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Abstract—Study of binary trees has prominent place in the 

training course of DSA (Data Structures and Algorithms). Their 

implementation in C++ however is traditionally difficult for 

students. To a large extent these difficulties are due not so much 

to the complexity of algorithms as to language complexity in 

terms of memory management by raw pointers – the 

programmer must consider too many details to ensure a reliable, 

efficient and secure implementation. Evolution of C++ regarded 

to automated resource management, as well as experience in 

implementation of linear lists by means of C++ 11/14 lead to an 

attempt to implement binary search trees (BST) via smart 

pointers as well. In the present paper, the authors share 

experience in this direction. Some conclusions about pedagogical 

aspects and effectiveness of the new classes, compared to 

traditional library containers and implementation with built-in 

pointers, are made. 
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I. INTRODUCTION 

From the C language, we know that pointers are important 
but are a source of trouble. One reason to use pointers is to 
have reference semantics outside the usual boundaries of scope 
[1]. However, it can be quite difficult to ensure that the life of a 
pointer and the life of the object to which it points will 
coincide, especially in cases where multiple pointers point to 
the same object. Such is the situation when an object must 
participate in multiple collections – each of them must provide 
a pointer to this object. To make everything correct it is 
necessary to be sure that: 

- when destroying one of the pointers, take care that 
there are no dangling pointers or multiple deletions of 
the pointed object; 

- when destroying the last reference to an object, to 
destroy the very object in order not to allow resource 
leaks;  

- do not allow null-pointer dereference – a situation in 
which a null pointer is used as if it points to a valid 
object. 

It is a must to have in mind such details to accomplish 
dynamic implementation of ADS (Abstract Data Structures) 
and often time for this exceeds time remaining to comment the 
structures and operations on them. Moreover, there are rare 
cases when these is a working implementation of a structure 
with carefully designed interface and methods written 

according to the best methodologies, but gaps can be identified  
in memory management only when a non-trivial situation 
occurs, such as copying large structures, transfer of items from 
one structure to another, or destruction of a large recursive 
structure. For each class representing ADS the programmer 
must also provide characteristic operations as well as correctly 
working copy and move semantics, exception handling, 
construction and destruction. This requires both time and 
expertise in programming at a lower level. The teacher will 
have to choose between emphasizing on language-specific 
features and quality of implementation or to compromise with 
them and to spend more time on algorithms and data structures. 
In an attempt to escape from this compromise, it is decided to 
change the content of CS2 course in DSA, include the study of 
smart pointers for resource management and with their help to 
simplify implementations of ADS to avoid explicit memory 
management which is widely recognized as error-prone [2]. 

In the work, the emphasis is on the implementation of 
linear structures (linked lists) and binary trees. This paper 
discusses only part of this work dedicated to binary search trees 
(BST). 

The initial hypothesis is that a correct and effective 
implementation of BST is possible, which could relieve the 
work in two directions: 

- operations with whole structures (trees): not having to 
implement copy and move semantics methods; 

- shorter explanation and easier understanding of  
implementation of operations with elements of BST – 
include (insert element), search, delete. 

The remaining content of the paper is as follows: Section II 
is a brief overview of language features for managing dynamic 
memory and its development. In paragraph III  an 
implementation of Binary Search Trees (BST) is presented and 
compared to those based on build-in pointers. Section IV 
discusses effectiveness of the implemented structures and 
algorithms compared to the similar realization of the library 
container std::set. In section V some conclusions are made 
and recommendations are given for smart pointers usage in the 
DSA course. 

II. DEVELOPMENT OF LANGUAGE FEATURES FOR DYNAMIC 

MEMORY MANAGEMENT 

Before introducing of new and delete for work with 
dynamic memory, inherited from the C language functions 
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malloc, calloc, realloc and free are used, which are still 
available in C++ by including the header file <cstdlib>. 

Memory blocks allocated by these functions are not 
necessarily compatible with those returned by new, so each 
must be handled with its own set of functions or operations. 
The problems with using these functions are related to 
unnecessary type conversions and error-prone size calculations 
(with sizeof). 

Introduction of new and delete operators simplifies the 
syntax, but does not solve all problems. Especially in 
applications that manipulate complicated linked data structures 
it may be difficult to identify the last use of an object. Mistakes 
lead to either duplicate de-allocations and possible security 
holes, or memory leaks [2]. 

All the potential problems with locally defined naked 
pointers include:  

- leaked objects: Memory allocation with new can 
cause (though rarely) an exception which is not 
handled. It is also possible the function execution to 
be terminated by another raised exception and the 
allocated with new memory to remain unreleased (it is 
not exceptions safety). Avoiding such resource leak 
usually requires that a function catch all exceptions. 
To handle deletion of the object properly in case of an 
exception, the code becomes complicated and 
cluttered. This is a bad programming style and should 
be avoided because it is also error prone. The situation 
is similar when the function execution is terminated 
by premature return statement based on some 
condition (early return); 

- premature deletion: An object is deleted that has 
some other pointer to and later that other pointer is 
used. 

- double deletion: There is a possibility to re-delete the 
object. 

One way to circumvent these problems is to simply use a 
local variable instead of a pointer, but if we insist to use pointer 
semantics, the usual approach to overcome such problems is to 
use "smart pointers". Their "intelligence" is expressed in the 
fact that they "know" whether they are the last reference to the 
object and use this knowledge to destroy the object only when 
its "ultimate owner" is to be destroyed. 

It is possible to consider that a "smart pointer" is RAII 
(Resource Acquisition Is Initialization) modeled class that 
manages dynamically allocated memory. It provides the same 
interfaces that ordinary pointers do (*, ->). During its 
construction it acquires ownership of a dynamic object in 
memory and deallocates that memory when goes out of scope. 
In this way, the programmer does not need to care himself for 
the management of dynamic memory. 

For the first time standard C++98 introduces a single type 
of smart pointer –  auto_ptr  which provides specific and 
focused transfer-of-ownership semantics. auto_ptr is most 
charitably characterized as a valiant attempt to create a 
unique_ptr before C++ had move semantics. auto_ptr is 

now deprecated, and should not be used in new code. It works 
well in trivial situations – template  auto_ptr holds a pointer 
to an object obtained via new and deletes that object when it 
itself is destroyed (such as when leaving block scope). Here 
auto_ptr is "smart" enough, but it appears that the problems 
entailed outweigh the benefit from it:  

- copying and assignment among smart pointers 
transfers ownership of the manipulated object as 
well. That is, by default move assignment and move 
construction are carried out. Such is the situation with 
passing of auto_ptr as a parameter of the function. 
After function completes the memory allocated in the 
initialization of auto_ptr variable and then passed as 
argument to the function will be released (at 
destruction of the formal parameter) and will not be 
given back to this variable (the actual parameter). 
This will result in a dangling pointer. The auto_ptr 
provides semantics of strict ownership. auto_ptr 
owns the object that holds a pointer to. Copying 
auto_ptr copies the pointer and transfers ownership 
to the destination. If more than one auto_ptr owns 
the same object at the same time,  program behavior 
is undefined. 

- auto_ptr can not be used for an array of objects. 
When auto_ptr goes out of scope, delete runs on 
its associated memory block. This works for a single 
object, not for an array of objects that must be 
destroyed with delete []. 

- because auto_ptr does not provide shared-
ownership semantics, it can not even be used with 
Standard Library containers like vector, list, map.  

Practice shows that to overcome (or at least limit) problems 
as described above it is not sufficient to use only one smart 
pointer class. Smart pointers can be smart in some aspects and 
carry out various priorities, as they have to pay the price for 
such intelligence [1], p. 76. Note that even now, with several 
types of smart pointers, their misuse is possible and it leads to 
wrong program behavior. 

In the standard [3] instead of auto_ptr several different 
types of smart pointers are introduced (also called Resource 
Management Pointers) [4]. They model different aspects of 
resource management. The idea is not new – it formally 
originates from [5] and is originally implemented in the Boost 
library and only in 2011 became a part of the Standard Library. 
The basic, top-level and general-purpose smart pointers are 
unique_ptr and shared_ptr. They are defined in the header 
the file <memory>. 

Unfortunately, excessive use of new (and pointers and 
references) seems to be an escalating problem. However, when 
pointer semantics is you really needed, unique_ptr is a very 
lightweight mechanism, with no additional costs compared to 
the correct use of built-in pointer [4], p. 113. The class 
unique_ptr is designed for pointers that implement the idea of 
exclusive (strict) ownership, what is intended auto_ptr to do. 
It ensures that at any given time only one smart pointer may 
point to the object. As a result, an object gets destroyed 
automatically when its unique_ptr gets destroyed. However, 
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transfer of ownership is permitted. This class is particularly 
useful for avoiding leak of resources such as missed delete 
calls for dynamic objects or when exception occurs while an 
object is being created. It has much the same interface as an 
ordinary pointer. Operator * dereferences the object to which it 
points, whereas operator -> provides access to a member if the 
object is an instance of a class or a structure. Unlike ordinary 
pointers, smart pointer arithmetic is not possible, but specialists 
consider this an advantage, because it is known that pointer 
arithmetic is a source of trouble. Use of unique_ptr includes 
passing free-store allocated objects in and out of functions (rely 
on move semantics to make return simple and efficient). 

Copying or assignment between unique pointers is 
impossible if ordinary copy semantics is used. However, move 
semantics can be used. In that case, the constructor or 
assignment operator transfers ownership to another unique 
pointer. 

Typical use of unique_ptr includes: 

- ensuring safe use of dynamically allocated memory 
through the mechanism of exceptions (exception 
safety);  

- transfer of ownership of dynamically allocated 
memory to function (via parameter);  

- deallocating dynamically allocated memory for a 
function;  

- storing pointers in the container.  

A point of interest is the situation when unique_ptr is 
passed as a parameter of а function by rvalue reference, created 
by std::move(). In this case the parameter of the called 
function acquires ownership of unique_ptr. If this function 
then does not pass ownership again, the object will be 
destroyed at the completion of the function. 

Using a unique pointer, as a member of a class may also be 
useful to avoid leak of resources. By using unique_ptr, 
instead of built-in pointer there is no need of a destructor 
because the object will be destroyed while destroying the 
member concerned. In addition, unique_ptr prevents leak of 
resources in case of exceptions which occur during 
initialization of objects – it is known that destructors are called 
only if any construction has been completed. So, if an 
exception occurs within a constructor, destructors will be 
executed for objects that have been already fully constructed. 
As a result there can be outflow of resources for classes with 
multiple raw pointers, if the first construction with new is 
successful, but the second fails. 

Simultaneous access to an object from different points in 
the program can be provided through ordinary pointers and 
references, but it was already commented on the problems 
associated with their use. Often it is needed to make sure that 
when the last reference to an object is deleted, the object itself 
will be destroyed as well (which usually implies garbage 
collection operations – to deallocate memory and other 
resources). 

The shared_ptr class implements the concept of shared 
ownership. Many smart pointers can point to the same object, 

and the object and its associated resources are released when 
the last reference is destroyed. The last owner is responsible for 
the destroying. To perform this task in more complex scenarios 
auxiliary classes weak_ptr, bad_weak_ptr, 
enable_shared_from_this are provided. 

The class shared_ptr is similar to a pointer with a counter 
of the number of sharings (reference counter), which destroys 
the pointed object when this counter becomes zero. Imagine 
shared_ptr as a structure of two pointers – one to the object 
and one to the counter of sharings. 

Shared pointer can be used as an ordinary pointer – to 
assign, copy and compare, to have access to the pointed object 
via the operations * and ->. A full range of copy and move 
constructions and assignments is available. Comparison 
operations are applied to stored pointers (usually the address of 
the owned object or nullptr if none). shared_ptr does not 
provide index operation. For unique_ptr a partial 
specialization for arrays is available that provides [] operator, 
along with * and ->. This is due to the fact that unique_ptr is 
optimized for efficiency and flexibility. Access to the elements 
of the owned by shared_ptr array can be provided through the 
indices of the internal stored pointer, encapsulated by 
shared_ptr (and accessible through the member function 
get()). 

By using shared pointers the problems with dangling 
pointers can be avoided. This problem arises while pointers are 
stored in containers. 

A problem with reference-counted smart pointers is that if 
there is a ring of objects that have smart pointers to each other, 
they keep each other "alive" – they will not be deleted even if 
no other objects are pointing to them from "outside" the ring. 
Such a situation often occurs in implementations of recursive 
data structures. C++11 includes a solution: "weak" smart 
pointers: these only "observe" an object but do not influence its 
lifetime. A ring of objects can point to each other with 
weak_ptrs, which point to the managed object but do not keep 
it in existence. Like raw pointers, weak pointers do not keep 
the pointed-to object "alive". The cycle problem is solved. 
However, unlike raw pointers, weak pointers "know" whether 
the pointed-to object is still there or not and can be interrogated 
about it, making them much more useful than a simple raw 
pointer would be. 

In practice often happens a situation when the programmer 
hesitates which version of a smart pointer to use – unique_ptr 
or shared_ptr. The advice is to prefer unique_ptr by default, 
because later move-convert to shared_ptr can be done if 
needed. There are three main reasons for this [6]: 

- try to use the simplest semantics that are sufficient;  

- a unique_ptr is more efficient than a shared_ptr. A 
unique_ptr does not need to maintain reference 
count information and a control block under the 
covers, and is designed to be just about as cheap to 
move and use as a raw pointer; 

- starting with unique_ptr is more flexible and keeps 
the options open.  
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In this particular case, however, it is necessary to start from 
the very beginning with shared_ptr, because being recursive 
by definition, binary trees that have to be implemented with 
smart pointers, and this cannot do without shared ownership. 

III. IMPLEMENTATION OF BINARY SEARCH TREES 

Most attention in the course is given to binary search trees, 
so here the focus is only on the implementation. The traditional 
implementation interface with build-in pointers looks like this: 

template <typename T> 
class BTree { 
 struct Node { 
 T key; 
 Node* left; 
 Node* right; 
 Node(); 
 Node(T); 
   }; 
typedef Node* pNode;  //pNode& instead of Node*& 
 pNode root; 
   //........ some helper functions here ........ 
public: 
 BTree() : root(nullptr){} 
 ~BTree(); 
 BTree(const BTree&); 
 BTree(BTree&&); 
 BTree& operator =(const BTree&); 
 BTree& operator =(BTree&&); 
 bool insert(T); 
 bool remove(T); 
 void inorder(void(*)(pNode&)); 
 void preorder(void(*)(pNode&)); 
 void postorder(void(*)(pNode&)); 
 void breath_first(void(*)(pNode&)); 
 size_t height(); 
 Node* find(T); 
}; 

Beside the special member functions methods are added to 
insert, search and remove elements, and various deep-first 
(inorder, preorder, postorder) and breath-first traversals. A 
number of additional functions are included. Their 
implementation is a question of interest, for example, 
calculating the height of the tree and, if there is enough time, 
balancing. For implementation of these operations, recursive 
algorithms are preferred because they are shorter and more 
intuitive. Most difficulties are met with the deletion, which is 
normal – the algorithm is most complex. 

Since the aim is to count on the reliability, in the course it 
is chosen to follow the methodology for verification of object-
oriented programs as proposed in [7]. 

In order to simplify the technical part and to focus on 
algorithms, implementing the operations on trees from 2013-
2014, it is decided to choose implementation with smart 
pointers. The initial expectation is that it is possible to avoid all 
methods of copy and move semantics, destructors for nodes 
and whole trees. 

The interface of smart pointers implementations with which 
the work is started is the following: 

template <typename T> 
class Tree { 
 struct Node { 
  T key; 
  shared_ptr<Node> left; 
  shared_ptr<Node> right; 
  Node():key(), left(), right(){} 
  Node(T x):key(x),left(), right(){} 
 }; 
 shared_ptr<Node> root; 
//... 
public: 

 Tree():root(){} 
 ~Tree();   

Tree(Tree&&) = default; 
 Tree& operator =(Tree&&) = default; 

Tree(const Tree&); 
 Tree& operator =(const Tree&); 
 bool push(T); 
 bool remove(T); 
 void inorder(); 
 shared_ptr<Node> find(T x) { 
  return find(x, root); 
 } 
 void breath_first(); 
 size_t height(){ 
  return height(root); 

 } 
}; 

Because of recursive algorithms that are used for each 
operation two functions had to be written – one private, with 
additional parameter the node from which to start. So public 
method is very short and just calls the corresponding private 
method that implements the algorithm. For example the public 
method for deleting: 

template <typename T> 
bool Tree<T>::remove(T x){ 
  return remove(x, root); 

} 

calls the private method remove(T, shared_ptr<Node>&) 
where the second parameter is the root of the tree: 

template <typename T> 
bool Tree<T>::remove(T x, shared_ptr<Node>& p) { 
   if(p && x < p->key)  

return remove(x, p->left); 
   else if(p && x > p->key) 

return remove(x, p->right); 
      else if(p && p->key == x) {  
    if(!p->left)   
  p = p->right; 
    else if(!p->right) p = p->left; 
  else { 

shared_ptr<Node> q = p->left; 
 while(q->right) q=q->right;  
 p->key = q->key; 
 remove(q->key, p->left);  
 } 
 return true; } 
 return false;} 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 3, 2015 

63 | P a g e  

www.ijacsa.thesai.org 

We note that the code for this method is 37% shorter than 
the code for the corresponding raw pointers implementation 
(due mainly to the fact that there is no need to call delete). In 
addition readability of code is improved. For inserting a node 
there is no difference between the amounts of code – both 
methods have 16 rows. 

For educational purposes, all operations with a single tree 
run normally, but when a larger tree is tested, a "stack 
overflow" error appears during automatic tree destruction at the 
end of the program. With a standard size of 1 MB stack error 
occurs even for destruction of a tree of 29,000 integers. 
Because of recursive links, a situation arises where one node 
keeps "alive" the whole structure. This on one hand requires a 
large stack, and on the other – can lead to significant delays in 
demolition of the structure. So the choice is to add a destructor, 
instead of increasing stack size from the settings of the linker. 
The decision is not to work for efficiency and chose the easiest 
option – using the method for deletion. As such, the destructor 
looks like this: 

~Tree(){  
while (root) remove(root->key); 

} 

As for the implementation of special member functions, 
defaulting of move constructor and move assignment operator 
works and it is not needed to implement move semantics, but 
copy semantics requires to write appropriate methods, because 
it is needed to copy the entire tree structure, so as to obtain a 
true copy of the tree, not just tree, which contains the same 
elements. 

Comparing the overall implementation of trees with raw 
pointers, the conclusion is that smart pointers give short and 
easy to understand code without apparent loss of efficiency 
(Table 1). 

IV. PERFORMANCE EVALUATION 

In order to evaluate the efficiency of smart pointers 
implementation an experiment is carried out in which times for 
typical operations with binary trees, implemented with and 
without smart pointers, are compared. 

Three conversions are compared: traditional row pointer 
implementation, new smart pointer and library implementation 
std::set (Table 1). Note that std::set is typically 
implemented in libraries as a red-black tree. This may 
adversely affect time for generating the tree (for coloring and 
balance), but improves search speed. 

The same data is used in the experiment: 100,000 randomly 
generated unique strings of length of 20 stored in a text file. 
They are used to construct trees. The first operation "Add 
element" reads all strings from the file and stores them in the 
relevant tree. For each tree, the text file is opened and read 
again. For unbalanced versions, a tree with height of 38 is 
obtained. 

In testing for search and remove elements another file is 
used, which records 10,000 strings that are found in the tree. 
The algorithm makes search and remove operations for exactly 
these elements. 

TABLE I.  TEST RESULTS FOR BINARY TREES 

Note: time in milliseconds 

The results show that there is practically no difference in 
performance between implementation of operations with build-
in and smart pointers, which is a good argument to continue to 
study smart pointers in the course DSA. Some surprise is the 
time for std::set in operations creating structure (adding 
operation), which is three times better. Apparently, extra time 
for coloring and balancing the tree is offset by the lower height 
of the red-black tree – std::set for these input data 
theoretically the tree can get a height of 12, and as mentioned 
before, the tree in our implementations has height 38. For the 
same reasons, search time in our implementations is 2 times 
worse, and time for removing elements – 1.5 times worse 
library implementation. 

V. CONCLUSION 

The initial hypothesis regarding the implementation of 
BSTs with smart pointers is proven partially. It is not possible 
to do the work entirely without implementation of methods of 
copy and move semantics, but their code turns out to be short, 
clear and easily understandable for students. Moreover, move 
semantics can be provided by defaulted move constructors and 
assignment operators. It is considered that the second part of 
the hypothesis, namely the shorter and clearer implementation 
of basic operations with data structures is fully achieved. In 
addition, smart pointer versions do not require user-defined 
exception handling. 

Since there is not enough empirical data, the advantage of 
this way of teaching DSA cannot be proved yet, but even 
without holding a strictly formal pedagogical experiment, it 
can be stated that results of students tests, homework and 
exams are comparable to those demonstrated by their 
colleagues trained in previous years under the old program. 

Implementation of ADS with smart pointers is more clear 
and concise, but requires spending time to study in addition 
templates and essential elements of the STL, though not in 
detail. This could be facilitated by reorganizing CS1 course 
Programming Fundamentals, where to underlie learning 
C++11/14 and STL. Note that for the presented 
implementations it is not needed even to know the full 
interface for work with smart pointers. In most situations the 
interface of build-in pointers is sufficient plus function 
make_shared and possibly member function reset. While 
working with students during the school year some difficulties 
are met in debugging of programs related to discovery of 
logical errors in memory management, most often connected 
with its release.  

Operations 

Binary Search Tree Implementations 

Row Pointers 
Smart 

Pointers 
std::set 

Add element 438 453 156 

Search 31 32 15 

Remove 47 46 32 
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It is appropriate to add an intermediate output (operator 
cout) in destructors as of DSA, as of the elements held in them 
(if they are of user-defined types). In this way, it is easy to 
detect situations where objects remain undestroyed. 

Regarding the applicability of smart pointers in actual 
programming the opinion of Stroustrup should be mentioned, 
that they "are still conceptually pointers and therefore only my 
second choice for resource management – after containers and 
other types that manage their resources at a higher conceptual 
level" [4], p. 114. The results of comparative tests also show 
that library containers are sufficiently effective. In order to 
learn smart pointers it is necessary to get into STL. On one 
hand, it is better to teach students how to use its efficient and 
reliable containers. On the other hand though, as future 
professionals they must be able to independently implement 
such containers – to develop creative thinking. It is therefore 
not a bad idea to do so with smart pointers as well – one more 
opportunity provided by the STL. 
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