
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

125 | P a g e

www.ijacsa.thesai.org

Using Heavy Clique Base Coarsening to Enhance

Virtual Network Embedding

Ashraf A. Shahin
1,2

1
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University,

Cairo, Egypt

Abstract—Network virtualization allows cloud infrastructure

providers to accommodate multiple virtual networks on a single

physical network. However, mapping multiple virtual network

resources to physical network components, called virtual

network embedding (VNE), is known to be non-deterministic

polynomial-time hard (NP-hard). Effective virtual network

embedding increases the revenue by increasing the number of

accepted virtual networks. In this paper, we propose virtual

network embedding algorithm, which improves virtual network

embedding by coarsening virtual networks. Heavy Clique

matching technique is used to coarsen virtual networks. Then,

the coarsened virtual networks are enhanced by using a refined

Kernighan-Lin algorithm. The performance of the proposed

algorithm is evaluated and compared with existing algorithms

using extensive simulations, which show that the proposed

algorithm improves virtual network embedding by increasing the

acceptance ratio and the revenue.

Keywords—cloud computing; network virtualization; resource

allocation; substrate network fragmentation; virtual network

embedding; virtual network coarsening

I. INTRODUCTION

In cloud computing data centers, virtualization is employed
to accommodate multiple virtual networks (VNs) on a single
substrate network (SN), and multiple virtual servers on a single
physical server [1]. Consolidating multiple virtual servers from
the same virtual network to a single physical server coarsens
virtual network down to a few physical servers. Coarsening
VN reduces the cost of embedding by eliminating the cost of
embedding virtual links between virtual nodes on the same
substrate node. Although, effective VN coarsening can
improve the utilization of SN’s resources and increase the
acceptance ratio of VNs and the revenue of infrastructure
providers, most of current virtual network embedding
algorithms do not take into account VN coarsening [2, 3, 4, 5,
6, 7].

In this paper, we propose virtual network embedding
algorithm, which coarsens virtual networks using Heavy
Clique matching technique. Then, the coarsened virtual
networks are enhanced by using a refined Kernighan-Lin
algorithm. The performance of the proposed algorithm is
evaluated and compared with existing algorithms using
extensive simulations, which show that the proposed algorithm

improves virtual network embedding by increasing the
acceptance ratio and the revenue.

The rest of this paper is organized as follows. Section 2
gives a short overview of related work. Section 3 presents the
VN embedding model and problem formulation. Section 4
describes the proposed algorithm. Section 5 evaluates the
proposed VN embedding algorithm. Finally, we conclude in
section 6.

II. RELATED WORK

In the last few years, many algorithms have been proposed
for efficient VNE. VN embedding problem is NP-hard, and
finding optimal solution can only be found for small problem
instances [8]. Therefore, several heuristic algorithms have been
proposed to find a good solution [5, 6, 7, 9]. Some algorithms
have been proposed to find exact VNE solutions to be used as
optimal bound for the heuristic based VNE solutions [4, 10].

Zhu and Ammar [11] proposed two VN embedding
algorithms. In the first algorithm, allocated substrate resources
are fixed throughout the VN lifetime. The performance of the
first algorithm is improved by using heuristics and adaptive
optimization. In the second algorithm, allocated substrate
resources are reconfigured to increase the utilization of the
underlying substrate resources. However, the proposed
algorithms deal only with VNRs that are previously known and
do not deal with VNRs that dynamically arrive over time.

In [12], Lischka and Karl proposed online VNE algorithm,
which maps nodes and links during the same stage. The
proposed algorithm maps VN to a sub-physical network that is
similar to the topology of the VN and achieves previously
defined constraints (e.g. CPU capacity, link bandwidth).
During nodes mapping process, virtual nodes are sorted in
descending order based on its required CPU and mapped
sequentially to substrate nodes without allowing coexisting
multiple virtual nodes from the same VN on one substrate
node. To minimize the mapping cost, virtual links are mapped
to substrate paths with minimal hops by incrementally
increasing the maximum hop limit. However, the
computational complexity of the proposed algorithm is high
due to multiple operations. In [13], Di et al. improved
performance and complexity of the proposed algorithm in [12]
by considering the cost of mapping links during the process of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

126 | P a g e

www.ijacsa.thesai.org

sorting virtual nodes and choosing the maximal hop limit.
Fischer et al. [3] modified the algorithm proposed in [12] to
consider energy efficiency during nodes and links mapping.
Fischer et al. allowed mapping several virtual nodes of the
same virtual network to the same substrate node. Although,
they take into account the energy efficiency during
consolidating virtual nodes, they did not consider the mapping
cost.

In [10], Cheng et al. proposed two-stage VN embedding
algorithm, called RW-MaxMatch, which ranks nodes using
topology-aware node ranking technique to reflect the
topological structure of the VNs and the SN. However, RW-
MaxMatch algorithm maps nodes without considering its
relation to the link mapping, which leads to high consumption
of the underlying SN’s resources. This is due to mapping
neighboring virtual nodes widely separated in the SN.

In [10], Cheng et al. improved the coordination between
nodes and links mapping in the RW-MaxMatch algorithm by
proposing RW-BFS algorithm. RW-BFS algorithm is a
backtracking one-stage VN embedding algorithm, which maps
nodes and links at the same stage. In [14, 15], Zhang et al.
proposed two VN embedding models: an integer linear
programming model and a mixed integer-programming model.
To solve these models, Zhang et al. proposed an enhanced
version of the MaxMatch algorithm, called RW–PSO
algorithm, based on particle swarm optimization. RW–PSO
algorithm reduces the time complexity of the link mapping
stage by using shortest path algorithm and greedy k-shortest
paths algorithm.

To improve the coordination between nodes mapping stage
and links mapping stage, Chowdhury et al. [16, 17] formulated
the VNE problem as a mixed integer program (MIP), which is
NP-hard. To obtain polynomial-time solvable algorithms, they
relaxed the integer program to linear program, and proposed
two VNE algorithms: D-ViNE (deterministic VNE algorithm)
and R-ViNE (randomized VNE algorithm). Nogueira et al. [18]
proposed heuristic-based VN embedding algorithm to deal
with the heterogeneity of VNs and SN, in both links and nodes.
The proposed algorithm is one stage VNE algorithm.

Some of existing works proposed VN embedding
algorithms to embed VNRs in distributed cloud computing
environments [19, 20, 21, 22]. Houidi et al. [23] proposed
exact and heuristics VN embedding algorithms, which split
virtual network requests using max-flow min-cut algorithms
and linear programming techniques. Leivadeas et al. [24]
proposed VN embedding algorithm based on linear
programming.

The proposed algorithm partitions VNRs using partitioning
approach based on Iterated Local Search. Houidi et al. [25]
proposed distributed VN embedding algorithm, which is
performed by agent-based substrate nodes. The authors
proposed VN embedding protocol to allow communication
between the agent-based substrate nodes. However, the
proposed algorithm deals only with the offline VN embedding
problem.

III. VIRTUAL NETWORK EMBEDDING MODEL AND

PROBLEM FORMULATION

Substrate network (SN): We model the substrate network as
a weighted undirected graph (), where is the set
of substrate nodes and is the set of substrate links. Each
substrate node is weighted by the CPU capacity, and
each substrate link is weighted by the bandwidth
capacity. Fig. 1(b) shows a simple SN example, where the
available CPU resources are represented by numbers in
rectangles and the available bandwidths are represented by
numbers over the links.

Virtual network (VN): virtual network is modeled as a

weighted undirected graph
 (

), where

 is the

set of virtual nodes and
 is the set of virtual links. Virtual

nodes and virtual links are weighted by the required CPU and
bandwidth, respectively. Fig. 1(a) shows an example of VN
with required CPU and bandwidth.

Virtual network requests (VNR): the VN request
in the set of all VN requests is modeled as (

),

where
 is the required VN to be embedded,

 is the arrival

time, and is the lifetime. When arrives, substrate

nodes’ CPU and substrate links’ bandwidth are allocated to
achieve the . If the substrate network does not have
enough resources to achieve , is rejected. At the end
of lifetime, all allocated resources to are released.

Virtual Network Embedding (VNE): embedding on SN

is defined as a map
 (

) , where

 , and

 , where is the set of all loop free substrate paths in

 . Embedding can be decomposed into node and link
mapping as follows:

Node mapping:

Link mapping:

For example, mapping of the VN in Fig. 1(a) on SN in Fig.
1(b) can be decomposed into:

Node mapping: * +

Link mapping: {() *()+ ()
*() ()+ () *()+}

Virtual Network Embedding Revenue: as in [8, 10, 14], the
revenue of embedding at time is defined as the sum of
all required substrate CPU and substrate bandwidth by at
time .

 () () (∑ (
)

 ∑ (
)
)

Where (
) is the required CPU for the virtual

node
, (

) is the required bandwidth for the virtual

link
, and () if is in its lifetime and

substrate resources are allocated to it, otherwise (
)

 .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

127 | P a g e

www.ijacsa.thesai.org

Fig. 1. Example 1 of VNE

Virtual Network Embedding Cost: as in [8, 10, 14], the cost
of embedding at time is defined as the sum of all
allocated substrate CPU and substrate bandwidth to at
time .

 () () (∑ (
)

 ∑ (
)
 (

(
))) (1)

Where (
(

)) is the length of the substrate

path that the virtual link
 is mapped to.

Objectives: the main objectives are to increase the revenue
and decrease the cost of embedding virtual networks in the
long run. To evaluate the achievement of these objectives, we
use the following metrics:

- The long-term average revenue, which is defined by

 (
∑ ∑ ()

) (2)

Where , and is the total time.

- The VNR acceptance ratio, which is defined by

‖ ‖

‖ ‖
 (3)

Where is the set of all accepted virtual network

requests.

- The long term R/Cost ratio, which is defined by

 (
∑ ∑ ()

∑ ∑ ()

) (4)

IV. THE PROPOSED ALGORITHM

In this section, we describe the motivation behind the
proposed algorithm and describe the details of the proposed
algorithm, which is called HCM-VNE algorithm.

A. Motivation

VN embedding cost (defined by equation 1) depends on
allocated substrate CPU and allocated substrate bandwidth. VN
embedding cost can be reduced by minimizing these resources.
However, minimizing allocated substrate CPU may violate
service level agreement and reduce the quality of the service
provided to the customers. Allocated substrate bandwidth can
be reduced by increasing the number of virtual links between
virtual nodes that are mapped to the same substrate node. VN
embedding cost is reduced by eliminating the cost of
embedding such virtual links. However, finding VN
embedding solution with maximum number of eliminated
virtual links is not easy task. For example, to map VN in Fig.
2(a) to SN in Fig. 2(b), Fig. 2 shows the mapping solution with
the maximum number of eliminated virtual links among other
solutions. This solution can be reached by finding sub-VNs
that are close to be clique and map each sub-VN to one
substrate node. This example motivates us to propose HCM-
VNE algorithm, which coarsens VNs using heavy clique
matching technique before mapping it.

B. The HCM-VNE algorithm

Algorithm 1 shows the steps of the proposed HCM-VNE
algorithm. In line 1, , which is the upper bound of the
coarsened node CPU, is set to the maximum available CPU in
SN. In line 2, the upper bound of the total coarsened node
bandwidth, , is set to the maximum available bandwidth
in SN. VNs are coarsened using () function and
coarsened VNs are optimized using () function.
 () function and () function will be
described later on. The HCM-VNE algorithm constructs
breadth-first searching tree for the graph of the coarsened VN.
The root node of the constructed tree is the coarsened virtual
node with the largest resources (sum of CPU and BW). Nodes
in each level in the created breadth-first searching tree are
sorted in descending order based on their resources. Finally, in
line 8, the HCM-VNE algorithm embeds coarsened VN on SN
using Embed() function.

Fig. 2. Example 2 of VNE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

128 | P a g e

www.ijacsa.thesai.org

ALGORITHM 1: The details of the HCM-VNE algorithm

INPUTS:

 (): VN to be embed

 (): SN to embed on

 : maximum allowed substrate path length

 : upper bound of nodes re-mapping operation

OUTPUTS:

 (): map VN nodes and links to SN’s resources

 : VN embedding success flag

Begin

1:
(())

2:
(∑ ()

)

3: ()

4: ()

5: Build breadth-first searching tree of from coarsened virtual node with

largest resources.

6: Sort all nodes in each level in the created breadth-first tree in descending

order according to their required resources.

7: backtrack_count=0

8: if (()) then

9:

10: return

11: else

12:

13: return

14: end if

End

C. Coarsening() function

Virtual networks are coarsened using heavy clique
matching technique. A clique in undirected graph is a fully
connected subgraph. The cost of embedding VNs is reduced by
embedding each sub-VN that is close to clique on one substrate
node.

To determine how close sub-VN
 (

) is to a

clique, we define link density (

) as

 (

) ‖ ‖ (‖

 ‖(‖

 ‖))

If the sub-VN
 is clique (or fully connected), the number of

edges is equal to (‖
 ‖(‖

 ‖)) and the link density

 (

) goes to one. (

) is small if the sub-VN

 is far from being clique.

Algorithm 2 shows the details of the Coarsening() function.
Coarsening process is iterative and starts with an initial
coarsening graph () , which is created and
initialized by creating coarsened node for each virtual node and
coarsened link for each virtual link. Each coarsened node

 can be considered as a sub-VN

 (

) ,

where
 (at this time each

contains only one

virtual node), and
 , such that each virtual link

 connects two virtual nodes in
. Each coarsened

link between two coarsened nodes is a set of virtual

links connect virtual nodes in these coarsened nodes. Each
virtual node exists in exactly one coarsened node, and each
virtual link exists in exactly one coarsened node or one
coarsened link. For example, VN in Fig. 2(a) can be coarsened
as in Fig. 3.

Fig. 3. Coarser VN for the VN in Fig. 2(a)

The graph of the coarsened VN in Fig. 3 is

 ({

} { }), where

 (* + *() () ()+),

 (* + *() () ()+), and

 *()+

In Coarsening() function, coarsened nodes are visited in a
sequential way, and each unmatched coarsened node

 is

matched with its unmatched neighbor
 such that the new

coarsened node created by combining
 and

 achieves the

CPU and BW constraints and its is the largest among

all possible coarsened nodes created by combining
 with

other unmatched neighbors. If such neighbor exists, we add
coarsened node

 with its neighbor
 to the matching list

 {(

)

 } .

At the end of each iteration, coarser graph is updated by
combining each pair in to a new coarsened node. If
is empty the Coarsening() function terminates.

D. Optimize() function

Coarsening() function coarsens VN in Fig. 2(a) as in Fig. 3.
However, Coarsening() function combines coarsened nodes
only based on link density and does not consider the required
bandwidth for each virtual link, which sometimes increases the
cost of VN embedding. For example, if the virtual link (a, d) in
Fig. 3 has bandwidth equal to 50, coarser VN can be improved
by moving the virtual node a from the coarsened node

 to

the coarsened node . Fig. 4 shows the optimized coarsened

VN.

To optimize coarsened VN, we used a refined Kernighan-
Lin (KL) algorithm. In 1970, Kernighan-Lin (KL) algorithm
was proposed by Kernighan and Lin for graph partitioning
problem. Kernighan-Lin (KL) algorithm partitions graph into
two parts with equal sizes and with minimal number of cutting
edges. It starts with an initial bipartition of the graph and
searches for two subsets of vertices from each part of the
graph, such that they have the same number of vertices and
swapping them improves the cost of the partition. Kernighan-
Lin algorithm swaps the selected subsets and repeats the entire
process until no such subsets found [26]. However, standard
Kernighan-Lin algorithm deals only with typical graph
partitioning problem, so it is not directly applicable to optimize
coarsened VNs, which may be partitioned to more than two
partitions with different sizes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

129 | P a g e

www.ijacsa.thesai.org

ALGORITHM 2: The details of the () function

INPUTS:

 : VN graph to be coarsened

 : the upper bound of the coarsened node CPU

 : the upper bound of the total coarsened node BW

OUTPUTS:

 : coarsened VN graph

Begin

1: Create and initialize coarsening graph ()

2: Create new matching list

3: while(true)

4: for each unmatched coarsened node

5: Find unmatched neighbor

 (

) ,

 (

) , and

 (

)

((

))

6: Add (

) to

7: end for

8: if then

9: break

10: else

11: Update by combining each pair in

12:

13: end if

14: end while

End

Fig. 4. Optimized coarser VN for the coarser VN in Fig. 3

To optimize coarsened VN, we redefined Kernighan-Lin
(KL) algorithm as shown in algorithm 4. Optimize() function
starts with the partition performed by the Coarsening()
function and moves boundary virtual nodes between coarsened
nodes to improve edge-cut, such that this movement does not
violate the CPU and BW constraints. Virtual node is called
boundary node, if it is connected to virtual nodes outside its
coarsened node. For example, in Fig. 3, virtual node a is a
boundary virtual node for the coarsened node , because it

has virtual link to the virtual node d, which is not in the
coarsened node .

If moving the selected boundary virtual node to the target
coarsened node violates the CPU or BW constraints, we try to
find one or more boundary nodes in the target coarsened node
to be swapped with the selected boundary virtual node. If no
such boundary virtual nodes found, we postpone this
movement and recheck it again in the next iteration. The whole
process is repeated until no movements are performed.

ALGORITHM 3: The details of the () function

INPUTS:

 (): coarsened VN to be optimized

 : upper bound of the coarsened node CPU

 : upper bound of the Total coarsened node BW

OUTPUTS:

 : optimized coarsened VN

Begin

1: Terminate=false

2: while (NOT Terminate)

3: Terminate=true

4: for each

5: for each boundary virtual node

6: if
 ∑ ()

 ∑ ()

where

 is the set of all virtual links between and virtual nodes in

,

and

 is the set of all virtual links between and virtual nodes in

7: then

8: if moving from
 to

 does not violate CPU and BW

constraints.

9: then

10: Move from
 to

11: Terminate=false

12: else

13: Find set of boundary virtual nodes
 in the coarsened node

, such that swapping and

 improves bandwidth and

does not violate CPU and BW constraints.

14: if such node found swap them

15: Terminate=false

16: end if

17: end if

18: end if

19: end for

20: end for

21: end while

End

E. Embed() function

The Embed() function embeds coarsened VN on SN as
described in algorithm 4. In the Embed() function, candidate
substrate node list for each coarsened virtual node is built by
collecting all substrate nodes that have available CPU capacity
at least as large as the coarsened virtual node CPU and have a
loop free substrate path to each substrate node contains one of
the previously mapped neighbors. Each substrate path should
satisfy the constraint of the maximum substrate path length,
and have available bandwidth greater than or equal the
bandwidth of the coarsened virtual link between the coarsened
virtual node and its previously mapped neighbor.

Candidate substrate nodes for each coarsened virtual node
are collected by creating a breadth-first search tree from each
substrate node contains one of the previously mapped
neighbors, and finding the common substrate nodes between
the created trees. In the constructed trees, substrate nodes
should satisfy the CPU constraints for coarsened virtual node,
and substrate paths should satisfy the connectivity constraints
to connect the coarsened virtual node with its neighbors. By
this way, all candidate substrate nodes in the candidate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

130 | P a g e

www.ijacsa.thesai.org

substrate node list satisfy all constraints (CPU and connectivity
constraints).

Substrate nodes in the candidate substrate node list are
sorted in ascending order according to the total cost of
embedding coarsened virtual links from the coarsened virtual
node to all previously embedded neighbors. If the coarsened
virtual node is a root node, the candidate substrate node list is a
set of all substrate nodes that have enough resources to embed
the coarsened virtual node. The candidate substrate nodes for
the root are sorted in descending order according to the total
available resources.

Coarsened virtual node is sequentially mapped to substrate
nodes in its candidate substrate node list. If there is no
appropriate substrate node in its candidate substrate node list,
we backtrack to the previously mapped node, re-map it to the
next candidate substrate node, and continue to the next node. In
line 3, mappings of the coarsened virtual node and its
coarsened virtual links are added to () by using the
function Add(). To map coarsened node

 to substrate node

 , the function Add() adds maps from each virtual node in

to the substrate node . All virtual links in the coarsened node

 are mapped to substrate paths with length zero from the

substrate node to itself. For each coarsened link from
 to

one of the previously mapped coarsened nodes, the function
Add() adds maps for all virtual links in these coarsened links.
Virtual links are mapped to shortest loop free substrate paths,
which are specified by breadth-first search manner. In line 6,
Delete() function is used to perform the backtracking process.

ALGORITHM 4: The details of () Function

INPUTS:

: current coarsened virtual node to be embedded

 : substrate network to embed on

 (): map of the previously mapped nodes and links

OUTPUTS:

 (): updated map

 : VN embedding success flag

Begin

1: Build candidate substrate node list for

2: for each in

3: Add ((
) ())

4: if Embed(

 ()) then return true

5: else

6: Delete((
) ())

7: end if

8: if backtrack_count > Max_backtrack then return false

9: end for

10: backtrack_count ++

11: return false

End

V. PERFORMANCE EVALUATION

We evaluated the proposed HCM-VNE algorithm by
comparing its performance with some of existing algorithms.

First, we implemented three algorithms: HCM-VNE, RW-
MaxMatch [15], and RW-BFS [10]. Second, we generated SN
topology and 3000 VN topologies to be used as inputs to the
implemented algorithms. Finally, we compared the results from
the implemented algorithms. In the following sub-sections, we
describe the evaluation environment settings and discuss the
results of the simulations.

A. Evaluation environment settings

In our evaluation, the substrate network topology is
configured to have 200 nodes with 1000 links. Substrate
network is generated using Waxman generator. Bandwidths of
the substrate links are real numbers uniformly distributed
between 50 and 100 with average 75. We have selected two
server configurations: HP ProLiant ML110 G4 (Intel Xeon
3040, 2 cores X 1860 MHz, 4 GB), and HP ProLiant ML110
G5 (Intel Xeon 3075, 2 cores X 2660 MHz, 4 GB). Each
substrate node is randomly assigned one of these server
configurations.

Virtual network topologies are generated using Waxman
generator with average connectivity 50%. Number of virtual
nodes in each VN is variant from 2 to 20. Each virtual node is
randomly assigned one of the following CPU: 2500 MIPS,
2000 MIPS, 1000 MIPS, and 500 MIPS, which are correspond
to the CPU of Amazon EC2 instance types. Bandwidths of the
virtual links are real numbers uniformly distributed between 1
and 50. VN’s arrival times are generated randomly with arrival
rate 10 VNs per 100 time units. The lifetimes of the VNRs are
generated randomly between 300 and 700 time units with
average 500 time units. 3000 VN topologies are generated and
stored in brite format. For each algorithm, we run the
simulation for 30000 time units with the previously generated
VNRs

1
. For all algorithms, we set the maximum allowed hops

(Max_hops) to 2, and the upper bound of remapping process
(Max_backtrack) to 3n, where n is the number of nodes in each
VNR.

B. Evaluation results

Three metrics have been used to evaluate the performance
of the proposed algorithms: the long-term average revenue,
which is defined by Equation (2), the VNR acceptance ratio,
which is defined by Equation (3), and the long-term R/Cost
ratio, which is defined by Equation (4). Fig. 5 shows the
simulation results using the VNR acceptance ratio to compare
the different VNE algorithms. It can be seen that the proposed
algorithm that coarsened VNs using heavy clique matching
increases the acceptance ratio compared with other algorithms.
For example, at time unit 30000, in Fig. 5, the VNR acceptance
ratio for the RW-BFS and RW-MaxMatch are 20 and 16
percent, while the VNR acceptance ratio for the HCM-VNE is
53 percent. In other words, the proposed algorithm can embed
more VNs on the same SN at the same time. Consequently, the
proposed algorithm increases the long-term average revenue
compared with other algorithms, as shown in figure 6.

1The generated SN topology, generated VNRs topologies, and outputs are

available online at (https://drive.google.com/folderview?id=0BxEBmTQ

0WG5RcnBYLVZhdW42bjg&usp=drive_web)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

131 | P a g e

www.ijacsa.thesai.org

Fig. 5. The VNR acceptance ratio comparison

Fig. 6. The long-term average revenue comparison

Fig. 7. The long-term Revenue/Cost ratio comparison

For example, at time unit 30000, the average revenue for
the RW-BFS and RW-MaxMatch are 72 and 33, while the
average revenue for the HCM-VNE is 240. As shown in Fig. 7,
the long-term Revenue/Cost ratio of all algorithms are nearly
the same, but the proposed algorithm performs slightly better
than other algorithms.

VI. CONCLUTION

In this paper, we proposed virtual network embedding
algorithm, which coarsens virtual networks using heavy clique
matching and optimizes the coarser virtual networks by
applying a refined Kernighan-Lin (KL) algorithm. The
proposed algorithm coarsens sub-virtual networks that are
close to clique and embeds each sub-virtual network to
substrate node. The cost of embedding virtual networks is
reduced by eliminating the cost of embedding virtual links
between virtual nodes on the same substrate node. Performance

of the proposed algorithm has been evaluated and compared
with some of the existing algorithms using extensive
simulations. Extensive simulation experiments show that the
proposed algorithm increases the acceptance ratio and the
revenue. For the future work, we plan to investigate other
coarsening techniques (e.g. Random Matching and Light Edge
Matching) to find the best coursing technique, which increases
the acceptance ratio and the revenue while decreasing the
embedding cost.

REFERENCES

[1] I. Fajjari, N. Aitsaadi, and G. Pujolle, “Cloud networking: An overview
of virtual network embedding strategies,” in Global Information
Infrastructure Symposium, 2013, Oct 2013, pp. 1–7.

[2] S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-
aware virtual network embedding through consolidation,” in 2012 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS),, March 2012, pp. 127–132.

[3] A. Fischer, M. Beck, and H. de Meer, “An approach to energy-efficient
virtual network embeddings,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013),, May 2013,
pp. 1142–1147.

[4] J. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and
H. de Meer, “Energy efficient virtual network embedding,”
Communications Letters, IEEE, vol. 16, no. 5, pp. 756–759, May 2012.

[5] Z. Zhang, S. Su, X. Niu, J. Ma, X. Cheng, and K. Shuang, “Minimizing
electricity cost in geographical virtual network embedding,” in 2012
IEEE Global Communications Conference (GLOBECOM),, Dec 2012,
pp. 2609–2614.

[6] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, and N.-H. Bao, “Power-
efficient provisioning for online virtual network requests in cloud-based
data centers,” IEEE Systems Journal,, vol. PP, no. 99, pp. 1–15, 2013.

[7] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient vm scheduling
for cloud data centers: Exact allocation and migration algorithms,” in
2013 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid),, May 2013, pp. 671–678.

[8] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[9] [9] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers,”
Concurrency and Computation: Practice & Experience, vol. 24, no. 13,
pp. 1397–1420, Sep. 2012.

[10] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, Apr.
2011.

[11] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in INFOCOM 2006. 25th
IEEE International Conference on Computer Communications.
Proceedings, April 2006, pp. 1–12.

[12] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proceedings of the 1st ACM
Workshop on Virtualized Infrastructure Systems and Architectures, ser.
VISA ’09. New York, NY, USA: ACM, 2009, pp. 81–88.

[13] H. Di, L. Li, V. Anand, H. Yu, and G. Sun, “Cost efficient virtual
infrastructure mapping using subgraph isomorphism,” in
Communications and Photonics Conference and Exhibition (ACP), 2010
Asia, Dec 2010, pp. 533–534.

[14] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, “A
unified enhanced particle swarm optimization-based virtual network
embedding algorithm.” Int. J. Communication Systems, vol. 26, no. 8,
pp. 1054–1073, 2013.

[15] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology awareness and
optimization,” Computer Networks, vol. 56, no. 6, pp. 1797 – 1813,
2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

132 | P a g e

www.ijacsa.thesai.org

[16] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM
2009, IEEE, April 2009, pp. 783–791.

[17] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link
mapping,” IEEE/ACM Transactions on Networking,, vol. 20, no. 1, pp.
206–219, Feb 2012.

[18] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento, “Virtual network
mapping into heterogeneous substrate networks,” in Computers and
Communications (ISCC), 2011 IEEE Symposium on, June 2011, pp.
438–444.

[19] F. Samuel, M. Chowdhury, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” Journal of Internet
Services and Applications, vol. 4, no. 1, 2013.

[20] I. Houidi, W. Louati, and D. Zeghlache, “A distributed and autonomic
virtual network mapping framework,” in Autonomic and Autonomous
Systems, 2008. ICAS 2008. Fourth International Conference on, March
2008, pp. 241–247.

[21] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and
A. Yumerefendi, “Embedding virtual topologies in networked clouds,”
in Proceedings of the 6th International Conference on Future Internet
Technologies, ser. CFI ’11. New York, NY, USA: ACM, 2011, pp. 26–
29.

[22] B. Lv, Z. Wang, T. Huang, J. Chen, and Y. Liu, “Virtual resource
organization and virtual network embedding across multiple domains,”
in Multimedia Information Networking and Security (MINES), 2010
International Conference on, Nov 2010, pp. 725–728.

[23] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Computer Networks,
vol. 55, no. 4, pp. 1011 – 1023, 2011, special Issue on Architectures and
Protocols for the Future Internet.

[24] A. Leivadeas, C. Papagianni, and S. Papavassiliou, “Efficient resource
mapping framework over networked clouds via iterated local search-
based request partitioning,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 24, no. 6, pp. 1077–1086, June 2013.

[25] I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm,” in Communications, 2008. ICC ’08. IEEE
International Conference on, May 2008, pp. 5634–5640.

[26] Y. Weihong, Y. Yuehui, and T. Guozhen, “Recursive kernighan-lin
algorithm (rkl) scheme for cooperative road-side units in vehicular
networks,” in Parallel Computational Fluid Dynamics, ser.
Communications in Computer and Information Science, K. Li, Z. Xiao,
Y. Wang, J. Du, and K. Li, Eds. Springer Berlin Heidelberg, 2014, vol.
405, pp. 321–331.

