining tasks like classification and 
clustering [4-6]. Therefore a lot of mining frequent itemsets 
algorithms has been proposed. None of these methods can 
outperform other methods for all types of datasets with every 
minimum support [7, 8]. The well-known (FIs) mining 
algorithms are based on either horizontal or vertical data 
structures. Some of the horizontal based algorithms are 
Apriori, AprioriTid and FP-growth. Apriori is a level-wise 
algorithm that adopts an iterative method to discover frequent 
itemsets, in which k frequent itemsets is created by joining k-1 
frequent itemsets, and then remove itemsets that contain non-
frequent items. Non frequent items are detected by scanning 
the database once for each itemset to calculate its support. This 
is the most important shortcoming of Apriori algorithm [9]. 
AprioriTid has been proposed to improve Apriori algorithm‟s 
efficiency by reducing the overhead of I/O by scanning the 
database only once in the first iteration [9]. FP-growth 
algorithm mines frequent item sets by scanning the database 
only two times without candidate generation. It also 
compresses the data set into a data structure called FP-tree. FP-

growth finds all the frequent item sets by searching the FP-tree, 
recursively [10]. Eclat, BitTableFI and IndexBitTableFI are 
some examples of vertical based (FIs) mining methods. Eclat 
uses a structure called Tidset, which store the transaction 
identifiers for each itemset. The support of an itemset X can be 
fast derived as the cardinality of the Tidset of the itemset. 
Thus, the support(X) = |Tidset(X)|. It also proposed the way of 
computing Tidset(XY) by the intersection operator between 

Tidset(X) and Tidset(Y). That is, Tidset(XY) = Tidset(X) ∩ 

Tidset(Y) [11]. In BitTableFI [12] each item occupied |T| bits, 
called a bit vector, where |T| is the number of transactions in D. 
The bit vector of a new itemset XY from the two itemsets X 
and Y could be easily derived by the AND operation on the 
two bit vectors of X and Y. Because the length of the two bit 
vectors was the same, the result would be a bit vector with the 
same length of |T| bits. Dong and Han used the BitTable to 
mine frequent itemsets based on the level-wise concept in the 
Apriori algorithm [9]. Their approach was named BitTableFI 
[12]. Note that in the Apriori algorithm, the supports were 
computed by re-scanning databases, while in the BitTableFI 
approach, they were derived by the intersection of bit vectors. 
The support of an itemset could be found by counting the 
number of „1‟ bits in its corresponding bit vector. Later, in 
Song et al. [13], Index-BitTableFI employed index array to 
improve the algorithm. From the above discussion, the 
following points can be concluded: vertical association rule 
algorithms conquer some disadvantages of horizontal ones, 
vertical association rule algorithms need memory space too 
much when the dataset is too large. In order to overcome this 
issue, in this paper, a proposed algorithm that depends on a 
simple representation of frequent itemsets, which is, 
compressing the support sets bitmap of data itemsets that to be 
sent to memory, so as to save the space required by the 
algorithm. It contributes to reducing not only the execution 
time but also the required memory. The rest of this paper is 
organized as follows; Section II briefly revisits some 
association rule background information. The difference 
between vertical and horizontal data formats are listed in 
Section III. Boolean Algebra rules and theories are given in 
section IV.  In Section V, the new algorithm, VBM algorithm 
is proposed. Section VI analyzes the performance of the 
proposed algorithm and conclusion is given in Section VII. 

II. BASIC CONCEPTION 

Association rule mining involves detecting items which 
tend to occur together in transactions and the association rules 
that relate them [14]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 1, 2015 

90 | P a g e  

www.ijacsa.thesai.org 

 Support (A⇒B) = P(A∪B).                       (1)  

Confidence (A⇒B) = P(B|A)=  
Support(𝐴∪𝐵)

Support(𝐴)
              (2) 

                                              =  
Support_Count(𝐴∪𝐵)

Support_Count(𝐴)
       

 

Consider I= {i1, i2,………,im} as a set of items. Let D, the 
task relevant data, is a set of database transactions where each 
transaction T is a set of items such that T is a subset of I. Each 
transaction is associated with an identifier, called TID. Let A 
be a set of items. A transaction T is said to contain A if and 
only if A⊆T. An Association Rule is an implication of the form 

A⇒B, where A⊂I, B⊂I, and A∩B=φ. 

Rule support and confidence are two measures of rule 
interestingness. They respectively reflect the usefulness and 
certainty of discovered rules. 

The rule A⇒B holds in the transaction set D with support s, 
where s is the percentage of transactions in D that contain A∪B 
(i.e., the union of sets A and B, or say, both A and B). This is 
taken to be the probability, P(A∪B). That is, 

 

The rule A⇒B has confidence c in the transaction set D, 
where c is the percentage of transactions in D containing A that 
also contain B. This is taken to be the conditional probability; 
P(B |A) .That is, 

The definition of a frequent pattern relies on the following 
considerations. A set of items is referred to as an itemset 
(pattern). An itemset that contains K items is a K-itemset. The 
set {X, Y} is a 2-itemset. The occurrence frequency of an 
itemset is the number of transactions that contain the itemset. 
This is also known as the frequency or the support count of an 
itemset [15]. An itemset satisfies minimum support if the 
occurrence frequency of the itemset is greater than or equal to 
the minimal support threshold value defined by the user [16]. 
The number of transaction required for the itemset to satisfy 
minimum support is therefore referred to as the minimum 
support count. If an itemset satisfies minimum support, then it 
is a frequent itemset. 

A minimum support threshold and a minimum confidence 
threshold can be set by users or domain experts. Rules that 
satisfy both a minimum support threshold (min_support) and 
minimum confidence threshold (min_confidence) are called 
strong. The objective of association rule mining is to find rules 
that satisfy both a minimum support threshold (min_support) 
and minimum confidence threshold (min_confidence) .Thus 
the problem of mining association rules can be reduced to that 
of mining frequent itemsets. 

In general, the problems of association rules can be divided 
into two sub ones [17, 18]: 

1) Find out all the frequent itemsets in database D 

according to the minimum support. 

2) Generate association rules from frequent itemsets with 

the limitations of minimal confidence. 
Since the second step is much less costly than the first and 

the overall performance of mining association rules is 

determined by the first step, here we are concentrating only on 
the first step. 

III. VERTICAL ASSOCIATION RULES MINING 

Horizontal and vertical data formats are two common kinds 
of data formats to be adopted in frequent itemsets mining. 
Horizontal structure is the data distribute way by most 
association rules mining algorithm, its dataset is made up of a 
series of transactions, each of them includes transaction‟s ID 
TID and relevant transaction‟s inclusive itemsets. However, 
vertical structure is that the dataset is made of a series of items; 
each of the items has its TID-list that is the ID list including all 
transaction of this item [19]. Table I shows transaction 
database. Fig. 1 and 2 show respectively horizontal and vertical 
structures for database in Table 1. 

TABLE I.  A TRANSACTION DATABASE 

 

 

 

 

 

 

 

  

 

  

 

 

 

Fig. 1. Horizontal structure 

 

 

 

 

 

 

Fig. 2. Vertical structure 

Algorithms for mining frequent itemsets based on the 
vertical data format are usually more efficient than those based 
on the horizontal, because the former often scan the database 
only once and compute the supports of item sets fast [20]. 

IV. BOOLEAN ALGEBRA 

Boolean algebra which was developed by George Boole in 
1854, is an algebraic structure defined by a set of elements, B 
(i.e. B is defined as a set with only two elements 0 and 1 in two 
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valued Boolean algebra), together with two binary operators, 
(+) and (•), providing that the following postulates are 
satisfies[21]: 

Note: 

 Here is listed only the postulates which are of interest 
to that work not all Boolean algebra postulates.   

 In two valued Boolean algebra, zero and one define the 
elements of the set B, and variables such as x and y 
merely represent the elements. 

1. (a) The element 0 is an identity with respect to +; that is, 
x + 0 = 0 + x = x. 

1. (b) The element 1 is an identity with respect to •; that is, 
x • 1 = 1 • x = x. 

2. (a) The structure is commutative with respect to +; that 
is, x + y = y + x. 

2. (b) The structure is commutative with respect to •; that 
is, x • y = y • x. 

3.  For every element x ∈ B, there exists an element xʹ ∈ 
B (called the complement of x) such that (a) x + xʹ = 1 and (b) 
x • xʹ = 0. 

Duality principal of Boolean algebra states that: every 
algebraic expression deducible form the postulates of Boolean 
algebra remains valid if the operators and identity elements are 
interchanged, simply interchange OR and AND operators and 
replace 1‟s by 0‟s and vice versa as shown in parts a and b in 
the above postulates. 

Some important theorems that were derived from the above 
postulates:  

1: (a) x + x= x. 

     (b) x • x= x. 

2: (a) x + 1= 1. 

     (b) x • 0= 0. 

3: involution (xʹ) ʹ = x. 

4: DeMorgan (a) (x + y) ʹ = xʹyʹ. 

                       (b) (x y) ʹ = xʹ + yʹ. 

V. VERTICAL BOOLEAN MINING ALGORITHM (VBM) 

This section divided into three subsections the first 
subsection V.A. describes the schema of bitmap used and its 
compression function. The intersection methods of the 
compressed vectors are described in V.B. Finally the detailed 
steps of the algorithm are illustrated in the last subsection V.C. 

A. Schema of bitmap used and its compression function 

This algorithm is based on vertical data format but instead 
of representing each item with a bit vector of fixed length equal 
to the total number of transactions, it uses compression 
function that works as described below. 

The primary goal of the compression function is to make 
each vector starts and ends with consecutive zeros and then it 
gets rid of these zero bits to compress the vector. 

For each bit vector in the bitmap the compression function 
examines the start and the end of that vector. Three cases could 
be found: 

Case1: the vector starts and ends with sequence of zeros. 

 

 
Case2: the vector starts and ends with sequence of ones. 

 

 
Case3 (a): the vector starts with sequence of ones and ends 

with zeros. 

 

 
Case3 (b): the vector starts with sequence of zeros and 

ends with ones. 

 

 
Fig. 3. Example of transactions before and after compression 

In case 1, the compression function does not change the 
vector form. In case 2, the compression function sets the vector 
in its complement form to make it starts and ends with 
sequences of zeros as in case 1. In the third case the 
compression function counts the number of sequential zeros 
and the number of sequential ones in the front and tail of the 
vector. The compression function leaves the vector in its 
original form if the number of zeros counted is greater than 
number of ones and puts it in the complement form in the 
opposite case. 

For all three cases given in Fig. 3, the algorithm uses a new 
data structure for vectors. The vector consists of three 
elements. The first element, flag, Boolean value which 
indicates either the vector is in the original form (i.e. when 
flag=0) or complement form (i.e. when flag=1). The second 
element, removed (abbreviated as rem), binary value 
representing the number of zeros or ones removed from the 
beginning of the bit vector.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 1, 2015 

92 | P a g e  

www.ijacsa.thesai.org 

The third element, data, list of bits representing the 
remaining bits after removing sequences of zero bits or one bits 
at the front and the tail of the old vector. 

B. How to intersect two compressed bit vectors and calculate 

their support 

Fundamental idea: In order to enhance algorithm‟s 
operation speed after compressing bitmap, the algorithm makes 
use of Boolean algebra's rules and postulates to intersect two 
compressed bit vectors and to calculate their support fast 
without making any decompression operation for itemsets‟ bit 
vectors. 

During intersecting two compressed bit vectors according 
to the schema illustrated above one of the following three cases 
will be occured: 

Case 1: the two vectors are in the original form (i.e. 
flag1=flag2=0). 

Initially, the decimal equivalents of the “rem” values of the 
two vectors are compared and the larger is used as the “rem” 
value of the resulting vector. Then AND operations are 
performed for the data parts of the two bit vectors. These 
operations start at position zero for the vector of larger “rem”. 
The starting point for the AND operation in the other vector is 
the difference between the decimal equivalents of vectors‟ 
“rem” values. If an initial resulting value is 0, then the “rem” 
value of the outcome vector is increased by 1 until the first 
non-zero resulting value is reached. Next, from the position of 
non-zero bit, all the resulting bits by the AND operation are 
kept in the outcome vector‟s data part except the last 
consecutive zero bits. Finally the resulting vector‟s flag value 
is set to zero indicating that the result of intersecting two 
original bit vectors is a vector in the original form. An example 
is given below to illustrate the intersection operation on case 1. 
Assume there are two vectors in the original form: {0, 11, {1, 
1, 1, 0, 0, 1}} and {0, 111, {1, 1, 0, 1, 0, 1, 1, 1}} and their 
intersection is to be found. Both vectors are in the original form 
because their flags equals to 0. Because the “rem” value (111) 
of the second vector which is corresponding to 7 in decimal is 
larger than that (11) of the first that means 3 in decimal system, 
the AND operation then begins from position (7-3= 4) of first 
vector and position (0) of the second, at which the result of 0 
and 1 is 0. The resulting “rem value” increased by one to be 8. 
Then, the result of next bits 1 AND 1 is 1 not equals to zero. 
The rest bits of the second vector are automatically removed 
because they haven‟t corresponding bits in the first vector 
which means that those bits in the first vector were zero bits so 
that the compression function removed them, and the results 
are all 0. The resulting vector is then {0, 1000, {1}}.The 
process is shown in Fig. 4. 

Case 2: one vector is in the original form and the other is in 
the complement form (i.e. flag1=0, flag2=1 or vice versa). 

The result of intersecting two vectors in different forms as 
in this case is a vector in the original form so the outcome 
vector‟s flag value is set to zero. The “rem” value of the 
resulting vector initially equals to that of the vector in the 
original form whether it is the larger or not. Then the decimal 
equivalents of the “rem” values of the two vectors are 
compared, if the “rem” value of the original vector is the 

larger, the AND operations start at position zero for data part 
of the original vector and from position equals to the difference 
between original vector‟s “rem” and complement vector‟s 
“rem” for data part of the complement vector. If an initial 
resulting value is 0, then the “rem” value of the outcome vector 
is increased by 1 until the first non-zero resulting value is 
reached. But if the complement vector‟s “rem” is the lager, the 
first complement vector‟s “rem” value minus original vector‟s 
“rem” value bits of the original vector are added to the data 
part of the resulting vectors as they are, because those bits are 
corresponding to bits of value 1 that were removed from the 
complement vector in its original form and according to 
Boolean algebra postulates element 1 is an identity element 
with respect to AND operation. Next, AND operations are 
performed between the bits of the original vector and the 
complement of bits in the complement vector and the resulting 
bits are kept in the outcome vector‟s data part except the last 
continuous zero bits. An example is given below to illustrate 
the intersection operation on this case. Two vectors are given 
the first is in the original form: {0, 11, {1, 1, 1, 0, 0, 1}} and 
the second is in the complement form {1, 111, {1, 0, 0, 0, 0, 1, 
1, 1}} as shown by their flags, and their intersection is to be 
found. Initially the “rem” value of the resulting vector will be 3 
because the “rem” value of the original vector is (11) that 
means 3 in decimal system. Then the first 4 bits in the original 
vector will be put in the data part of the resulting vector, 
because those bits in the original vector were actually 
corresponding  to  4  ones  in   the   complement 

 

 

 

 

 

 

Fig. 4. Intersection Example 

vector before compression (i.e. 7-3=4 where 7 is the “rem” of 
complement vector greater than 3, “rem” value of original 
one). Next the AND operation starts at bit number 4 in the 
original vector and position (0) of the complement one, at 
which the result of 0 and 1 is 0. The resulting position then 
moves backward to 8. Then, the result of next bits 1 and 1 is 1 
not equals to zero. The rest bits of the second vector are 
automatically removed because they haven‟t corresponding 
bits in the first vector which means that those bits in the first 
vector were zero bits so that the compression function removed 
them, and the results are all 0. The resulting vector is then {0, 
11, {1,1,1,0,0,1}}.The process is shown in Fig. 5 and the 
opposite is given in Fig. 6 for vectors 
{0,11,{1,1,1,0,0,1,1,1}}and {1,10,{1,1,1,0,1,0,1}}with result 
equals{0,101,{1,0,0,0,1,1}}. 

Case 3: the two vectors are in the complement form (i.e. 
flag1=flag2=1). 

In this case the resulting vector of intersecting two vectors 
in the complement form is a vector in the complement form, 
but in some cases this complemented vector may require 

1 

& 

1 1 1 0 0 1 

1 1 1 1 0 1 0 1 
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transforming to the original form according to some conditions 
that will be described in the algorithm in section V part c.   

Depending on Demorgan theory illustrated in section IV, 
the algorithm follows steps that are exactly the opposite to 
those that were followed in case 1. Case 3 intersection steps 
are illustrated here by an example shown in Fig. 7. 

 

 

 

 

 

 

Fig. 5. Intersection Example 

 

 

 

 

 

 

Fig. 6. Intersection Example 

Note that:  In Fig. 5 and 6 the algorithm automatically puts 

any bit above sign ( 
 
)  in the data part of the resulting bit 

vector and removes any bit below sign ( 
 
) without actually 

making AND operation to those bits with 0 and 1, depending 
on Boolean algebra rules illustrated above in order to save 
execution time. 

Fig. 7 shows {1,11,{1,0,1,0,1,0,0,1}} and 
{1,100,{1,1,0,0,1,0,1}} two compressed bit vectors in the 
complement form assuming that the original length of the bit 
vectors before compression is 15 bit. 

The result is to be obtained by the following steps: 

1) The “rem” value of the resulting vector equals to the 

smallest “rem” value of the two vectors 
As rem1=11< rem2=100 (i.e. 3 < 4 in decimal system), 

therefore the resulting “rem” value=3. 

2) The (rem2-rem1) first bits of the vector with the 

smallest “rem” value are placed as they are in the data part 

of the resulting vector according to postulate 1(a) in section 

IV , because those bits are actually corresponding to zeros in 

rem2. 
As rem2-rem1= 4-3= 1 bit therefore first bit only of the 

first vector is to be put in the first bit of the data part of the 
resulting vector as shown in Fig. 7. 

3) Since the intersection operation of two original vectors 

is accomplished through AND operations, therefore the 

opposite is done here according to Demorgan theory (i.e. 

(x•y)ʹ=xʹ+yʹ) aforementioned in section IV, using An OR 

operations between each two corresponding bits till reaching 

the end of one of the bit vectors as shown in Fig. 7. 

4) If the bits of one of the vectors finished before the 

other, the remaining bits of the longer vector will be placed as 

they are in the data part of the resulting vector, because those 

bits are actually corresponding to zeros of the shorter vector 

as discussed in step 2. 

5) Finally the resulting vector is equals to 

{1,11,{1,1,1,0,1,1,0,1}}. 

C. How VBM algorithm works 

The main steps of the algorithm can be summarized as 
follows. 

First Step: Scan the database once, obtain a compressed bit 
vector for each data item by the aforementioned method and 
set up the result in the structure that were described in section 
V.A, and calculate support of each data item to produce 
frequent 1-itemsets and its related compressed bitmap. 

Hint: support of items represented by vectors in the 
original form is calculated by counting the number of set bits in 
the data part of that vector (i.e. number of “1” bits). But 
support  of  items  represented   by  complemented   vectors  is 

 

 

 

 

 

 

Fig. 7. Intersection Example 

equals to the total number of transactions minus the number of 
set bits in the data part of the bit vector. 

Second step:  In order to get the higher order candidate and 
frequent (k+1)-itemsets Fk+1 for each k>1, given a frequent k-
itemset Fk, the algorithm uses Depth-first method to join each 
two itemsets if they have the same first k-1 items (excluding 
just the last item) and the last item of first k-itemset comes 
before the last item of the second k-itemset in Fk, and applies a 
modification of the intersection function, which works on three 
components of the bit vector consisting of the flag part, 
removed value and the data part, so that obtaining higher order 
frequent (k+1)-itemsets does not require rescanning the 
database again. 

Third step: the intersection function first checks flags of 
both bit vectors to be intersected to detect which type of 
intersection needs to be followed as illustrated in section V.B, 
in section V.B. cases 1 and 2 are straightforward but case 3 
may return vector either in the original or complement form. 
Case 3 returns vector in the complement form if the rem values 
of both vectors aren‟t equal to zero and the total of the length 
of the data part of the bit vectors plus the decimal equivalents 
of their rem values (i.e. number of removed zeros) is less than 
the total number of transactions, because this means that both 
original vectors were starting and ending with ones so the 
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result will for sure starts and ends with ones, so the resulting 
vector should be returned as it is (i.e. in the complement form). 
Case 3 returns vector in the original form (i.e. case 3 will return 
the complement of the complemented vector section IV 
Theorem3 involution) if one of the previous conditions aren‟t 
satisfied. 

Examples on case 3:  

a) intersection method returns complement vector: 

the result of intersecting {1,11,{1,0,1,0,1,0,0,1}} and 
{1,100,{1,1,0,0,1,0,1}}     equals         {1,11,{1,1,1,0,1,1,0,1}}. 

b) intersection method returns original vector: the 

result of intersecting {1,0,{1,1,1,0,1,1,1}} and 

{1,101,{1,1,0,0,1,0,1,1,1,1}} equals {0,11,{1,0,0,0,1,1,0,1}}. 

Forth step: after detecting which type of intersection needs 
to be followed, the intersection operation is accomplished as 
illustrated in details in section V.B. to obtain the resulting bit 
vector. Then support count is calculated for the result. If 
support count>= min_support the result is added to frequent 
k+1 itemset or removed otherwise. 

Finally, this process will be continued until there aren‟t any 
longer frequent (k+1)-itemsets, then the algorithm ends. 

The proposed VBM approach and the schema of bit vectors 
used consume less time for computing the intersection among 
compressed bit vectors and for counting the number of 1 bits in 
the resulting bit vector due to their shorter lengths so the 
number of bits to be checked is smaller than in the case of 
classical vertical association rule mining algorithms. 

VI. EXPERIMENTAL RESULTS 

All experiments  were  performed on an Intel  Core 2  Duo 
(2×2 GHz), with 3GBs RAM of memory and running 
Windows vista and algorithms were coded using java 
programming language. Three  real  databases

1
 used  

previously in the  evaluation  of frequent itemsets  mining  
algorithms  [22, 23, 24] are  used  for  the  experiments, with 
their characteristics  shown  in  Table II. Due  to  the  huge  
amounts of the resulting frequent itemsets the method 
org.apache.commons.io.FileUtils.contentequals from package 
commons-io-2.4.jar downloaded from apache library

2
 is used 

to compare the results of the new algorithm with those of the 
Apriori algorithm and classical vertical association rule mining 
algorithm without compressed bitmap, to make sure that the 
results are correct. 

Fig. 8 to 10 show the comparison of the execution time of 
the VBM algorithm, Apriori algorithm and the classical 

vertical association rules algorithm without compressed 
bitmap, along with different minimum supports. It could be 
observed that the VBM algorithm was always faster than the 
other two in all the results. 

Next, experiments were conducted to compare between the 
VBM total memory usage (in MBs) and the vertical association 
rules algorithm without compressed bitmap. The VBM 
algorithm compression percentage is also calculated. The 
results for the three databases under different min_support 
values are shown in Table III. 

From Fig. 8 to 10 we can see that the mining time of VBM 
algorithm is far from Apriori algorithm but not faraway from 
the mining time of vertical association rules algorithm without 
compressed bitmap. But VBM decreased much in memory 
used by frequent itemsets bitmap than vertical association rules 
algorithm without compressed bitmap as illustrated in Table 
III. 

Regarding execution time, the non-parametric wilcoxon 
significance test has been performed to proof the efficiency of 
the VBM algorithm for the three datasets. The results of the 
test are given in Table IV. The VBM algorithm showed 
significant results when compared to Apriori algorithm and the 
vertical association rules algorithm as p-value<0.05 in all 
cases. 

The given results show that the strength of the proposed 
algorithm (VBM) lies in its ability to decrease much in mining 
time  than  horizontal  association  rule  mining  algorithm  and 

TABLE II.  CHARACTERISTICS OF DATASETS 

Dataset 
No. of 

transactions 

No. of 

Items 

Average 

Transaction  

Length 

Chess 
3196 75 37 

Mushroom 
8124 119 23 

Connect 
67557 129 43 

decrease much in memory space than vertical ones. So the 
proposed algorithm is better than both of them. 

As observed from results the reduction in memory and 
mining time of the proposed algorithm is significantly affected 
by the content of dataset. The reduction in memory & time 
cannot be achieved unless the records in the bitmap starts & 
ends with sequences of zeros and ones as illustrated in section 
V.A. 

1 http://fimi.cs.helsinki.fi/data 
2 http://commons.apache.org/proper/commons-io/[Accessed 19/7/2014] 

http://fimi.cs.helsinki.fi/data
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TABLE III.  MEMORY USAGE OF THE VBM AND VERTICAL ASSOCIATION 

RULE ALGORITHM 

 

 

Fig. 8. Execution time of the three algorithms for chess dataset under 

different min_support values 

 

Fig. 9. Execution time of the three algorithms for connect dataset under 
different min_support values 

 

Fig. 10. Execution time of the three algorithms for mushroom dataset under 

different min_support values 

TABLE IV.  EXECUTION TIME SIGNIFICANCE TEST 
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DataSet 
Minimum 

Support 

No. 

Frequen

t 

Itemsets 

Memory 

Usage of 

Dataset in 

Vertical 

Associatio

n Rules 

Algorithm 

(MBs) 

Memory 

Usage of  

Dataset 

in VBM 

Algorith

m (MBs) 

Compres

sion 

Percenta

ge 

Chess 

65% 111239 42.9 31.8 25.8% 

70% 48731 18.57 13.92 25% 

75% 20993 8 5.91       26% 

80% 8227 3.13 2.26 27.8% 

85% 2669 1.02 0.74 27% 

Mushroo
m 

10% 574431 556 350.28 37% 

20% 53583 51.89 34.14 34.2% 

30% 2735 2.6 1.76 32% 

40% 565 0.54 0.35 35.2% 

50% 153 0.15 0.104 30.5 

Connect 

86% 105047 845 591.5 30% 

90% 27127 218 156.31 28.3% 

94% 4223 34 24.14 29% 

98% 180 1.44 1.045 27.4% 

P-value of: Chess Mushroom Connect 

VBM vs. Vertical 0.007 0.014 0.002 

VBM vs. Apriori 0.001 0.008 0.001 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 1, 2015 

96 | P a g e  

www.ijacsa.thesai.org 

VII. CONCLUSION 

This paper proposes a new algorithm that uses a new data 
structure for compressed bitmap that allows fast computing of 
support count. So this algorithm relieves the contradiction 
between vertical association rules algorithm‟s run speed and 
memory space to a certain extent. The contributions could be 
divided into two parts. First contribution is using new data 
structure to compress bit vector of transaction list representing 
each frequent item set in only one database scan. Second In 
order to enhance algorithm‟s operation speed after bitmap 
compression, the algorithm makes use of Boolean algebra 
theories and postulates to perform bit vectors‟ intersection 
operation and calculate support count without need to decode 
the compressed bit- vectors. Therefore, frequent itemsets is 
generated quickly. The experimental results indicate that the 
proposed algorithm is much more efficient than Apriori and the 
classical vertical algorithm for mining association rules in 
terms of mining time and memory usage. When the database 
does not contain consecutive bits of zeros and ones at the start 
and the end of large number of its transactions, the VBM 
algorithm may suffer the problem of memory scarcity. So 
solving this memory problem will be the target addressed in 
one of our future works. We may use transaction partitioning to 
solve this mentioned problem or search for other techniques. 
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