
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

54 | P a g e

www.ijacsa.thesai.org

A Monitoring Model for Hierarchical Architecture of

Distributed Systems

Phuc Tran Nguyen Hong

Danang University of Education

The University of Danang

Danang, Vietnam

Son Le Van

Danang University of Education

The University of Danang

Danang, Vietnam

Abstract—Distributed systems are complex systems and there

are a lot of the potential risks in the system, so system

administrators need to have some effective support tools for

network management. The architecture information of

distributed systems is an essential part of distributed system

monitoring solutions, because it provides general information

about monitored objects in the system for administrators, as well

as supports administrator in quickly detecting change of

topology, error status or potential risks that arise during

operation of distributed systems. The modeling approaches have

an important role in developing monitoring solutions, in which

they are background to develop algorithms for monitoring

problems in distributed systems. This paper proposes an

approach in order to model for hierarchical architecture of

objects in distributed systems, in which consists of architecture of

monitored objects, networks, domains and global distributed

systems. Based on this model, a basic monitoring solution for

hierarchical architecture of distributed systems is developed and

this solution is able to provide administrators more important

architecture information such as the topology of hardware

components, processes, status of monitored objects, etc.

Keywords—architecture; distributed systems; model; monitored

objects; monitoring

I. INTRODUCTION

Distributed systems (DS) are complex systems, which have
always challenged for system administrator a lot [5,9]. A
hardware malfunction, a faulty process or an abnormal event
occurs on the system may affect other events taking place at
different locations in the running environment of system. These
symptoms can cause a bad effect on performance and stability
of the system, they can also cause of errors of related processes
and incorrect results of distributed applications. In order to
ensure the effective operation of DS, global system information
in general and information of each object in particular is
critical issues. Many technical solutions have been researched
and developed to support administrators in monitoring the
system. Through the survey and review some typical
monitoring works such as [10,11,13,14,15,16,17] in paper
[4,8], in which we presented in detail the technical details,
some advantages as well as disadvantages of these solutions.
The survey result on implementation solutions and function of
monitoring systems is presented in Table I and II.

TABLE I. THE IMPLEMENTATION SOLUTION

Monitoring System
Implementation Solution

Software Hardware Hybrid

JADE [13] 

MonALISA [11] 

MOTEL [17] 

ZM4/SIMPLE [14] 

NON-INVASIVE MONITOR [8] 

We are aware that there are many implementation solutions
to deploy monitoring system. However, with the advantages
such as flexibility and mobility, the ease of maintenance, etc
the software solution has been widely deployed in many
TCP/IP monitoring products.

TABLE II. THE FUNCTION OF MONITORING SYSTEMS

Monitoring System
Monitoring Function

Computing Performance Object Operation

ZM4/SIMPLE [14] 

JADE [13] 

MonALISA [11] 

SNMP [8,16] 

MOTEL [17] 

CorbaTrace [10] 

Tools (OS,...) [8] 

From Table II, we see that the monitoring systems for DS
can be divided into two groups: specific monitoring (SM) and
general operations (GM) for monitored object in DS.

 SM consists of monitoring systems that monitor
specific issues of monitored objects in DS such as
MonALISA, MOTEL, SNMP, etc. SM can be seen as a
special monitoring layer to monitor details such as
traffic, performance, computing, etc. Most of these
solutions in SM are only focused on solving the
requirements for specific monitoring issues between

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

55 | P a g e

www.ijacsa.thesai.org

objects and have not yet been really interested in the
global architecture of monitored objects in DS. For
example, ZM4/SIMPLE is deployed to do performance
evaluation for and parallel and distributed programs;
MonALISA is deployed to monitor and help manage
and optimize the operational performance of Grids; etc.

 GM consists of monitoring systems that monitor
general operations of the monitored objects in DS such
as built-in tools of devices or utilities in OS (Operating
System). GM can be seen as a common monitoring
layer in which provide abilities to monitor architectures
and operations of monitored objects (MO) such as
configuration, status, communication, connections, etc.
For example, taskmgr and netstat commands are in
Windows OS; prstat command is Solaris OS, etc.

Therefore, we can divide monitoring for DS into two basic
stages:

 The first stage is general monitoring with monitoring
solutions in GM, the global architecture information of
monitored DS in general and the information about
general operations of monitored objects in particular are
essential in this stage, because they can support
administrator for quickly detecting common errors or
error domains that arise during operation of the system
[4].

 The second stage is extended survey with monitoring
solutions in SM in order to go into more detail in
special monitoring information.

Thus, the monitoring solutions in GM are considered as a
high level monitoring facilities to monitored DS before using
other monitoring solutions in SM to deeper analysis. However,
GM are now mainly based on tools (OS, utilities) that
developed by device vendors side or operating systems side.
These built-in tools have some disadvantages such as discrete
monitoring information, independent of each device, etc [4,8],
hence the global of DS cannot be solved with these built-in
tools. The global architecture should be continued to research
and develop more effective, the goal of the paper focus on
solving this problem base on modeling for architecture of MO
and building hierarchical monitoring entities respectively.

When monitored systems have basic changes about
architectures, behaviors and operation environments, the
technical solutions must be modified and updated appropriately
for new changes and management requirements. As system
specification methodology is generally and flexibly, the
modeling approach is considered more appropriate for systems
that have a lot of changes and the approach is widely used in
discrete event systems, computer protocols [1,3,7]. In the DS,
the modeling approach also achieved some certain results [2,6].
The modeling approaches play an important role, in which it is
used as a basis layer for algorithm and solution development in
monitoring, diagnosing and controlling issues independently.
Therefore, the modeling for MO in DS is really necessary, the
objective of the paper is based on the research results on DS
and set theory [1,4,6], we focus on building a formal model for
the hierarchical architecture of MO in DS, in which consists of
architecture of monitored objects, networks, domains and

global distributed systems. We also present a basic monitoring
model for the hierarchical architecture of DS, in which can
show DS topology visually as well as the local operations and
the communication operations of MOs in the DS.

The paper is organized as follows: In section II, we present
architectural model for a MO in DS and the composition
operation that allows us to combine many MOs into a
composition model, we describe hierarchical architecture of
monitored objects in DS. Section III focuses on the modeling
solution that is able to monitor the architecture of DS. Finally,
section IV concludes with the current work and future
perspectives.

II. THE ARCHITECTURE MODEL FOR DISTRIBUTED

SYSTEMS

DS consists of many heterogeneous devices such as
stations, servers, routers, etc. These devices are considered
physical objects in DS and communicate to each other in the
system; each device consists of many hardware components
such as CPU, HDD, etc. and software components such as
processes. These components are associated with information
about the corresponding states and behaviors, general
operations of MO is described by Fig. 1, they can be divided
into two basic parts such as internal part – local operations and
external part – communication operations [4].

Fig. 1. General operations of the monitored object

 The local operations: these operations include
processing, computing, resource requirements for
process computations. The operations are locally
performed within that object and use system resource
such as CPU, RAM, etc. in running time.

 The communication operations: these operations are
functions that interact with other objects in the system
such as inter-process communication, controlling to
interact with management system, etc. These operations
are used to communicate with other objects on the
system.

All of local and communication operations are based on
system resource of MO such as CPU, RAM, I/O, etc. and
information of these operations is dynamic in their running
process, while system resource of MO is static information.
Therefore, architecture of MO will consist of static information
of MO and dynamic information of local and communication
operations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

56 | P a g e

www.ijacsa.thesai.org

MOs are considered as nodes that are connected according
to specific architecture and can perform interactive
communication to each other. Hence, Architecture model
describes the structure of nodes along with the related
information of each node, the link between nodes, message
propagation via its port, etc. Based on this information, we can
determine the physical structure and the state of the nodes in
the system.

From result of research on DS and monitoring systems, we
can see that DS consists of many heterogeneous objects and
topologies that communicate to each other. With point of view
the domain-based management for large scale systems, the
multi-level domain has been used to manage for DS [18], in
which consists of local object level, network and domain level.
The hierarchical architecture of monitored objects in DS can be
presented as Fig. 2:

Fig. 2. The hierarchical architecture of objects in DS

Therefore, the architecture model of DS and monitoring
model are presented in hierarchical architecture as Fig. 2 in
order to deploy a suitable monitoring solution.

A. Architecture Model of MO

Let AM be an architecture model of monitored node, the
AM is a 9-tuple and expressed as follows:

AM = (NODES, DOMAINS, NETS, LINKS, PORTS, port,
communication, status, event) (1)

NODES = {set of static and dynamic information of

nodes}= {NODES_S}  {NODES_O}  {NODES_A}

where: NODES_S consists of system resource information
of MO and this is static information such as Cpu, RAM, etc;
NODES_O consists of information about local and
communication operations such as processes; NODES_A
consists of error or abnormal information of hardware and
software components such as I/O errors, overload; NODES_O
and NODES_A are dynamic information.

DOMAINS = {set of domain information such as name,...}

NETS ={set of network information such as IP, network,...}

LINKS = {set of link information between nodes}

PORTS= {set of port: internal and external port}

port is a function that identify communication ports in
NODES: local ports (internal) and external ports (send/receive

to nodes not in NODES), port(NODES)  PORTS

communication is a function that identify communication

connections between nodes, {(NODES,PORTS)  (NODES,
PORTS x d)}, delay d =[tmin; tmax]

status is a function that identify node states in which
consist of normal or abnormal status, status(NODES)

{S_NOR} or {S_ABNOR}, where: S_NOR is set of normal
status such as up, communicating,...; S_ABNOR is set of
abnormal status such as down, overload,...

event is a function that identify node events such as request,
messages,... These events consist of internal (internal_events)
and external events (external_events)

In order to visually present architecture model, we denote

AM for architecture model, nNODES, dDOMAIN,

netNETS, LLINKS, {p1, p2}PORTS. So architecture model
AM can be visually described as Fig. 3

Fig. 3. The architecture model of a node

With this architecture model, we can determine the related
information of node such as resource information, operations,
status, etc base on elements of AM.

For example, give an architecture model AM of running
node as Fig. 3 without communication operations, and then
AM can be expressed as follows:

AM=({n}, {d}, {net}, {L},{p1, p2}, port, communication,
status, event)

Where {n}={system information such as device name,

CPU,...}  {running processes, I/O operations,...}  {error
status,...};

port={internal ports: p1, p2};

communication={no communication with others};
status={up};

event={local operation events}

Therefore, architecture model of monitored object will give
us more important information about that object such as local
operations (internal operations) as well as communication
operations (external operations). Based on this architecture
information, we can determine operations, errors or abnormal
states that occur in running time of the node.

B. Compositon Model

DS is complex system in which consists of many
heterogeneous devices (nodes) and is organized according to
hierarchical architecture as Fig. 2. So architecture model of DS
will be set of architecture model AM of nodes in system. In
order to ensure more efficient to build architecture model of
DS, we use composition operation as described here.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

57 | P a g e

www.ijacsa.thesai.org

Let AM1, AM2 be architecture model of node 1 and node 2
in system, let || be composition operator (concurrent) for AM1

and AM2. Composition operation is shown in Fig. 4.

Fig. 4. Composition architecture of two nodes

The architectural model after composition AM1 and AM2 is
AM_C, and AM_C is also a 9-tuple as expression (2).

AM_C =AM1 || AM2

 = (NODESC, DOMAINC, NETSC, LINKSC, PORTSC,
port, communication, status, event) (2)

Where:

 NODESC = NODES1  NODES2 ={NC}= {n1, n2};

 DOMAINC = DOMAIN1  DOMAIN2 ={DC}= {d1, d2};

NETSC = NETS1  NETS2 ={NETC }= {net1, net2};

LINKSC = LINKS1  LINKS2 ={LC }= {L1, L2};

PORTSC = PORTS1  PORTS2 = {p11, p12, p21, p22};

port =port(NODESC)=PORTSC.internal  PORTSC.external

 with PORTSC.internal={p12,p21};

 PORTSC.external={p11,p22}

communication=communication(NODESC,PORTSC)

={(n1,p12)(n2,p21),(n1,p11)(ni,pi),(n2,p22)(ni,pi)}, i  {1,2}

status =status(NODESC){S_NOR} or {S_ABNOR}

where:

 status(NODESC)  {S_NOR} when status(n1)

{S_NOR} and status(n2){S_NOR};

 status(NODESC){S_ABNOR} when

status(n1){S_ABNOR} or status(n2){S_ABNOR}

event = event (NODESC)= internal_events(NODESC) 
external_events(NODESC)

 internal_events(NODESC) = internal_events(n1) 

internal_events(n2)  {12};

 external_events(NODESC) = external_events(n1) 

external_events(n2) -{12}

 with internal_events(n1): local events in node 1;

 internal_events(n2): local events in node 2;

 12: communication events between node 1 and 2

Therefore, composition model AM_C describes operation
information of two nodes in which consist operations of each
node and communication between node 1 and node 2.

Similar to architecture information of MO, we can easily
determine operations, errors or abnormal states of node 1 and
node 2 that occur in running time based on elements in the
model AM_C.

C. Modelling for Architecture of DS

As we presented in section II, topology of DS can be seen
as hierarchical structure consists of many levels such as local
object, network and domain level, in which global DS consists

of n (n0) domains and can communicate with each other via

telecommunication networks, each domain consists of m (m0)
heterogeneous networks interconnect to each other, and each

the network consists of k (k0) physical devices. All off them
can collaborate, exchange and share information to each other.
Therefore, the modeling for architecture of DS will be done
with four levels: MO model, network model, domain and
global DS model. The architecture model for DS can be
expressed as follows:

 The architecture model of MO (AM_MO): AM_MO
describe architecture information of MO and is
expressed as follows:

AM_MO = (NODESMO, DOMAINMO, NETSMO, LINKSMO,
PORTSMO, port, communication, status, event) (3)

 The architecture model of a network (AM_MS): Give a
network consists of k monitored objects {MO1,
MO2,...,MOk} and set of {AM_MO1, AM_MO2,...,
AM_MOk} is architecture model of these objects.
Hence, AM_MS is a composition model of architecture
model AM_MOs respectively:

 AM_MS = AM_MO1 ||...||AM_MOk (4)

From composition result of expression (2), AM_MS is
expressed as follows:

AM_MS = (NODESMS, DOMAINMS, NETSMS, LINKSMS,
PORTSMS, port, communication, status, event) (5)

 The architecture model of domain (AM_MD): Similar to
the AM_MS, give a domain consists of m networks
corresponding to {AM_MS1,…, AM_MSm}, AM_MD
is a composition model of AM_MSs respectively:

 AM_MD = AM_MS1 ||...||AM_MSm (6)

AM_MD is expressed as follows:

AM_MD = (NODESMD, DOMAINMD, NETSMD, LINKSMD,
PORTSMD, port, communication, status, event) (7)

 The architecture model of DS (AM_DS): As DS is a set
of n domains {AM_MD1,…, AM_MDn}, so AM_DS is
a composition model of AM_MDs respectively:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

58 | P a g e

www.ijacsa.thesai.org

 AM_DS = AM_MD1 ||...||AM_MDn (8)

AM_DS is expressed as follows:

AM_DS = (NODESDS, DOMAINDS, NETSDS, LINKSDS,
PORTSDS, port, communication, status, event) (9)

From expression (3)(9), we see that AM_MO, AM_MS,
AM_MD and AM_DS are built from composing architecture
model of basic objects. Thus, information of model AM_MO,
AM_MS, AM_MD and AM_DS will describe all of system
information, operations, links and state information (normal,
abnormal, error) of elements in them. For example, related
information of any network will describe in expression (5), so
NODESMS will describe information of all MO in a network

because NODESMS= NODES1  NODES2 … in which
consists of system information, operations and error or
abnormal information of all MO. Communication ports
PORTSMS will display all of ports of objects in the network,

because PORTSMS =PORTS1  PORTS2 … . Therefore, in
order to determine error or abnormal states of network
according to AM_MS, we only observe NODES_AMS, because

NODES_AMS= NODES_A1  NODES_A2  …

III. THE MONITORING SOLUTION FOR HIERARCHICAL

ARCHITECTURE OF DISTRIBUTED SYSTEMS

A. The Teachnical Base and Basic Monitoring Solution

The objective of the monitoring system is observation,
collection and inspection information about the operations of
the hardware and software components, communication events
of MO. This information supports actively in system
management.

The general monitoring architecture can be divided into 3
parts as Fig. 5.

Fig. 5. General monitoring architecture

Monitored Object (MO) consists of independent objects
such as switches, routers, workstations, servers, ... these objects
have their own hardware and software resource. In order to
describe architecture information of MO at time t, we use
function monitoring_info(MO,t).

Monitoring Application (MA) is designed to support for the
management Objects (administrators or other management
agents). MA entity interacts with monitoring entity to support
the generation of monitoring requirements and present the
results of monitoring are measured from monitoring entity.

ME (Monitoring Entity) is designed to instrument the
monitored objects, the instrumentation information of the
system will be processed to generate the corresponding

monitoring reports and send to MA. In order to describe result
of monitoring entity ME at time t, we use function
result_ME(ME,t).

Thus, monitoring result of ME at time t for MO can be
expressed as follows:

 result_ME(ME, t) = monitoring_info(MO, t) (10)

The monitoring system for DS consists of more MEs and
MAs, they are not fixed and independently operate on each
domain of DS, and monitoring information is exchanged
between the MEs and MAs by message passing.

With the hierarchical architecture model of DS is presented
as the previous session, hierarchical architecture of DS consists
of four levels such as MO, network, domain and global DS. In
order to collect the architecture information of DS, monitoring
entities are designed in accordance with the hierarchical
architecture of DS and we use four monitoring entities to
monitor hierarchical architecture of DS:

 The monitoring entity ME_MO for object: ME_MO
observes and collects the architecture information of
MO. Because architecture model of MO is expressed
as AM_MO in (3), the monitoring result of ME_MO at
time t can be expressed as follows:

 result_ME(ME_MO, t) = monitoring_info(AM_MO, t) (11)

 The monitoring entity ME_MS for network: ME_MS
observes and collects the architecture information of a
network. Because architecture model of a network is
expressed as AM_MS in (4), the monitoring result of
ME_MS at time t can be expressed as follows:

 result_ME(ME_MS, t) = monitoring_info(AM_MS, t) (12)

 The monitoring entity ME_MD for domain: ME_MD
observes and collects the architecture information of a
domain. Because architecture model of a domain is
expressed as AM_MD in (6), the monitoring result of
ME_MD at time t can be expressed as follows:

 result_ME(ME_MD, t) = monitoring_info(AM_MD, t) (13)

 The monitoring entity ME_DS for distributed systems:
ME_DS observes and collects the architecture
information of DS. Because architecture model of DS
is expressed as AM_DS in (8), the monitoring result of
ME_DS at time t can be expressed as follows:

 result_ME(ME_DS, t) = monitoring_info(AM_DS, t) (14)

From expression (11÷14), the monitoring system for
hierarchical architecture of DS will be set of monitoring
entities {ME_MO, ME_MS, ME_MD, ME_DS} that are
designed as Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

59 | P a g e

www.ijacsa.thesai.org

Fig. 6. Architecture of monitoring entities

The monitoring entities ME_MO will be installed on all of
MO in DS, they observe and collect the architecture of MOs,
and supply monitoring reports to network monitoring entity
ME_MS. ME_MS runs composition operation in order to
synthesize monitored information from ME_MOs in the same
network and supply network monitoring reports to domain
monitoring entity ME_MD. The operation of ME_MD and
ME_MS has also run into similar processes as above. The
monitoring implementation of ME_MO is designed as Fig. 7.

Fig. 7. The monitoring implementation of ME_MO

In order to observe and collect the architecture of MO in
DS, we use protocols, APIs and built-in tools of operating
system. The popular protocols are used in management
network to monitor status or traffic of MO such as ICMP
(Internet Control Message Protocol) [12,19], SNMP (Simple
Network Management Protocol) [4,19]. The APIs and tools are
used to observe and collect system information, operations as
well as communication ports of components in MO such as the
Window API, Linux API, libraries,

The modeling for monitoring solution bases on four levels
such as MO, network, domain and global DS which are
suitable with point of view the domain-based management, this
hierarchical monitoring architecture have advantages to
develop some distributed algorithms in levels of DS
management in which the level MO focus on observing and
collecting the architecture information of MO, level ME_MS,
ME_MD and ME_DS are responsible for synthesizing and
processing the monitoring information.

Therefore, the collection and composition process for
building the architecture of DS is implemented as following
sequence:

MO  network  domain  global DS

The collection and composition process of hierarchical
monitoring architecture are described detail in Fig. 8.

Fig. 8. Basic monitoring process for architecture of DS

At each level of monitoring entities (MO, network, domain,
global DS) will collect full monitoring information of their
monitored objects. First level, ME_MO collects and processes
all of monitoring information of components such as Processes,
CPUs, etc. Second level, ME_MS composes all of monitoring
information of MOs in the same network and creates the
monitoring report for architecture of this network. Third level,
ME_MD composes all of monitoring information of networks
in the same domain and creates the monitoring report for
architecture of this domain. Fourth level, ME_DS composes all
of monitoring information of domains in DS and builds the
monitoring report for architecture of DS.

In order to analyze the architecture information of DS, the
sequence of steps is implemented as follows:

global DS  domain  network  MO.

For example, suppose that distributed system CDS consists
of two domains {d1, d2}, each of domains contains one
network: net1 in domain d1, net2 in domain d2, network net1

consists two nodes {n1, n2}NODES, and network net2

consists three nodes {n3, n4, n5}NODES.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

60 | P a g e

www.ijacsa.thesai.org

After the step ME_DS composes all of monitoring
information for architecture of DS, we have all of architecture
information of CDS that is expressed by the architectural
model AM_DS in (9). Therefore, the architecture of CDS is
analyzed as follows:

DOMAINCDS={d1, d2};

domain(d1)={net1}; domain(d2)={net2};

NETSCDS ={net1, net2};

net(net1) = {n1, n2};

net(net2) = {n3, n4, n5};

From above architecture information, the hierarchical
architecture of CDS is presented as Fig. 9.

Fig. 9. The architecture of CDS

In normal case, all of monitored objects {n1, n2, n3, n4, n5}
are running smoothly, set of information of objects in CDS
contains in NODESCDS which consits of system resource
information NODES_SCDS, information about operations

NODES_OCDS and error information NODES_ACDS. Because
the CDS has not any error, NODES_ACDS has not any
description. Suppose that objects n5 is down or overload, then
NODES_ACDS contains down state or overload state of n5. Base
on NODES_ACDS, we will monitor all of errors or abnormal of
CDS.

The connection and communication information of objects
in CDS such as LINKSCDS, PORTSCDS, port, communication,
etc will support us in building algorithms to display network
visualization which consists of communication operations and
link diagrams of nodes, networks and domains.

B. The Initial Experimental Results

Based on the model is presented in the previous sections,
we designed a MCDS (Monitoring for Complex DS) system
that consists of a set of monitoring entities (ME_MO, ME_MS,
ME_MD, ME_DS as Fig. 6) for monitored objects, group of
monitored networks, monitored domains and global system.
The goal of MCDS is that monitor the architecture and
operations information of devices on the VMSC3 system (a
network system of VMS company at Vietnam), in which the
architecture of monitored system can be displayed in
hierarchical architecture as Fig. 2; operations information
consists of local and communication operations (as Fig. 1) of
monitored objects in VMSC3 system such as process,
communication ports, etc.

The initial experimental results are shown in Fig. 10, in
which presents some monitoring forms of MCDS such as

group of forms about basic architecture of objects and group of
objects in VMSC3, as well as general description information
about objects in system such as devices name, IP,...; group of
forms about the communication and local operations
information of monitored objects such as system information
(descriptions, locations, OS…), hardware information (Cpu,
Ram, I/O, …) and information on the operations of the
processes, status, communication, etc. This information is
collected by ME_MO and will be used to send to other
monitoring entities (ME_MS, ME_MD and ME_DS) by the
message passing mechanism.

Fig. 10. MCDS for the monitored object in VMSC3

In order to evaluate this monitoring model for hierarchical
architecture of distributed systems, we use some notation such
as Mour for our model; MGM for monitoring models is mainly
based on tools (OS, utilities). Some evaluations as follows:

 Monitoring presentation: Because built-in tools only
run object itselft or by remote, so discrete monitoring
information, independent of each device. Therefore,
MGM focuses on presenting monitoring information
directly of objects MO in DS, it is only local part of DS.
Mour presents monitoring results as the hierarchical
architecture such as objects, networks, domains and
global DS, so the presentation results consist of local
part and global system, it provides an overview on
monitored DS for administrators and is more
appropriate for architecture of complex DS in the
practical environment.

 Monitoring function: Solutions in SM group are only
pay attention to solve special monitoring issues between
MOs (computing, traffic, etc). MGM focuses on general
operations of MOs (devices, components) in DS,
however this solution provides discrete monitoring
information and have some disadvantages that we
presented in [4,8]. Mour monitors general operations of
MOs in DS with multi-levels, so it provides multi-level
monitoring reports (local objects, networks, domains,
etc). Therefore, Mour supports administrators in
managing monitored objects in system more advantage
and quickly detecting errors, potential risks arising
during operation of DS based on elements of model at
each level.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

61 | P a g e

www.ijacsa.thesai.org

 Implementation time: Because most of the built-in tools
in MGM monitor DS by using discrete tools (OS or
device vendors utilities), we have to type (or select) one
or more commands respectively. Mour monitor based on
MEs and MEs communicate to each other by the
message passing. So, monitoring time with Mour will
take less than MGM. In order to evaluate for monitoring
time, basic monitoring time for object Oi between MGM
and Mour are expressed as follows:

        



n

i
iPR

n

i
iTimoteiGM CtCtOtOt

1
_

1
Re  

      



n

i
iPRimesiour CtOtOt

1
_'  

Where: tGM(Oi) and tour(Oi) are monitoring time of MGM and
Mour for object Oi; tmes(Oi), tRemote(Oi), tT(Ci), tR_P (Ci) and t’R_P

(Ci): time for clicking function and monitoring message to
object Oi, remote to object Oi, typing (or selecting) command
Ci, running-presentation results of command Ci respectively.

Suppose that tR_P(Ci)=t’R_P(Ci) for same monitoring
function in MGM and Mour with the same Oi.

The experimental results are implemented in VMSC3, in
which nodes work on MS windows environment. Result
consists of some cases as follows:

Monitoring implementation in object itself: tRemote(Oi)=0,

tmes(Oi)23s (clicking), tT(Ci)1020s; with components as
Fig. 2, we use about 7 commands respectively (n=7), so

 


7

1i
iT Ct  70140s, hence tGM(Oi)tour(Oi) (approximately

68137s)

Monitoring implementation for a remote object on LAN:

tRemote(Oi)2030s, tmes(Oi)34s, tT(Ci)1122s, so  


7

1i
iT Ct

77154s, hence tGM(Oi)tour(Oi) (approximately 94180s)

Therefore, we are easily aware that    iouriGA OtOt 

When monitoring implements for a group of m objects on a

network Si:  



m

i
iGAGA Ott

1

 for MGM and time for Mour is

   
iSouri

m

i
ourour MSMEtOtt _

1




, where:
iSMSME _ is a

ME_MS for Si and can be seen as a network object. Hence, the

bigger monitoring time tGM compares with tour (tGMtour) when
the bigger m is.

The hierarchical architecture model of monitored objects in
DS and experimental result show that our proposed model is
feasible and will overcome the disadvantages of specific built-
in tools in monitoring hierarchical architecture of DS, as well
as actively support administrators in managing DS in according

to multi-level such as object level, network, domain and global
DS level. Some actively results of above proposed model are
presented in Table III.

TABLE III. SOME RESULTS BETWEEN BUILT-IN TOOLS (GM) AND MCDS

Issue Specific built-in tool MCDS

Monitoring
function

Monitoring for general
operations of MOs in DS,

based on tools that
developed by device

vendors side or operating

systems side

Monitoring for general
operations of MOs in

DS with multi-levels,
based on set of

monitoring entities:

objects, networks, etc.

Implementation

of monitoring

requirements

Administrators must have
good skill to use all

support tools (ultilities)

integrated with monitored
objects and OS of MOs.

Administrators only run

monitoring requirements
in MCDS by click on

menu.

Implementation
method

Manual method, based on

remote connection and tool

is manually executed.

Automatic method,

based on implementing

of monitoring agents.

Monitoring

scope
Discrete, objects, local

Local, global, large

scale DS

Monitoring

time

Depending on skill of the

administrators and network
infrastructure.

Depending on monitored

network infrastructure.

Error detection Manually Automatic warning

Diagnosing,
and evaluation

Manually, depending on

the skill of the

administrator, local.

Automatic, multi-level:

objects, netwoks,

domains,…

IV. CONCLUSION

The modeling has an important role in the development of
efficient algorithms for the monitoring problems in DS. This
paper proposes a modeling method for the basic architecture of
objects in DS, the monitoring solution for hierarchical
architecture of DS. With the proposed models, we develop the
MCDS solution that supports administrators for monitoring
information visually such as the DS topology, the operations
and status information of objects in the system, etc. Based on
the monitoring entities, we easily develop extensions for these
monitoring entities to provide complete online architecture
information that effectively support for administrators, as well
as allow storing monitoring data into database for the
synthesis, evaluation and analysis of historical monitoring data
later. This information is actively useful for the appropriate
management decisions and controlling actions the monitored
system.

In order to effectively deploy the monitoring solution for
the distributed systems, we continue investments to complete
the solution and optimize for monitoring algorithms, the
dynamic management model and effective communication
model for monitoring entities, as well as the analyzing
techniques that optimize the computations for the large number
of monitoring information in the large-scale systems.

REFERENCES

[1] Christos G. Cassandras, Stéphane Lafortune, "Introduction to Discrete
Event Systems", 2nd edition, Springer, 2008.

[2] Gabriel A. Wainer, Pieter J. Mosterman, “Modeling and simulation
theory and applications”, CRC Press, 2011.

[3] Gerard J. Holzmann, "Design and validation of computer protocols",
Prentice Hall, 1991.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

62 | P a g e

www.ijacsa.thesai.org

[4] Phuc Tran Nguyen Hong, Son Le Van, "An online monitoring solution
for complex distributed systems based on hierarchical monitoring
agents", The Fifth International Conference on Knowledge and Systems
Engineering, pp 191-202, 2013.

[5] Son Le Van, Phuc Tran Nguyen Hong, “Researching on an online
monitoring model for large-scale distributed systems”, Proceedings of
the 13th National Conference in Information and Communication
Technology, Hungyen, Vietnam, 2010.

[6] Weilong Hu, Hessam S. Sarjoughian,”A co-design modeling approach
for computer network systems”, Proceedings of the 2007 Winter
Simulation Conference, 2007.

[7] Yannick Pencolé, marie-odile cordier, Laurence Rozé, "A decentralized
model-based diagnostic tool for complex systems", International Journal
on Artificial Intelligence Tools (IJAIT), 2002.

[8] Phuc Tran Nguyen Hong, Son Le Van, Huy Nguyen Xuan, "The
technical overview report on some monitoring solutions for distributed
systems”, The technical servey report, Danang University of
Technology, The University of Danang, Vietnam, 2014.

[9] George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair,
"Distributed systems concepts and design", 5th Edition, Addison Wesley
Press, 2011.

[10] http://corbatrace.sourceforge.net

[11] http://monalisa.caltech.edu/monalisa.htm

[12] https://www.ietf.org/rfc/rfc792.txt

[13] Jeffrey Joyce , Greg Lomow, Konrad Slind, Brian Unger, "Monitoring
Distributed Systems", ACM Transactions on Computer Systems, 5(2),
pp. 121-150, 1987.

[14] R.Hofmann, "The Distributed Hardware Monitor ZM4 and its Interface
to MEMSY", Universit¨at Erlangen, IMMD VII, 1993.

[15] Sheng-Yuan Yang, Yi-Yen Chang, "An active and intelligent network
management system with ontology-based and multi-agent techniques",
Expert Systems with Applications,38(8), 2011.

[16] Phuc Tran Nguyen Hong, Son Le Van, "Monitoring of large-scale
distributed systems based on SNMP development", The Journal of
Science and Technology, Danang University, I(8),79-84, 2012.

[17] Xavier Logean, "Run-time Monitoring and On-line Testing of
Middleware Based Communication Services", PhD dissertation, Swiss
Federal, 2000.

[18] Kwang-Hui Lee, “A Distributed Network Management System”, Global
Telecommunications Conference, IEEE,1994.

[19] Aman Mahajan, Haresh Joshi , Sahil Khajuria , Anil k Verma, “ICMP,
SNMP: Collaborative Approach to Network Discovery and Monitoring”,
International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN)
ISSN No. 2248-9738 Volume-1, Issue-3, 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3878
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3878

