
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

14 | P a g e

www.ijacsa.thesai.org

Constraint on Repair Resources, Optimal Number of

Repairers and Optimal Size of a Serviced System

Marin Todinov

Department of Computing and Communication Technologies

Oxford Brookes University

Wheatley, Oxford

Abstract—The focus of this paper is the analysis of the

constraint on the repair resources caused by breakdowns of

components in large systems. The study has been conducted by

creating a very efficient discrete-event simulator, based on a min-

heap data structure, for determining the probability of constraint

on the repair resources.

In finding the right balance between the number of repairers

and salary costs, an exact optimisation algorithm has been

proposed for the first time. The algorithm determines the optimal

number of repairers which guarantees that the probability of

constraint on the repair resources will not exceed an acceptable

tolerable level. In addition, an exact optimisation algorithm has

been proposed for the first time, for determining the maximum

size of the system that can be serviced by a specified number of

repairers so that the probability of constraint on the repair

resources remains below a specified tolerable level. Unlike

heuristic optimisation algorithms, the proposed algorithms are

exact and always guarantee optimal solutions.

The presented results are of significant importance to

operators of computer networks, production systems,

transportation networks, water distribution systems, electrical

distribution networks etc. They are a solid basis for management

decisions regarding the optimal number of maintenance

personnel needed to service the breakdowns in large systems.

Increasing the number of repairers beyond the optimal level

leads to high salary costs while reducing the number of repairers

below the optimal number leads to a poor quality of service.

Keywords—constraint on the repair resources; discrete-event

simulation; optimization; repairs; optimal size of a system

I. INTRODUCTION

Complex systems include many components experiencing
failures at random times and with random repair durations.

The constraint on the repair resources caused by
overlapping repair intervals and insufficient number of
repairers is an important factor which decreases the
availability and quality of service of computer systems.

A particular pattern of random breakdowns combined with
a random duration of the repair has been shown in Fig.1. The
breakdown events have been marked by b1,b2,b3,..., while the
return from repair events corresponding to the breakdown
events have been denoted by r1,r2,r3,....

Fig. 1. A specific pattern of random breakdowns and random repair times

Each breakdown engages at least one repairer. In the zones
where the repair times overlap, for example zones (b2, r1) and
(b3, r2), the repairers are engaged in more than one
breakdown. This means that several members of the repair
team will be simultaneously engaged in fixing breakdowns.
The quantity of required repairers depends on the type of
breakdown. The return-from-repair events (r1,r2 and r3 in
Fig.1) are associated with restoring the failed devices to a full
working state and a release of engaged repairers.

If for a particular breakdown event, the number of
remaining repairers is not sufficient to cover the
corresponding repair, a constraint on the repair resources
occurs, which will result in delays and degraded quality of
service of the system.

If the quantity of repairers is more than the optimal
quantity, the result will be overstaffing and extra costs.
Consequently, there is a delicate balance between the number
of repairers and the probability of a delay caused by
overlapping repairs. This balance can be found by creating an
optimisation model which involves numerous simulations of
breakdown-repair histories revealing the probability of a delay
caused by insufficient number of available repairers. The
maximum tolerable probability of such a delay will be
specified in advance, in order to guarantee the required quality
of service of the system.

Monte Carlo simulation techniques and discrete-event
simulation techniques [1] have become the methods of choice
for studying the behavior of complex systems. Monte Carlo
simulations related to studying the behavior of the various
layers building computer networks already exist. The benefits
of simulation techniques applied to analysis of computer
systems, modelling and design have been highlighted in [2].
Simulations have also been conducted related to the data
traffic carried by computer networks [3,4]. The study of
comprehensive review articles on simulation of
telecommunication networks [5] shows that, to the best of our
knowledge, the constraint on repair resources caused by
overlaping repair times has not yet been studied. This gap
defines the objectives of the present paper:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

15 | P a g e

www.ijacsa.thesai.org

1) To analyse the constraint on the repair resources

caused by component breakdowns in large systems;

2) To determine the optimal number of repairers needed

to reduce the probability of a constraint on the repair

resources below a specified level;

3) To determine the maximum size of the system that can

be serviced by a specified number of repairers, for a specified

probability of constraint on the repair resources
Breakdown/failure data related to large systems are vital

both in terms of optimal system design and system evaluation.
The availability of breakdown data is particularly important to
computer networks. According to a number of sources
[6,7,10] the negative exponential distribution is an appropriate
model for random breakdowns of electronic devices in a given
time interval.

If the breakdown density (number of random breakdowns

per unit time interval) is denoted by  , the time to a random

breakdown is given by the negative exponential distribution

)exp(1)(ttB  (1)

where)(tB is the probability that the time to a

breakdown will be smaller than or equal to a specified time t.
The random delay for repair after a random breakdown was
modelled by the negative exponential distribution

)/exp(1)(MTTRttR  (2)

where)(tR is the probability that the repair time will be

smaller than a given value t, and MTTR is the mean time to
repair. The negative exponential distribution (2) has been
traditionally used for modelling service times [8]. A recent
study [9] has indicated that the assumption that repair times
follow the negative exponential distribution practically does
not affect the calculated availability of various complex
systems.

The breakdown/failure density  in the negative

exponential distribution (1) can be estimated from
breakdown/failure data related to the components building the

computer system. From n recorded times to a breakdown 1t ,

2t ,..., nt , the mean time to failure/breakdown MTTF can be

estimated [6,7] from

n

ttt
MTTF n


...21

 (3)

For time to a breakdown following the negative
exponential distribution (1), it can be shown that the

breakdown/failure frequency  is related to the mean time to

failure (MTTF) by the simple relationship [6,7,10]:

MTTF

1
 (4)

from which the breakdown/failure frequency  can be

determined if the MTTF is available and vice versa.

In developing the model of random times to a breakdown
for the separate components, breakdown frequencies

determined from analysis of past data published in the
literature (e.g. [11]) will be used.

A failed device in the computer system comes back in
operation after a delay specified by the time it takes for the
component to be fixed [10]. As a result, for any
component/device building the computer system, each
breakdown event is followed by a random delay for repair
(Fig.2) in the interval (0, op_int), during which the computer
system is operated.

Fig. 2. Random times to breakdown ttb1,ttb2 and ttb3 and random times to

repair ttr1,ttr2 for a selected component building the computer system.

Gaining access to failure data is often difficult because
failure data are sensitive and not readily disclosed by
manufacturers. A number of studies on breakdowns in
computer systems already exist ([12, 13,14,15,16,17]. A major
drawback in many of these studies ([14], [15], [16], [17]) is
that the breakdowns are not attached to specific devices and
components. For example, Plank and Elwasif [14] provide
time to a breakdown and time to recovery histograms, but
these are related to the systems as a whole, not to particular
components building the investigated systems. Murphy and
Gent [16] discuss system crashes caused by 'software failures',
'hardware failures', 'system management' and 'other reasons',
without providing specific data relevant to the separate
components building the systems. A similar discussion has
been presented by Kalyanakrishnan et al [17], who discuss
breakdowns in terms of 'hardware or firmware problems',
'connectivity problems', 'crucial application failures' and
problems with a software component'.

The analyses are relevant only to the particular
investigated system but not very useful for modelling the
behaviour of newly designed systems with similar
components, because no sufficient specific failure data were
presented about the components building the systems. The
research conducted as part of the present study could not
identify anonymized failure databases similar to existing
databases for the military electronic equipment (for example
MIL-HDBK-217F [18]), where electronic components are
listed with their breakdown/failure rates. The existence of
such databases could help significantly the assessment of new
computer systems.

The need for such databases is reinforced by studies [13]
indicating that the component failures are not uniformly
distributed among the different devices building the computer
systems. A small fraction of devices are responsible for the
majority of the recorded failures and this circumstance is vital
for modelling the expected availability of new systems. Some
devices, due to their nature, are subjected to a much higher
workload compared to other devices and are more prone to
breakdowns (e.g. file servers conducting a large number of I/O
operations). Some devices including electro-mechanical parts
(disk drives) are much more prone to breakdowns compared to
devices which do not include such parts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

16 | P a g e

www.ijacsa.thesai.org

Despite these difficulties, failure data related to specific
componets in computer networks have been presented by Gill
et al [11], Schroeder and Gibson [19,20], Labotitz and Ahuja
[21] and Sahoo et al, [13].

In their analysis, Schroeder and Gibson [19] noted that the
system size is not a significant factor in the repair time. A set
of failure data has been recently collected at a high-
performance computing site and was made available online
(Failure data [22]). Statistical failure analysis of web server
systems has been presented by Fujii and Dohi [23], where
failure rate functions characterising web servers can be found.

Valuable failure data sets have been presented by Gill et al
[11], collected by computer systems operators employing a
ticketing system. The tickets contain important information
about when and how the breakdown events have been
discovered as well as when they were resolved. In addition,
the tickets also contain a description of the cause of the
problem, and the specific device at fault. Event logs were
collected during one year of operation and two types of
breakdowns have been defined: ‘link failures’ in the case
where the connection between two devices was down and
‘device failures’, when a device was not functioning for
routing/forwarding traffic.

II. DETERMINING THE OPTIMAL NUMBER OF REPAIRERS

AND THE OPTIMAL SIZE OF THE SERVICED SYSTEM

A. Determining the optimal number of repairers which

guarantee a probability of constraint on the repair

resources below a specified tolerable level

Determining analytically the probability of constraint on
the repair resources for more than a single available repairer is
a complicated task. This task can be simplified by constructing
a discrete-event simulator for modelling the failure-repair
history. Furthermore, there is an optimal balance between the
number of repairers and the probability of constraint on the
repair resources. This optimal balance can be found by
creating an optimisation model that involves a suitable
variation of the number of repairers followed by determining
the probability of constraint on the repair resources, until the
optimal balance is achieved.

An initial amount of repair resources is assigned and the
discrete-event simulator is called to calculate the probability
of constraint on the repair resources. Clearly, for zero number
of repairers, the probability of constraint on the repair
resources will be higher than the target probability  and

close to unity (Fig.3). This is because any single component
breakdown will create a constraint on the repair resources
simply because there will be no available repairers to handle
the breakdown.

Fig. 3. A procedure for determining the optimal number of repairers for a

specified probability  of constraint on the repair resources.

Similarly, for a large number of repairers (number of
repairers = right_bound), it is highly likely that there will be
an available repairer for every single breakdown and the
probaility of runing out of repairers will be smaller than the
target probability  . Between these two extremes lies the

optimal solution where the number of repairers is just enough
to guarantee the target probability  of constraint on the

repair resources. This optimal solution can be found by a
repeated bisection of the interval (0, right_bound).

The probability of constraint on the repair resources is
determined from risk management considerations and is
specified as an input paratemer by the manager of the
computer system. This probability depends on the criticality of
the supplied service. A probability of constraint on the repair
resources equal to 20% may be sufficient for non-critical
computer systems (e.g. school network; computer LANs) but
it is insufficient for critical computer sustems (e.g. server
backbone networks, nuclear power plant moniotoring systems,
computer networks providing high-speed data transfer for
electrical distribution systems; data storage computer systems;
secure remote access networks, etc.). For critical computer
systems, a large probability of a constraint on the repair
resources means a large probability that repairers will not be
available when needed, which could be associated with
serious consequences. Setting the correct level of the
probability of constraint on the repair resources is done by
experts, after a careful risk assessement and is not a subject of
this study.

B. Determining the maximum size of the system which

guarantees a probability of constraint on the repair

resources below a specified tolerable level

For a given number of repairers, the maximum size of the
computer system which guarantees a probability of constraint
on the repair resources below a specified tolerable level can be
determined by a similar repeated bisection technique (Fig.4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

17 | P a g e

www.ijacsa.thesai.org

This time, the parameter which is varied is the number of
components in the computer system while the number of
repairers is kept constant.

Clearly, for zero number of components, the probability of
constraint on the repair resources is zero. For a large number
of components experiencing breakdowns, the probability of
constraint on the repair resources will be larger than the
specified tolerable level  . The optimal solution is located

between these two extremes. It corresponds to a point where
the number of components in the system is just enough to
guarantee the target probability  of constraint on the repair

resources (Fig.4). The optimal solution can be found by a
repeated bisection. A serviced system size, significantly
smaller than the optimal solution, means that the available
repairers are not used efficiently. A serviced system size,
significantly larger than the optimal solution, means that there
exists an increased probability of constraint on the repair
resourecs and a low quality of service.

Fig. 4. An optimisation procedure for determining the optimal size of the

serviced system

C. An optimization algorithm

The breakdown events mark the engagement of a repairer.
The return-from-repair events mark the release of repairers.
Each event is represented as a record ‘ev_record’ with four
fields:

'time_of_event' - stands for the time of occurence of the
event;

'e-type' - stands for the type of event ('breakdown' or
'return from repair');

'req_rep' - stands for the quantity of engaged/released
repairers;

'id' - stands for the component index.

The traditional way of implementing discrete-event
simulators is by linked lists [1,24]. In this study, the discrete-
event simulator has been implemented by using a min-heap
(priority queue). The main reason is that the retrieval of the
event with the smallest time from a linked list is an operation

of time complexity)(nO , where n is the number of events in

the list. In contrast, the retrieval of the event with the smallest
time, followed by restoring the min-heap property, is an

operation of time complexity)(log2 nO .

The events are placed in a min-heap which is essentially a
binary tree coded in an ordinary array. In the min-heap, the
time stamp 'te' of each predecessor node is smaller than each
of the time stamps of its successor nodes (te1 < te2; te1< te3;
te2<te4; te2<te5; te3<te6; te3<te7; te4<te8; te4<te9).

Fig. 5. Min-heap used for implementing the discrete-event simulator.

As a result, inserting an event in a min-heap with n events
or removing an event, followed by restoring the min-heap

property, are both operations of time complexity)(log2 nO .

Standard functions ‘sift’ and ‘buble up’ can be used to restore
the basic property of the min-hip: the descendants of each
element of the min-heap must be with a larger time stamp.
Detailed discussions regarding the programming
implementation of min-heaps can be found in [25].

Algorithm
procedure
generate_ttb_and_ret_from_repair(current_time, j);
 {
 // Generates the time to breakdown event and the

 return-from-repair event for component i and places

 these events in the min-heap

 }
procedure remove_event()
 {
 // Removes the event with the smallest time from the top of the

 min-heap

 }
function prob_constraint_rep_res(num_repairers)
{

count=0; // Counts the number of simulation trials during which

 a constraint on repairers has occurred

for i=1 to num_simul_trials do
 {
 // initialises the quantity of remaining repair resources

 rem_resources = num_repairers;

 // initialise the current time of the discrete-event simulator

 current_time = 0;

 heapsize=0; //clears the min-heap
// for all components generates events 'time of a breakdown' and

'time of return from repair' and places them in the min-heap:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

18 | P a g e

www.ijacsa.thesai.org

for j=1 to num_components do
generate_ttb_and_ret_from_repair(current_time,j);
// while there are events in the min-heap and the the current time is

smaller than the operational time do the while loop:

 while (heapsize>0 and current_time < op_int) do
 {
 ev=a[1]; //Take the event on the top of the min-heap

 // Takes the time stamp of the top event in the min-heap

 current_time = ev.time_of_event;
 if (ev.e_type = 'breakdown') {
 // checks for a constraint on the repair resources

 if (rem_resources < ev.req_rep)
 {
 count=count+1;
 break;
 }
 else {
 // allocates resources for the current breakdown event

 rem_resources = rem_resources - ev.req_rep;

 // removes the first event from the min-heap;

 remove_event();
 }
 }
 else { // the event is a return-from- repair event

 rem_resources = rem_resources + ev.req_rep;
 remove_event();

 // generate time of a breakdown event and time of a recovery event

 and place them in the min-heap;

generate_ttf_and_ret_from_repair(current_time,
 ev.id);
 }
 }
 }
prob_of_constr = count/num_simul_trials;
return prob_of_constr;
}

// Code of the repeated bisection part
 left=0; right = right_bound;
 while (left + 1 < right) do
{
 mid = (left+right) / 2;
 cur_probability = prob_constraint_rep_res(mid);
 if (cur_probability <=alfa) right = mid;
 else left = mid;
}
 optim_num_rep = right;

The probability of constraint on the repair resources
depends on the number of available repairers which is an
important parameter of the function
prob_constraint_rep_res. This parameter is passed to the
function through the variable ‘num_repairers’. At any point
of the simulation, the variable ‘rem_resources’ shows the
current number of remaining repairers. The variable
‘current_time’ tracks the time of occurence of the current
event. The content of the clock ‘current_time’ is compared
to the length of the operation interval ‘op_int’ and if this is
exceeded, the current simulation is terminated. At the start of
each simulation trial, an empty min-heap is initialised by
making the size of the min-heap zero with the statement
'heapsize=0'.

The simulation starts with generating all breakdown events
and return from repair events for all components and placing
them in the min-heap. This is done by the procedure
generate_ttb_and_ret_from_repair(current_time,j),
which takes as parameters the current time of the discrete-
event simulator and the index 'j' of the component. The
random time to a breakdown for the component with index 'j'
is generated by a function which takes as parameter the
breakdown frequency of the component with index 'j' and
generates a random time to a breakdown by using the inverse
transformation method [26] for sampling from the negative
exponential distribution (1). This method consists of
generating a random number xi uniformly distributed in the
interval (0,1) [27,28] and determining the corresponding
random time to a breakdown ti through the inverse function of
the distribution of the time to a breakdown:

]1ln[
1

ii xt 


 (5)

where  is the breakdown/failure frequency of the

corresponding component.

The actual time of the component breakdown is obtained
by adding the current time of the simulator to the random time
to a breakdown. Next, the procedure
generate_ttb_and_ret_from_repair(current_time,j)
generates a random time to repair. A random time to repair is
generated by taking the mean time to repair MTTR of the
failed component and using the inverse transformation method
to sample from the negative exponential distribution (2).

Again, a uniform random number ix is generated [27,28] in

the interval (0,1) and the random time to repair it is obtained

from

]1ln[ii xMTTRt  (6)

The return time from repair is obtained by adding the
current time of the simulator, the random time to a breakdown
and the random time to repair.

Checks are also performed whether the breakdown time
and the time of return from repair are smaller than the length
of the operation interval 'op_int'. If this is the case, event
records are made with the corresponding time stamps and are
subsequently inserted in the min-heap. The min-heap data
structure is contained in the array a[] whose elements are
event records.

For the sake of simplicity, the implementation details
related to inserting an event in the min-heap have been
omitted here.

In the simulation loop, the nested while-loop goes through
the events from the min-heap by always taking the event from
the top of the mean-heap (Fig.5) with the statement 'ev=a[1]'.
This is the event with the smallest time stamp, therefore this is
the event which will occur next. The current time of the
simulator is updated with the earliest time by the statement
'current_time = ev.time_of_event'.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

19 | P a g e

www.ijacsa.thesai.org

Next, for the extracted from the min-heap event, a check is
performed whether there will be available repairers to cover
the demand for repair. If the remaining repairers are smaller
than the required number of repairers, a constraint on the
repair resources has occurred, the counter 'count' is
inclemented and the while-loop is exited immediately by the
statement ‘break’. This is done by the fragment:

 if (rem_resources < ev.req_rep)
 {
 count=count+1;
 break;
 }

If the remaining repairers are sufficient to cover the
demand for repair from the current breakdown event, the
fragment

 else {
 rem_resources = rem_resources - ev.req_rep;
 remove_event();
 }

allocates repairers to the breakdown event and decreases
the amount of available repairers by the amount ‘ev.req_rep’
required by the breakdown event. Next, the breakdown event
is removed from the min-heap by calling the procedure
'remove_event()'. Implementation details have been omitted
here, for the sake of simplicity. New events with random
breakdown time and random return from repair time are
generated only when the current event is of type ‘return from
repair’. This is done in the fragment

 else {

 rem_resources = rem_resources + ev.req_rep;

 remove_event();

 generate_ttb_and_ret_from_repair(current_time,
 ev.comp_indx);
 }

In this fragment, a release of engaged repairers is made
first by the statement

rem_resources = rem_resources + ev.req_rep;

which is followed by removing the event from the min-
heap by calling the procedure remove_event().

This is followed by calling the procedure
generate_ttb_and_ret_from_repair(current_time,
ev.id), which generates new time-to-a-breakdown event and
return-from-repair event for the corresponding component,
with index 'ev.id'.

These steps are repeated while there are still events in the
min-heap or the current time of the simulator is smaller than
the length of the operational interval 'op_int'. The probability
of constraint on the repair resources is obtained in the
statement

prob_of_constr = count/num_simul_trials;

by dividing the number of times constraint on the repair
resources has been registered (the content of the counter
'count') to the total number of simulation trials
num_simul_trials.

Next, the fragment of the repeated bisection follows, from
which the discrete-event simulator is called a number of times
until the optimum is reached.

Finally, the algorithm for determining the optimal size of
the system that can be serviced by a given number of repairers
(so that the probability of constraint on the repair resources
remains below a specified level) has also been implemented.
This algorithm is very similar to the one described earlier and
will not be presented here.

III. A SIMULATION STUDY AND RESULTS RELATED TO A

LARGE COMPUTER SYSTEM EXPERIENCING RANDOM

COMPONENT FAILURES AND RANDOM REPAIR TIMES

In the simulation study, the random time to a breakdown
was modelled by the negative exponential distribution (1)
while the random repair time was modelled by equation (2).
The data related to the number densities of the breakdowns
related to the sparate devices and the mean time to repair have
been taken from published studies ([11,13,19,20,21].

By using the described algorithm, the probability of
constraint on the repair resources for a large computer system
has been studied. The computer system included 11 different
types of components: Workstations, WLAN transmitters,
Printers, Servers; VoIP Servers, Routers, Switches, Fiber
optical cables, Ethernet cables, Console cables and Monitoring
computers.

Each of these devices is characterised its own
breakdown/failure rate and mean time to repair. A single
repairer was assumed for each of the failed devices.

The overall number of devices which experience
breakdowns and require a repairer was 632. The simulation
was run on a computer with 3 GHz Quad Core CPU. For 3
available repairers, a probability of constraint on the repair
resources equal to 0.46 was calculated within 3.73 seconds,
based on 10000 simulation trials. This demonstrates the high
computational efficiency of the developed simulator based on
a min-heap. The convergence was also very good because
increasing the number of simulations to 100000 resulted in a
very similar value (0.45) for the probability of constraint on
the repair resources.

The probability of constraint on the repair resources as a
function of the number of available repairers is given in Fig.6.
As can be seen from the plot in Fig.6, there is a critical
number of repairers for which the probability of constraint on
the repair resources decreases sharply. For the considered
computer system, this critical number is 4. For 3 repairers, the
probability of constraint on the repair resources is 46%.
Adding one more repairer however, causes the probability to
drop sharply to 4.4%. The subsequent increase of the number
of repairers causes only an insignificant decrease of this
probability. The conclusion is that keeping more repairers than
the critical number increases the salary costs without bringing
a substantial decrease in the probability of constraint on the
repair resources and an increase in the quality of service.
Conversely, a number of repairers smaller than the critical
number is associated with a large probability of constraint on
the repair resources and a reduced quality of service.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

20 | P a g e

www.ijacsa.thesai.org

Probability

Number of repairers

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6. Variation of the probability of constraint on the repair resources with

the number of repairers

Determining the optimal number of repairers was
conducted by using the same set of input data. The specified
level of the probability of constraint on the repair resources

was 20% (2.0).

The optimal solution was bounded between the values 0
and 30. Indeed, a number of repaires equal to zero yields
100% for the probability of constraint on the repair resources.
A number of repairers equal to 30 yielded 0% probability of
constraint on the repair resources. Consequently, the optimal
solution must be located within the interval (0,30). Running
the repeated bisection algorithm yield an optimal number of
repairers equal to 4. The corresponding probability of running
out of repair resources for this number of repairers is 0.044
(4.4%). The results from the previous simulation served as a
validation test for the optimisation procedure. As it can be
verified from Fig.6, four repairers is indeed the optimal
number of repairers because 4 is the smallest number of
repairers which yields a probability of constraint on the repair
resources smaller than 20%. Three repairers yield probability
equal to 0.46 - significantly larger than the specified
maximum tolerable probability of 20%.

To determine the optimal size of the computer system
which can be serviced by a given number of repairers, a
weighted averaged breakdown frequency of 0.358 year

-1
 and a

weighted average time to repair equal to 0.28 days has been
used, taken from published breakdown data related to
computer networks. Two levels of the maximum tolerable
probability of constraint on the repair resources have been

specified: %20 and %2 . The optimal size of the

network serviced by a different number of repaires, at the
specified probability of constraint on the repair resources, is
shown in Fig.7.

A serviced system size significantly smaller than the
optimal size means that the available repairers are not used
efficiently. A serviced system size significantly larger than the
optimal size means that there is an increased probability of
constraint on the repair resourecs which entails a low quality
of service.

The developed discrete-event simulator also permits
investigating the constraint on the repair resources related to
specific components.

Computer system size
 (Number of components)

Number of repairers

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

4500

 = 0.2

 = 0.02

Fig. 7. Optimal serviceable size of the computer system for different number

of available repairers

The failures of top of rack switches require the
intervention of an operator. The failure frequency of top of

rack switches according to [11] is 038.0 year
-1

. The

cumulative empirical distribution of the time to repair is given
in Fig.8.

The simulation based on 300 switches and 10000
simulation histories revealed a probability of constraint on the
repair resources equal to 0.11. The time for computing this
result on a computer with 3 GHz Quad Core CPU was 1.18
seconds. The empirical time to repair distribution in Fig.8 was
sampled by combining the inverse transformation method and
linear interpolation (the arrows in Fig.8).

Probability

Time to repair, days

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Top of rack switches

Fig. 8. Time to repair distribution of top of rack switches in computer

systems (according to Gill et al.[11])

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

21 | P a g e

www.ijacsa.thesai.org

IV. INVESTIGATING THE INFLUENCE OF CRITICAL

PARAMETERS ON THE PROBABILITY OF CONSTRAINT ON THE

REPAIR RESOURCES

A. Investigating the influence of the failure frequency and

mean repair time on the probability of constraint on the

repair resources

The influence of the breakdown frequency on the
probability of constraint on the repair resources has been
tracked by keeping all the parameters constant except the

breakdown frequency  of the components, which was varied

in the interval (0 -:- 4.0 year
-1

), Fig.9. Ten components have
been used, for each of which the same breakdown frequency

 has been assumed and one repairer was required for each

component failure. For the purposes of the parametric study,
the repair times have been assumed to follow a Gaussian
distribution. A common mean time to repair MTTR=1.5 days
has been assumed for each component, with a standard
deviation  equal to 0.15 days.

The operational interval was set to be 1 year. Two distinct
cases have been investigated: (i) A single available repairer
and (ii) two available repairers. The results have been
summarised in Fig.9.

The results in Fig.9 reveal a unexpectedly large probability

of constraint on the repair resources for a single available

repairer. For the system including 10 components, each of

which experiences on average 2 breakdowns a year (2 ,

year
-1

), with 1.5 days duration for repair, the probability of

constraint on the repair resources during one year of operation

is 73%! If the components experience 3 instead of 2

expected number of failures per year, the probability of

constraint on the repair resources is already 94%! These

unexpected results show how easy it is to underestimate the

probability of constraint on the repair resources. The result

from such a underestimation are poor management decisions

related to the number of people necessary to maintain a large

system.
From the graphs, it can also be seen that increasing the

number of repairers decreases significantly the probability of
constraint on the repair resources. The significant decrease of
the probability of constraint on the repair resources with the
inclusion of a second repairer can be explained by the
following.

If a single repairer is present, a constraint on the repair
resources occurs whenever the repair times of two failed
components overlap. The overlap means that a repairer is
required at two different places (for two different failed
components). The result is a constraint on the repair resources
and a delay.

If two repairers are available, even if in the presence of
overlapping repair times from two failed components, the
repairers will work in parallel and no constraint on repair
resources will occur. A constraint on the repair resources with
two available repairers occurs only if three repairs

simultaneously overlap (have a common point in time), the
probability of which is relatively small. Providing an extra
repairer brings a dramatic decrease in the probability of
constraint on the repair resources.

Probability of constraint
on repair resources

Breakdown frequency,  year
-1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MTTR = 1.5 days

 = 0.15

1 repairer

MTTR = 1.5 days

 = 0.15

2 repairers

Fig. 9. Dependences of the probability of constraint on repair resources on

the breakdown frequency of the components for different number of repairers

Next, the influence of the mean repair time on the
probability of constraint on the repair resources was
investigated by keeping all the parameters constant except the
mean repair time. To separate the influence of the mean repair
time from the influence of the standard deviation of the repair
time, Gaussian distribution has been assumed for the
distribution of the repair times. Note that for a negative
exponential distribution of the times to repair, the mean and
the standard deviation are both equal to MTTR [29], and their
influences on the probability of constraint on the repair
resources cannot be separated.

The mean repair time was varied in the interval (1-:-20
days; Fig.10). Ten components have been used, for each of
which two different breakdown frequencies were assumed

0.1 year
-1

 and 5.0 year
-1

 and one repairer was

required for each component failure. The number of available
repairers was one; the standard deviation of all repair times

was assumed to be constant: 15.0 days. The results are

presented in Fig.10.

With increasing the mean time to repair, the probability of
constraint on the repair resources monotonically increases.
Large times to repair yield a relatively small increase in the
probability of constraint on the repair resources. No matter
how large the mean time to repair is, there is always a non-
zero probability that, within one year of operation, there will
be no component breakdowns in the system. As a result, the
probability of constraint on the repair resources tends
asymptotically to unity. At a constant mean time to repair, the
breakdown frequency has a strong effect on the probability of
constraint on the repair resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

22 | P a g e

www.ijacsa.thesai.org

Probability of constraint
on repair resources

Mean repair time, days

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 = 1 year
-1

 = 0.5 year
-1

Fig. 10. Dependence of the probability of constraint on repair resources on

the mean repair time

By using the discrete-event simulator, the influence of the
standard deviation of the time for repair, on the probability of
constraint on the repair resources, has been investigated. A
system including ten identical devices, each characterised by a

breakdown frequency 5.0 year
-1

, has also been

simulated. Again, to separate the influence of the standard
deviation of the repair time from the influence of the mean
repair time, the times to repair of the devices have been
assumed to follow a Gaussian distribution. The mean repair
time was MTTR=60 days and the standard deviation of the
repair time was varied from 0 to 10 days. The simulation
experiments were repeated for one, two and three available
repairers. The results indicated that the probability of
constraint on the repair resources is insensitive to the variation
of the standard variation of the repair time. These results
showed that the probability of constraint on the repair
resources cannot be reduced by reducing the variances of the
repair times. The only way to reduce the probability of
constraint on the repair resources is to reduce the mean repair
times.

An important extension of this study is the analytical
treatment of the problem related to estimating the probability
of constraint on the repair resources. In addition, the
developed methods could be applied with success to optimise
the maintenance of production systems, transportation
networks, water distribution systems and electrical distribution
networks.

V. CONCLUSIONS

1) An optimisation algorithm has been proposed for the

first time, for determining the optimal number of repairers

maintaining a computer system of given size. The optimal

solution guarantees that the probability of constraint on the

repair resources will not exceed a maximum tolerable level.

2) An optimisation algorithm has been proposed for the

first time, for determining the optimal size of a computer

system which can be serviced by a given number of repairers.

The optimal solution guarantees that the probability of

constraint on the repair resources does not exceed a maximum

tolerable level.

3) Both optimization algorithms are based on a repeated

bisection. Unlike heuristic optimisation algorithms, the

proposed algorithms are exact and always guarantee optimal

solutions.

4) A very efficient discrete-event simulator has been

created for the first time, for determining the constraint on the

repair resources in large computer systems. The discrete-

event simulator handles very large systems including

thousands of components and is characterised by a very high

computational speed.

5) The implementation of the discrete-event simulator is

based on a min-heap data structure which guarantees that

each operation involving inserting and deleting an event has a

logarithmic running time. This running time associated with

the insertion and removal of events is at the heart of the high

computational speed of the developed discrete-event

simulator.

6) The simulation results indicated the existence of a

critical number of repairers at which the probability of

constraint on the repair resources decreases sharply.

7) The parametric studies revealed an unexpectedly high

probability of constraint on the repair resources for a single

available repairer. This unexpected result shows how easy it is

to underestimate the probability of constraint on the repair

resources, which leads to poor management decisions.

8) The parametric studies indicated that providing more

than a single repairer decreases dramatically the probability

of a constraint on the repair resources.

9) Breakdown data and maintenance data related to

computer systems should be component-specific. This provides

the opportunity to use discrete-event simulators for optimizing

the maintenance of computer systems.

10) An anonymized breakdown data base, similar to

databases already existing for military electronic equipment,

is a solid base for assessing and designing new computer

systems and making correct management decisions.

11) This study could be extended by estimating the

probability of constraint on the repair resources analytically.

The developed methods could also be applied for optimising

the maintenance of production systems, transportation

networks, water distribution systems and electrical

distribution networks.
REFERENCES

[1] J. Banks, J.S. Carson, B.L. Nelson, D.M. Nicol, Discrete-event
simulation 4th ed., Prentice Hall, 2005.

[2] H. Al-Bahadili, Simulation in Computer Network Design and
Modelling: Use and Analysis, Petra University, Jordan, 2012.

[3] M. Zukeman, D.Neame, R.Addie, Internet Traffic modelling and future
technology implications, Proceedings of the 2003 InfoCom Conference,
San Francisco, CA, 2003.

[4] P.Barford and M.Crovella, An architecture for a WWW workload
generator, Proceedings of the 1998 SIGMETRICS Conference, Madison,
WI, pp.151-160, 1998.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

23 | P a g e

www.ijacsa.thesai.org

[5] N.I.Sarkar N.I., S.A. Halim, "A Review of Simulation of
Telecommunication Networks: Simulators, Classification, Comparison,
Methodologies, and Recommendations", Journal of Selected Areas in
Telecommunications (JSAT), March Edition, 2011, pp.10-17.

[6] K.S.Trivedi, Probability and statistics with reliability, queuing and
computer science applications, 2nd ed., Wiley, 2002.

[7] L.C. Wolstenholme, Reliability modelling, a statistical approach,
Chapman & Hall, 1999.

[8] N.A.Weiss, A course in probability, Pearson Education, Inc., 2006.

[9] C.M.Carter, A.W. Malerich, The Exponential Repair Assumption:
Practical Impacts, Proceedings of the Reliability and Maintainability
Symposium, 2007. RAMS '07. Annual, Orlando, FL (2007).

[10] C.E.Ebeling, An introduction to Reliability and Maintainability
Engineering, McGraw-Hill, (1997).

[11] P.Gill, N.Jain, N.Nagappan, "Understanding Network Failures in Data
Centers: Measurement", Analysis, and Implications, SIGCOMM’11,
August 15-19, 2011.

[12] D. Tang, R.K. Iyer, and S.S. Subramani., "Failure analysis and
modelling of a VAX cluster system". In FTCS, 1990.

[13] R.K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang.
"Failure data analysis of a large-scale heterogeneous server
environment", In Proc. of DSN’04, 2004.

[14] J.S. Plank and W. R. Elwasif. Experimental assessment of workstation
failures and their impact on checkpointing systems. In FTCS’98, 1998.

[15] D. Nurmi,, J. Brevik, and R. Wolski. Modeling machine availability in
enterprise and wide-area distributed computing environments. In Euro-
Par’05, 2005.

[16] B. Murphy and T. Gent. Measuring system and software reliability using
an automated data collection process. Quality and Reliability
Engineering International, 11(5), 1995.

[17] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. "Failure data analysis
of a LAN of Windows NT based computers", In SRDS-18, 1999.

[18] MIL-HDBK-217F, Reliability prediction of electronic equipment, US
Department of Defence, Washington, DC, (1991).

[19] B. Schroeder., G.A.Gibson, "A large-scale study of failures in high-
performance computing systems", Proceedings of the International
Conference on Dependable Systems and Networks (DSN 2006),
Philadelphia, June 25-28, 2006.

[20] B. Schroeder, G.A.Gibson, "The computer failure data repository
(CFDR)", Workshop on Reliability Analysis of System Failure Data
(RAF'07) MSR Cambridge, UK, March 2007.

[21] C. Labovitz C. and A. Ahuja. Experimental study of internet stability
and wide-area backbone failures. In The Twenty-Ninth Annual
International Symposium on Fault-Tolerant Computing, 1999.

[22] Failure data, 2006 (related to computer networks)
http://www.pdl.cmu.edu/FailureData/ and
http://www.lanl.gov/projects/computerscience/data/, 2006.

[23] T.Fujii and T.Dohi, Statistical analysis of a web server system, 2009
International Conference on Availability, Reliability and Security,
pp.554-559, 2009.

[24] L.Leemis, L. M., Park, S. K. Discrete-event simulation: A first course.
Upper Saddle River, N.J.: Pearson Prentice Hall (2006).

[25] T.H.Cormen, T.C.E.Leiserson, R.L.Rivest, and C.Stein, Introduction to
Algorithms, 2nd ed., MIT Press and McGraw-Hill, (2001).

[26] S. Ross, Simulation 2nd edition, Harcourt academic press, 1997.

[27] L’Ecuyer, Efficient and portable random number generators,
Communications of the ACM, vol.31, pp.742-749, 1988.

[28] Park S. and K.Miller, Random number generators, Commun. ACM,
vol.31 (10), (1988), pp. 1192-1201.

[29] S.Ross, Introduction to probability models, 7th ed., Harcourt Academic
press, 2000.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4126301
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4126301
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

