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Abstract—The focus of this paper is the analysis of the 

constraint on the repair resources caused by breakdowns of 

components in large systems. The study has been conducted by 

creating a very efficient discrete-event simulator, based on a min-

heap data structure, for determining the probability of constraint 

on the repair resources. 

In finding the right balance between the number of repairers 

and salary costs, an exact optimisation algorithm has been 

proposed for the first time. The algorithm determines the optimal 

number of repairers which guarantees that the probability of 

constraint on the repair resources will not exceed an acceptable 

tolerable level. In addition, an exact optimisation algorithm has 

been proposed for the first time, for determining the maximum 

size of the system that can be serviced by a specified number of 

repairers so that the probability of constraint on the repair 

resources remains below a specified tolerable level. Unlike 

heuristic optimisation algorithms, the proposed algorithms are 

exact and always guarantee optimal solutions. 

The presented results are of significant importance to 

operators of computer networks, production systems, 

transportation networks, water distribution systems, electrical 

distribution networks etc. They are a solid basis for management 

decisions regarding the optimal number of maintenance 

personnel needed to service the breakdowns in large systems. 

Increasing the number of repairers beyond the optimal level 

leads to high salary costs while reducing the number of repairers 

below the optimal number leads to a poor quality of service. 

Keywords—constraint on the repair resources; discrete-event 

simulation; optimization; repairs; optimal size of a system 

I. INTRODUCTION 

Complex systems include many components experiencing 
failures at random times and with random repair durations. 

The constraint on the repair resources caused by 
overlapping repair intervals and insufficient number of 
repairers is an important factor which decreases the 
availability and quality of service of computer systems. 

A particular pattern of random breakdowns combined with 
a random duration of the repair has been shown in Fig.1. The 
breakdown events have been marked by b1,b2,b3,..., while the 
return from repair events corresponding to the breakdown 
events have been denoted by r1,r2,r3,.... 

 

 
Fig. 1. A specific pattern of random breakdowns and random repair times 

Each breakdown engages at least one repairer. In the zones 
where the repair times overlap, for example zones (b2, r1) and 
(b3, r2), the repairers are engaged in more than one 
breakdown. This means that several members of the repair 
team will be simultaneously engaged in fixing breakdowns. 
The quantity of required repairers depends on the type of 
breakdown. The return-from-repair events (r1,r2 and r3 in 
Fig.1) are associated with restoring the failed devices to a full 
working state and a release of engaged repairers. 

If for a particular breakdown event, the number of 
remaining repairers is not sufficient to cover the 
corresponding repair, a constraint on the repair resources 
occurs, which will result in delays and degraded quality of 
service of the system. 

If the quantity of repairers is more than the optimal 
quantity, the result will be overstaffing and extra costs. 
Consequently, there is a delicate balance between the number 
of repairers and the probability of a delay caused by 
overlapping repairs. This balance can be found by creating an 
optimisation model which involves numerous simulations of 
breakdown-repair histories revealing the probability of a delay 
caused by insufficient number of available repairers. The 
maximum tolerable probability of such a delay will be 
specified in advance, in order to guarantee the required quality 
of service of the system. 

Monte Carlo simulation techniques and discrete-event 
simulation techniques [1] have become the methods of choice 
for studying the behavior of complex systems. Monte Carlo 
simulations related to studying the behavior of the various 
layers building computer networks already exist. The benefits 
of simulation techniques applied to analysis of computer 
systems, modelling and design have been highlighted in [2]. 
Simulations have also been conducted related to the data 
traffic carried by computer networks [3,4]. The study of 
comprehensive review articles on simulation of 
telecommunication networks [5] shows that, to the best of our 
knowledge, the constraint on repair resources caused by 
overlaping repair times has not yet been studied. This gap 
defines the objectives of the present paper: 
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1) To analyse the constraint on the repair resources 

caused by component breakdowns in large systems; 

2) To determine the optimal number of repairers needed 

to reduce the probability of a constraint on the repair 

resources below a specified level; 

3) To determine the maximum size of the system that can 

be serviced by a specified number of repairers, for a specified 

probability of constraint on the repair resources 
Breakdown/failure data related to large systems are vital 

both in terms of optimal system design and system evaluation. 
The availability of breakdown data is particularly important to 
computer networks. According to a number of sources 
[6,7,10] the negative exponential distribution is an appropriate 
model for random breakdowns of electronic devices in a given 
time interval. 

If the breakdown density (number of random breakdowns 

per unit time interval) is denoted by  , the time to a random 

breakdown is given by the negative exponential distribution 

)exp(1)( ttB                              (1) 

where )(tB  is the probability that the time to a 

breakdown will be smaller than or equal to a specified time t. 
The random delay for repair after a random breakdown was 
modelled by the negative exponential distribution 

)/exp(1)( MTTRttR                      (2) 

where )(tR  is the probability that the repair time will be 

smaller than a given value t, and MTTR  is the mean time to 
repair. The negative exponential distribution (2) has been 
traditionally used for modelling service times [8]. A recent 
study [9] has indicated that the assumption that repair times 
follow the negative exponential distribution practically does 
not affect the calculated availability of various complex 
systems. 

The breakdown/failure density   in the negative 

exponential distribution (1) can be estimated from 
breakdown/failure data related to the components building the 

computer system. From n recorded times to a breakdown 1t ,

2t ,..., nt , the mean time to failure/breakdown MTTF  can be 

estimated [6,7] from 

n

ttt
MTTF n


...21

                       (3) 

For time to a breakdown following the negative 
exponential distribution (1), it can be shown that the 

breakdown/failure frequency   is related to the mean time to 

failure (MTTF) by the simple relationship [6,7,10]: 

MTTF

1
                                       (4) 

from which the breakdown/failure frequency   can be 

determined if the MTTF is available and vice versa. 

In developing the model of random times to a breakdown 
for the separate components, breakdown frequencies 

determined from analysis of past data published in the 
literature (e.g. [11]) will be used. 

A failed device in the computer system comes back in 
operation after a delay specified by the time it takes for the 
component to be fixed [10]. As a result, for any 
component/device building the computer system, each 
breakdown event is followed by a random delay for repair 
(Fig.2) in the interval (0, op_int), during which the computer 
system is operated. 

 
Fig. 2. Random times to breakdown ttb1,ttb2 and ttb3 and random times to 

repair ttr1,ttr2 for a selected component building the computer system. 

Gaining access to failure data is often difficult because 
failure data are sensitive and not readily disclosed by 
manufacturers. A number of studies on breakdowns in 
computer systems already exist ([12, 13,14,15,16,17]. A major 
drawback in many of these studies ([14], [15], [16], [17]) is 
that the breakdowns are not attached to specific devices and 
components. For example, Plank and Elwasif [14] provide 
time to a breakdown and time to recovery histograms, but 
these are related to the systems as a whole, not to particular 
components building the investigated systems. Murphy and 
Gent [16] discuss system crashes caused by 'software failures', 
'hardware failures', 'system management' and 'other reasons', 
without providing specific data relevant to the separate 
components building the systems. A similar discussion has 
been presented by Kalyanakrishnan et al [17], who discuss 
breakdowns in terms of 'hardware or firmware problems', 
'connectivity problems', 'crucial application failures' and 
problems with a software component'. 

The analyses are relevant only to the particular 
investigated system but not very useful for modelling the 
behaviour of newly designed systems with similar 
components, because no sufficient specific failure data were 
presented about the components building the systems. The 
research conducted as part of the present study could not 
identify anonymized failure databases similar to existing 
databases for the military electronic equipment (for example 
MIL-HDBK-217F [18]), where electronic components are 
listed with their breakdown/failure rates. The existence of 
such databases could help significantly the assessment of new 
computer systems. 

The need for such databases is reinforced by studies [13] 
indicating that the component failures are not uniformly 
distributed among the different devices building the computer 
systems. A small fraction of devices are responsible for the 
majority of the recorded failures and this circumstance is vital 
for modelling the expected availability of new systems. Some 
devices, due to their nature, are subjected to a much higher 
workload compared to other devices and are more prone to 
breakdowns (e.g. file servers conducting a large number of I/O 
operations). Some devices including electro-mechanical parts 
(disk drives) are much more prone to breakdowns compared to 
devices which do not include such parts. 
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Despite these difficulties, failure data related to specific 
componets in computer networks have been presented by Gill 
et al [11], Schroeder and Gibson [19,20], Labotitz and Ahuja 
[21] and Sahoo et al, [13]. 

In their analysis, Schroeder and Gibson [19] noted that the 
system size is not a significant factor in the repair time. A set 
of failure data has been recently collected at a high-
performance computing site and was made available online 
(Failure data [22]). Statistical failure analysis of web server 
systems has been presented by Fujii and Dohi [23], where 
failure rate functions characterising web servers can be found. 

Valuable failure data sets have been presented by Gill et al 
[11], collected by computer systems operators employing a 
ticketing system. The tickets contain important information 
about when and how the breakdown events have been 
discovered as well as when they were resolved. In addition, 
the tickets also contain a description of the cause of the 
problem, and the specific device at fault. Event logs were 
collected during one year of operation and two types of 
breakdowns have been defined: ‘link failures’ in the case 
where the connection between two devices was down and 
‘device failures’, when a device was not functioning for 
routing/forwarding traffic. 

II. DETERMINING THE OPTIMAL NUMBER OF REPAIRERS 

AND THE OPTIMAL SIZE OF THE SERVICED SYSTEM 

A. Determining the optimal number of repairers which 

guarantee a probability of constraint on the repair 

resources below a specified tolerable level 

Determining analytically the probability of constraint on 
the repair resources for more than a single available repairer is 
a complicated task. This task can be simplified by constructing 
a discrete-event simulator for modelling the failure-repair 
history. Furthermore, there is an optimal balance between the 
number of repairers and the probability of constraint on the 
repair resources. This optimal balance can be found by 
creating an optimisation model that involves a suitable 
variation of the number of repairers followed by determining 
the probability of constraint on the repair resources, until the 
optimal balance is achieved. 

An initial amount of repair resources is assigned and the 
discrete-event simulator is called to calculate the probability 
of constraint on the repair resources. Clearly, for zero number 
of repairers, the probability of constraint on the repair 
resources will be higher than the target probability   and 

close to unity (Fig.3). This is because any single component 
breakdown will create a constraint on the repair resources 
simply because there will be no available repairers to handle 
the breakdown. 

 

Fig. 3. A procedure for determining the optimal number of repairers for a 

specified probability   of constraint on the repair resources. 

Similarly, for a large number of repairers (number of 
repairers = right_bound), it is highly likely that there will be 
an available repairer for every single breakdown and the 
probaility of runing out of repairers will be smaller than the 
target probability  . Between these two extremes lies the 

optimal solution where the number of repairers is just enough 
to guarantee the target probability   of constraint on the 

repair resources. This optimal solution can be found by a 
repeated bisection of the interval (0, right_bound). 

The probability of constraint on the repair resources is 
determined from risk management considerations and is 
specified as an input paratemer by the manager of the 
computer system. This probability depends on the criticality of 
the supplied service. A probability of constraint on the repair 
resources equal to 20% may be sufficient for non-critical 
computer systems (e.g. school network; computer LANs) but 
it is insufficient for critical computer sustems (e.g. server 
backbone networks, nuclear power plant moniotoring systems, 
computer networks providing high-speed data transfer for 
electrical distribution systems; data storage computer systems; 
secure remote access networks, etc.). For critical computer 
systems, a large probability of a constraint on the repair 
resources means a large probability that repairers will not be 
available when needed, which could be associated with 
serious consequences. Setting the correct level of the 
probability of constraint on the repair resources is done by 
experts, after a careful risk assessement and is not a subject of 
this study. 

B. Determining the maximum size of the system which 

guarantees a probability of constraint on the repair 

resources below a specified tolerable level 

For a given number of repairers, the maximum size of the 
computer system which guarantees a probability of constraint 
on the repair resources below a specified tolerable level can be 
determined by a similar repeated bisection technique (Fig.4).  
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This time, the parameter which is varied is the number of 
components in the computer system while the number of 
repairers is kept constant. 

Clearly, for zero number of components, the probability of 
constraint on the repair resources is zero. For a large number 
of components experiencing breakdowns, the probability of 
constraint on the repair resources will be larger than the 
specified tolerable level  . The optimal solution is located 

between these two extremes. It corresponds to a point where 
the number of components in the system is just enough to 
guarantee the target probability   of constraint on the repair 

resources (Fig.4). The optimal solution can be found by a 
repeated bisection. A serviced system size, significantly 
smaller than the optimal solution, means that the available 
repairers are not used efficiently. A serviced system size, 
significantly larger than the optimal solution, means that there 
exists an increased probability of constraint on the repair 
resourecs and a low quality of service. 

 
Fig. 4. An optimisation procedure for determining the optimal size of the 

serviced system 

C. An optimization algorithm 

The breakdown events mark the engagement of a repairer. 
The return-from-repair events mark the release of repairers. 
Each event is represented as a record ‘ev_record’ with four 
fields: 

'time_of_event' - stands for the time of occurence of the 
event; 

'e-type' - stands for the type of event ('breakdown' or 
'return from repair'); 

'req_rep' - stands for the quantity of engaged/released 
repairers; 

'id' - stands for the component index. 

The traditional way of implementing discrete-event 
simulators is by linked lists [1,24]. In this study, the discrete-
event simulator has been implemented by using a min-heap 
(priority queue). The main reason is that the retrieval of the 
event with the smallest time from a linked list is an operation 

of time complexity )(nO , where n is the number of events in 

the list. In contrast, the retrieval of the event with the smallest 
time, followed by restoring the min-heap property, is an  

operation of time complexity )(log2 nO . 

The events are placed in a min-heap which is essentially a 
binary tree coded in an ordinary array. In the min-heap, the 
time stamp 'te' of each predecessor node is smaller than each 
of the time stamps of its successor nodes (te1 < te2; te1< te3; 
te2<te4; te2<te5; te3<te6; te3<te7; te4<te8; te4<te9). 

 

Fig. 5. Min-heap used for implementing the discrete-event simulator. 

As a result, inserting an event in a min-heap with n events 
or removing an event, followed by restoring the min-heap 

property, are both operations of time complexity )(log2 nO . 

Standard functions ‘sift’ and ‘buble up’ can be used to restore 
the basic property of the min-hip: the descendants of each 
element of the min-heap must be with a larger time stamp. 
Detailed discussions regarding the programming 
implementation of min-heaps can be found in [25]. 

Algorithm 
procedure 
generate_ttb_and_ret_from_repair(current_time, j); 
 { 
   // Generates the time to breakdown event and the  

      return-from-repair event for component i and places  

      these events in the min-heap 

 } 
procedure remove_event() 
   { 
         // Removes the event with the smallest time from the top of the  

            min-heap 

   } 
function prob_constraint_rep_res(num_repairers) 
{ 
 

count=0;  // Counts the number of simulation trials  during which  

                         a constraint on repairers has occurred 

 
for i=1 to num_simul_trials do 
   { 
    // initialises the quantity of remaining repair resources 

    rem_resources = num_repairers; 
 
             // initialise the current time of the discrete-event simulator 

    current_time = 0; 
 
    heapsize=0;  //clears the min-heap 
// for all components generates events 'time of a breakdown' and 

'time of return from repair' and places  them in the min-heap: 
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for j=1 to num_components do 
generate_ttb_and_ret_from_repair(current_time,j); 
// while there are events in the min-heap and the the current time is 

smaller than the operational time do the while loop: 

  while (heapsize>0 and current_time < op_int) do  
         { 
          ev=a[1]; //Take the event on the top of the min-heap 

          // Takes the time stamp of the top event in the min-heap 

          current_time = ev.time_of_event; 
        if (ev.e_type = 'breakdown')  { 
                         // checks for a constraint on the repair resources 

           if (rem_resources < ev.req_rep)  
            { 
              count=count+1;  
              break; 
     } 
     else {   
              // allocates resources for the current breakdown event 

      rem_resources = rem_resources - ev.req_rep; 
 
         // removes the first event from the min-heap; 

    remove_event();  
          } 
                                      } 
 else { // the event is a return-from- repair event 

       rem_resources = rem_resources + ev.req_rep;  
 remove_event();   

  // generate time of a breakdown event and time of a recovery event  

     and place them in the min-heap; 

generate_ttf_and_ret_from_repair(current_time, 
                                 ev.id); 
      } 
           } 
    } 
prob_of_constr = count/num_simul_trials; 
return prob_of_constr; 
} 

// Code of the repeated bisection part 
  left=0; right = right_bound; 
 while (left + 1 < right) do 
{ 
 mid = (left+right) / 2; 
  cur_probability = prob_constraint_rep_res(mid); 
    if (cur_probability <=alfa ) right = mid; 
      else left = mid; 
} 
    optim_num_rep = right; 

The probability of constraint on the repair resources 
depends on the number of available repairers which is an 
important parameter of the function 
prob_constraint_rep_res. This parameter is passed to the 
function through the variable ‘num_repairers’. At any point 
of the simulation, the variable ‘rem_resources’ shows the 
current number of remaining repairers. The variable 
‘current_time’ tracks the time of occurence of the current 
event. The content of the clock ‘current_time’ is compared 
to the length of the operation interval ‘op_int’ and if this is 
exceeded, the current simulation is terminated. At the start of 
each simulation trial, an empty min-heap is initialised by 
making the size of the min-heap zero with the statement 
'heapsize=0'. 

The simulation starts with generating all breakdown events 
and return from repair events for all components and placing 
them in the min-heap. This is done by the procedure 
generate_ttb_and_ret_from_repair(current_time,j), 
which takes as parameters the current time of the discrete-
event simulator and the index  'j' of the component. The 
random time to a breakdown for the component with index 'j' 
is generated by a function which takes as parameter the 
breakdown frequency of the component with index 'j' and 
generates a random time to a breakdown by using the inverse 
transformation method [26] for sampling from the negative 
exponential distribution (1). This method consists of 
generating a random number xi uniformly distributed in the 
interval (0,1) [27,28] and determining the corresponding 
random time to a breakdown ti through the inverse function of 
the distribution of the time to a breakdown: 

]1ln[
1

ii xt 


                               (5) 

where   is the breakdown/failure frequency of the 

corresponding component. 

The actual time of the component breakdown is obtained 
by adding the current time of the simulator to the random time 
to a breakdown. Next, the procedure 
generate_ttb_and_ret_from_repair(current_time,j) 
generates a random time to repair. A random time to repair is 
generated by taking the mean time to repair MTTR of the 
failed component and using the inverse transformation method 
to sample from the negative exponential distribution (2). 

Again, a uniform random number ix  is generated [27,28] in 

the interval (0,1) and the random time to repair it  is obtained 

from 

]1ln[ ii xMTTRt                       (6) 

The return time from repair is obtained by adding the 
current time of the simulator, the random time to a breakdown 
and the random time to repair. 

Checks are also performed whether the breakdown time 
and the time of return from repair are smaller than the length 
of the operation interval 'op_int'. If this is the case, event 
records are made with the corresponding time stamps and are 
subsequently inserted in the min-heap. The min-heap data 
structure is contained in the array a[] whose elements are 
event records. 

For the sake of simplicity, the implementation details 
related to inserting an event in the min-heap have been 
omitted here. 

In the simulation loop, the nested while-loop goes through 
the events from the min-heap by always taking the event from 
the top of the mean-heap (Fig.5) with the statement 'ev=a[1]'. 
This is the event with the smallest time stamp, therefore this is 
the event which will occur next. The current time of the 
simulator is updated with the earliest time by the statement 
'current_time = ev.time_of_event'. 
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Next, for the extracted from the min-heap event, a check is 
performed whether there will be available repairers to cover 
the demand for repair. If the remaining repairers are smaller 
than the required number of repairers, a constraint on the 
repair resources has occurred, the counter 'count' is 
inclemented and the while-loop is exited immediately by the 
statement ‘break’. This is done by the fragment: 

 
            if (rem_resources < ev.req_rep)   
              { 
                count=count+1;  
                break; 
  } 

If the remaining repairers are sufficient to cover the 
demand for repair from the current breakdown event, the 
fragment 

 else { 
    rem_resources = rem_resources - ev.req_rep; 
    remove_event(); 
      } 

allocates repairers to the breakdown event and decreases 
the amount of available repairers by the amount ‘ev.req_rep’ 
required by the breakdown event. Next, the breakdown event 
is removed from the min-heap by calling the procedure 
'remove_event()'. Implementation details have been omitted 
here, for the sake of simplicity. New events with random 
breakdown time and random return from repair time are 
generated only when the current event is of type ‘return from 
repair’. This is done in the fragment 

 else { 

   rem_resources = rem_resources + ev.req_rep; 

   remove_event(); 

   generate_ttb_and_ret_from_repair(current_time, 
                                    ev.comp_indx); 
      } 

In this fragment, a release of engaged repairers is made 
first by the statement 

rem_resources = rem_resources + ev.req_rep; 

which is followed by removing the event from the min-
heap by calling the procedure remove_event(). 

This is followed by calling the procedure 
generate_ttb_and_ret_from_repair(current_time, 
ev.id), which generates new time-to-a-breakdown event and 
return-from-repair event for the corresponding component, 
with index 'ev.id'. 

These steps are repeated while there are still events in the 
min-heap or the current time of the simulator is smaller than 
the length of the operational interval 'op_int'. The probability 
of constraint on the repair resources is obtained in the 
statement 

prob_of_constr = count/num_simul_trials; 

by dividing the number of times constraint on the repair 
resources has been registered (the content of the counter 
'count') to the total number of simulation trials 
num_simul_trials. 

Next, the fragment of the repeated bisection follows, from 
which the discrete-event simulator is called a number of times 
until the optimum is reached. 

Finally, the algorithm for determining the optimal size of 
the system that can be serviced by a given number of repairers 
(so that the probability of constraint on the repair resources 
remains below a specified level) has also been implemented. 
This algorithm is very similar to the one described earlier and 
will not be presented here. 

III. A SIMULATION STUDY AND RESULTS RELATED TO A 

LARGE COMPUTER SYSTEM EXPERIENCING RANDOM 

COMPONENT FAILURES AND RANDOM REPAIR TIMES 

In the simulation study, the random time to a breakdown 
was modelled by the negative exponential distribution (1) 
while the random repair time was modelled by equation (2). 
The data related to the number densities of the breakdowns 
related to the sparate devices and the mean time to repair have 
been taken from published studies ([11,13,19,20,21]. 

By using the described algorithm, the probability of 
constraint on the repair resources for a large computer system 
has been studied. The computer system included 11 different 
types of components: Workstations, WLAN transmitters, 
Printers, Servers; VoIP Servers, Routers, Switches, Fiber 
optical cables, Ethernet cables, Console cables and Monitoring 
computers. 

Each of these devices is characterised its own 
breakdown/failure rate and mean time to repair. A single 
repairer was assumed for each of the failed devices. 

The overall number of devices which experience 
breakdowns and require a repairer was 632. The simulation 
was run on a computer with 3 GHz Quad Core CPU. For 3 
available repairers, a probability of constraint on the repair 
resources equal to 0.46 was calculated within 3.73 seconds, 
based on 10000 simulation trials. This demonstrates the high 
computational efficiency of the developed simulator based on 
a min-heap. The convergence was also very good because 
increasing the number of simulations to 100000 resulted in a 
very similar value (0.45) for the probability of constraint on 
the repair resources. 

The probability of constraint on the repair resources as a 
function of the number of available repairers is given in Fig.6. 
As can be seen from the plot in Fig.6, there is a critical 
number of repairers for which the probability of constraint on 
the repair resources decreases sharply. For the considered 
computer system, this critical number is 4. For 3 repairers, the 
probability of constraint on the repair resources is 46%. 
Adding one more repairer however, causes the probability to 
drop sharply to 4.4%. The subsequent increase of the number 
of repairers causes only an insignificant decrease of this 
probability. The conclusion is that keeping more repairers than 
the critical number increases the salary costs without bringing 
a substantial decrease in the probability of constraint on the 
repair resources and an increase in the quality of service. 
Conversely, a number of repairers smaller than the critical 
number is associated with a large probability of constraint on 
the repair resources and a reduced quality of service. 
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Fig. 6. Variation of the probability of constraint on the repair resources with 

the number of repairers 

Determining the optimal number of repairers was 
conducted by using the same set of input data. The specified 
level of the probability of constraint on the repair resources 

was 20% ( 2.0 ). 

The optimal solution was bounded between the values 0 
and 30. Indeed, a number of repaires equal to zero yields 
100% for the probability of constraint on the repair resources. 
A number of repairers equal to 30 yielded 0% probability of 
constraint on the repair resources. Consequently, the optimal 
solution must be located within the interval (0,30). Running 
the repeated bisection algorithm yield an optimal number of 
repairers equal to 4. The corresponding probability of running 
out of repair resources for this number of repairers is 0.044 
(4.4%). The results from the previous simulation served as a 
validation test for the optimisation procedure. As it can be 
verified from Fig.6, four repairers is indeed the optimal 
number of repairers because 4 is the smallest number of 
repairers which yields a probability of constraint on the repair 
resources smaller than 20%. Three repairers yield probability 
equal to 0.46 - significantly larger than the specified 
maximum tolerable probability of 20%. 

To determine the optimal size of the computer system 
which can be serviced by a given number of repairers, a 
weighted averaged breakdown frequency of 0.358 year

-1
 and a 

weighted average time to repair equal to 0.28 days has been 
used, taken from published breakdown data related to 
computer networks. Two levels of the maximum tolerable 
probability of constraint on the repair resources have been 

specified: %20  and %2 . The optimal size of the 

network serviced by a different number of repaires, at the 
specified probability of constraint on the repair resources, is 
shown in Fig.7. 

A serviced system size significantly smaller than the 
optimal size means that the available repairers are not used 
efficiently. A serviced system size significantly larger than the 
optimal size means that there is an increased probability of 
constraint on the repair resourecs which entails a low quality 
of service. 

The developed discrete-event simulator also permits 
investigating the constraint on the repair resources related to 
specific components. 
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Fig. 7. Optimal serviceable size of the computer system for different number 

of available repairers 

The failures of top of rack switches require the 
intervention of an operator. The failure frequency of top of 

rack switches according to [11] is 038.0  year
-1

. The 

cumulative empirical distribution of the time to repair is given 
in Fig.8. 

The simulation based on 300 switches and 10000 
simulation histories revealed a probability of constraint on the 
repair resources equal to 0.11. The time for computing this 
result on a computer with 3 GHz Quad Core CPU was 1.18 
seconds. The empirical time to repair distribution in Fig.8 was 
sampled by combining the inverse transformation method and 
linear interpolation (the arrows in Fig.8). 
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Fig. 8. Time to repair distribution of top of rack switches in computer 

systems (according to Gill et al.[11]) 
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IV. INVESTIGATING THE INFLUENCE OF CRITICAL 

PARAMETERS ON THE PROBABILITY OF CONSTRAINT ON THE 

REPAIR RESOURCES 

A. Investigating the influence of the failure frequency and 

mean repair time on the probability of constraint on the 

repair resources 

The influence of the breakdown frequency on the 
probability of constraint on the repair resources has been 
tracked by keeping all the parameters constant except the 

breakdown frequency   of the components, which was varied 

in the interval (0 -:- 4.0 year
-1

), Fig.9. Ten components have 
been used, for each of which the same breakdown frequency 

  has been assumed and one repairer was required for each 

component failure. For the purposes of the parametric study, 
the repair times have been assumed to follow a Gaussian 
distribution. A common mean time to repair MTTR=1.5 days 
has been assumed for each component, with a standard 
deviation   equal to 0.15 days. 

The operational interval was set to be 1 year. Two distinct 
cases have been investigated: (i) A single available repairer 
and (ii) two available repairers. The results have been 
summarised in Fig.9. 

The results in Fig.9 reveal a unexpectedly large probability 

of constraint on the repair resources for a single available 

repairer. For the system including 10 components, each of 

which experiences on average 2 breakdowns a year ( 2 , 

year
-1

), with 1.5 days duration for repair, the probability of 

constraint on the repair resources during one year of operation 

is 73%! If the components experience 3  instead of 2 

expected number of failures per year, the probability of 

constraint on the repair resources is already 94%! These 

unexpected results show how easy it is to underestimate the 

probability of constraint on the repair resources. The result 

from such a underestimation are poor management decisions 

related to the number of people necessary to maintain a large 

system. 
From the graphs, it can also be seen that increasing the 

number of repairers decreases significantly the probability of 
constraint on the repair resources. The significant decrease of 
the probability of constraint on the repair resources with the 
inclusion of a second repairer can be explained by the 
following. 

If a single repairer is present, a constraint on the repair 
resources occurs whenever the repair times of two failed 
components overlap. The overlap means that a repairer is 
required at two different places (for two different failed 
components). The result is a constraint on the repair resources 
and a delay. 

If two repairers are available, even if in the presence of 
overlapping repair times from two failed components, the 
repairers will work in parallel and no constraint on repair 
resources will occur. A constraint on the repair resources with 
two available repairers occurs only if three repairs 

simultaneously overlap (have a common point in time), the 
probability of which is relatively small. Providing an extra 
repairer brings a dramatic decrease in the probability of 
constraint on the repair resources. 
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Fig. 9. Dependences of the probability of constraint on repair resources on 

the breakdown frequency of the components for different number of repairers 

Next, the influence of the mean repair time on the 
probability of constraint on the repair resources was 
investigated by keeping all the parameters constant except the 
mean repair time. To separate the influence of the mean repair 
time from the influence of the standard deviation of the repair 
time, Gaussian distribution has been assumed for the 
distribution of the repair times. Note that for a negative 
exponential distribution of the times to repair, the mean and 
the standard deviation are both equal to MTTR [29], and their 
influences on the probability of constraint on the repair 
resources cannot be separated. 

The mean repair time was varied in the interval (1-:-20 
days; Fig.10). Ten components have been used, for each of 
which two different breakdown frequencies were assumed 

0.1  year
-1

 and 5.0  year
-1

 and one repairer was 

required for each component failure. The number of available 
repairers was one; the standard deviation of all repair times 

was assumed to be constant: 15.0  days. The results are 

presented in Fig.10. 

With increasing the mean time to repair, the probability of 
constraint on the repair resources monotonically increases. 
Large times to repair yield a relatively small increase in the 
probability of constraint on the repair resources. No matter 
how large the mean time to repair is, there is always a non-
zero probability that, within one year of operation, there will 
be no component breakdowns in the system. As a result, the 
probability of constraint on the repair resources tends 
asymptotically to unity. At a constant mean time to repair, the 
breakdown frequency has a strong effect on the probability of 
constraint on the repair resources. 
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Fig. 10. Dependence of the probability of constraint on repair resources on 

the mean repair time 

By using the discrete-event simulator, the influence of the 
standard deviation of the time for repair, on the probability of 
constraint on the repair resources, has been investigated. A 
system including ten identical devices, each characterised by a 

breakdown frequency 5.0  year
-1

, has also been 

simulated. Again, to separate the influence of the standard 
deviation of the repair time from the influence of the mean 
repair time, the times to repair of the devices have been 
assumed to follow a Gaussian distribution. The mean repair 
time was MTTR=60 days and the standard deviation of the 
repair time was varied from 0 to 10 days. The simulation 
experiments were repeated for one, two and three available 
repairers. The results indicated that the probability of 
constraint on the repair resources is insensitive to the variation 
of the standard variation of the repair time. These results 
showed that the probability of constraint on the repair 
resources cannot be reduced by reducing the variances of the 
repair times. The only way to reduce the probability of 
constraint on the repair resources is to reduce the mean repair 
times. 

An important extension of this study is the analytical 
treatment of the problem related to estimating the probability 
of constraint on the repair resources. In addition, the 
developed methods could be applied with success to optimise 
the maintenance of production systems, transportation 
networks, water distribution systems and electrical distribution 
networks. 

V. CONCLUSIONS 

1) An optimisation algorithm has been proposed for the 

first time, for determining the optimal number of repairers 

maintaining a computer system of given size. The optimal 

solution guarantees that the probability of constraint on the 

repair resources will not exceed a maximum tolerable level. 

2) An optimisation algorithm has been proposed for the 

first time, for determining the optimal size of a computer 

system which can be serviced by a given number of repairers. 

The optimal solution guarantees that the probability of 

constraint on the repair resources does not exceed a maximum 

tolerable level. 

3) Both optimization algorithms are based on a repeated 

bisection. Unlike heuristic optimisation algorithms, the 

proposed algorithms are exact and always guarantee optimal 

solutions. 

4) A very efficient discrete-event simulator has been 

created for the first time, for determining the constraint on the 

repair resources in large computer systems. The discrete-

event simulator handles very large systems including 

thousands of components and is characterised by a very high 

computational speed. 

5) The implementation of the discrete-event simulator is 

based on a min-heap data structure which guarantees that 

each operation involving inserting and deleting an event has a 

logarithmic running time. This running time associated with 

the insertion and removal of events is at the heart of the high 

computational speed of the developed discrete-event 

simulator. 

6) The simulation results indicated the existence of a 

critical number of repairers at which the probability of 

constraint on the repair resources decreases sharply. 

7) The parametric studies revealed an unexpectedly high 

probability of constraint on the repair resources for a single 

available repairer. This unexpected result shows how easy it is 

to underestimate the probability of constraint on the repair 

resources, which leads to poor management decisions. 

8) The parametric studies indicated that providing more 

than a single repairer decreases dramatically the probability 

of a constraint on the repair resources. 

9) Breakdown data and maintenance data related to 

computer systems should be component-specific. This provides 

the opportunity to use discrete-event simulators for optimizing 

the maintenance of computer systems. 

10) An anonymized breakdown data base, similar to 

databases already existing for military electronic equipment, 

is a solid base for assessing and designing new computer 

systems and making correct management decisions. 

11) This study could be extended by estimating the 

probability of constraint on the repair resources analytically. 

The developed methods could also be applied for optimising 

the maintenance of production systems, transportation 

networks, water distribution systems and electrical 

distribution networks. 
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