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Abstract—Elliptic Curve Cryptography (ECC) has 

established itself as the most preferred and secured cryptography 

algorithm for the secure data transfer and secure data storage in 

embedded system environment. Efficient implementation of point 

multiplication algorithm is crucial activity for designing area 

efficient, low footprint ECC cryptoprocessors. In this paper, an 

area efficient implementation of double point multiplication 

algorithm over binary elliptic curve is presented. Area analysis of 

double point multiplication algorithm based on differential 

addition chains method is carried out and area report is 

generated. Area optimization is achieved by using pipelined 

structure and by reutilizing idle resources from previous stages 

in processing unit. The proposed architecture for double point 

multiplication is implemented on Xilinx Virtex-4 FPGA device. 

Architecture is modeled in verilog-HDL and synthesized using 

Xilinx ISE 14.1 design software and is found to be more efficient 

in terms of area than the existing such architectures. 

Keywords—Cryptography; Elliptic Curve Cryptography; 

Double Point Multiplication; Binary Elliptic Curve; Differential 

Addition Chain 

I. INTRODUCTION 

Victor Miller and Neal Koblitz proposed the concept of 
elliptic curve cryptography in the mid of 1980‘s and was 
considered as a next big step in public key cryptographic 
systems. Few algorithms already existed such as DSA and 
RSA. The main advantage of ECC over RSA is the usage of 
shorter key and it is aided with a drawback that the design for 
ECC when implemented in software performs at dead slow 
speed, whereas if the implementation is done in hardware, the 
process is much more efficient. Hence ECC is the best choice 
for cryptographic hardware implementation. Due  to  these  
many advantages  of  ECC, a number of  hardware  
implementations  have  been proposed,  and  included  in  
many  standards  such  as  IEEE 1363and NIST.  

An operation called point addition is defined on an elliptic 
curve.  The point addition is an operation, where two points on 
the curve are added and a third point, which is also on the 
curve, is plotted as shown in figure 1. Importantly  for  
cryptography,  it  is  very  hard  to  analyze  which two  points  
were  added.  Furthermore,  using  consecutive point  
additions,  an  operation  called  ―Elliptic  curve  point 
multiplication‖  is  defined.  The  most  exorbitant  finite  field 
operation  for  point  addition  and  point  doubling  is  the  
finite field  inversion.  However,  one  way  to  handle  finite  
field inversion  is by  transforming it into less  expensive  
finite  field  operation,  such  as  finite  field addition and 

multiplication by using projective coordinates. The elliptic 
curve point doubling and point multiplication activities are 
shown in figure 2 and 3. 

 
 Point addition P1+P2=P3 Fig.1.

 

 Point doubling 2P Fig.2.

A vast number of resource-constrained and high-
performance embedded applications utilize the ECC based 
public key cryptography due to shorter key sizes.. The core 
operation in ECC systems is the point multiplication. The 
security of the cryptosystems like ECC depends mainly on the 
difficulty of the discrete logarithm problem (DLP). A 
commonly adopted method of solving DLP is to use the 
Pollard‘s rho technique [1]. 
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 Point multiplication on Elliptic Curve Fig.3.

A traditional technique for computing side channel 
information is to apply a variant of double-and-add type 
algorithms with respect to the binary form of the secret 
exponent ‗a‘. Such an algorithm would deteriorate due to 
power analysis attacks when doubling and addition operations 
are distinct [2]. One method to provide Diffie-Hellman type 
protocols with some level of protection against side channel 
attacks, is to divide the scalar a = r + (a  r) for some secret 
random integer r, and to compute aP = rP + (a  r)P [3]. 

For the sake of generality, let G be an additive abelian 
group. Given an integer a and a point P belonging to G, a 
(single) point multiplication algorithm computes aP belonging 
to G. Given two integers a, b and two points P, Q belonging to 
G, a double point multiplication algorithm computes aP +bQ 
belonging to G. Having an efficient and secure one double 
point multiplication algorithm is important for most of the 
cryptographic schemes. Another scenario where one needs 
efficient and secure double point multiplication is to speed up 
single point multiplication over elliptic curves with 
endomorphism as in [4], [5], [6]. 

 A simple way to implement double point multiplication is 
by making use of two single point multiplications in parallel. 
Straus-Shamir‘s trick [7] and interleaving [8] are two such 
methods. Straus-Shamir‘s type simultaneous double point 
multiplication algorithms are sensitive to side-channel 
analysis, because of which double and add instructions are not 
accomplished in a linear fashion. Fortunately, recoding the 
scalars a and b allows one to make use of Straus-Shamir‘s 
type algorithms in such a way that the same instructions are 
executed in the same order. Joye and Tunstall [9] introduced 
several techniques of regular recoding of scalars for regular 
point multiplication algorithms, which can immediately be 
adapted to yield regular simultaneous double point 
multiplication algorithms. Especially, their signed-digit 
recoding technique with the digit set f1; 3g generate a regular 
double point multiplication algorithm, referred as JT-f1;3g 
algorithm. JT-f1; 3g costs 0.5 addition and 1 doubling per 
scalar bit. Adapting differential addition chains (DAC) is 
another technique to compute simultaneous double point 
multiplication [10], [11], and [12]. DAC-method is more 

prominent as it produces potentially simple power analysis 
resistant algorithms due to the uniform pattern of operations 
executed and it is particularly efficient towards elliptic curves 
setting because of the fact that double and add operations can 
be computed only using x-coordinates only. Bernstein [12] 
proposed a double point multiplication algorithm related to the 
new binary chain, known as the B-NBC algorithm. B-NBC 
has a uniform framework, and costs 2 additions and 1 
doubling per scalar bit. Recently, Azarderakhsh and Karabina 
[13] designed a simultaneous double point multiplication 
algorithm based on DAC, the AK-DAC algorithm. AK-DAC 
has a uniform structure, and costs 1:4 additions and 1:4 
doublings per scalar bit. 

The above mentioned three double point multiplication 
algorithms JT-f1; 3g, B-NBC, and AK-DAC are normal, and 
hence they are potentially resistant towards power analysis 
attacks. Nevertheless, comparing these algorithms with respect 
to the efficiency point of view is not straight forward. 
Although JT-f1; 3g shows the best per-bit cost, B-NBC and 
AK-DAC have the benefit of being based on DAC. For 
example, in elliptic curves setting, one can implement B-NBC 
and AK-DAC by adapting the addition formulas that include 
only the x-coordinates of the points, and are much more 
efficient than that of their conventional counterparts. 
Moreover, JT-f1; 3g cannot be executed in parallel because an 
addition operation should be always performed following two 
successive doubling operations. Double and add operations 
can be completely parallelized in both B-NBC and AK-DAC. 
If one redistributes 2 parallel addition/doubling units, then the 
costs of B-NBC and AK-DAC per bit becomes 1A+1D and 
1:4A. In the same way, if one redistributes 3 parallel 
addition/doubling units, then the per-bit cost of B-NBC 
becomes 1A. 

In this paper, hardware architecture of Area efficient 
Elliptic Curve Point Multiplication using AK-DAC standard 
Weierstrass binary elliptic curve groups is implemented and is 
investigated for area occupancy. This will be realized with the 
promising regular algorithm with low hardware requirement 
(area).  

The rest of the paper is organized as, Section 2 reviews 
some of the latest research works performed related to 
proposed work and in Section 3 the motivation and the 
methodology of research are discussed. Section 4 clearly 
explains and analyzes the proposed architecture with neat 
sketches and algorithms and in Section 5 the experimental 
results are reported and compared with other existing works. 
Finally the work concludes in Section 6. 

II. RELATED WORK 

Literature is a significant treasure house of various VLSI 
architectures for point multiplication in ECC. At this juncture, 
existing architectures offered in the literature need to be 
understood. Reza Azarderakhsh and Koray Karabina [13] 
designed a new double point multiplication algorithm and its 
application to binary elliptic curves with endomorphism. In 
this design, the algorithm was based on differential addition 
chains. The architecture was designed with a uniform structure 
and has some degree of built-in resistance against side channel 
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analysis attacks. Their double point multiplication algorithm is 
based on an adaptation of Montgomery‘s PRAC algorithm. 
Work also demonstrated how double point multiplication can 
be employed to speed up the computation of single point 
multiplication on elliptic curves with efficiently computable 
endomorphisms. In design, gain acceleration is 30% and 18% 
for computing single point multiplication with and without 
availability of parallel multipliers, respectively. 

Efficient elliptic curve point multiplication using digit-
serial binary field operations was designed by Gustavo D. 
Sutter et.al [14]. They used a new high-speed point multiplier 
for elliptic curve cryptography using either field 
programmable gate array or application-specified integrated 
circuit technology. Their design adapted a digit-serial 
approach in GF multiplication and GF division in order to 
construct an efficient elliptic curve multiplier using projective 
coordinates. The design involved many basic arithmetic 
operations in the underlying finite field. There are different 
acceleration techniques to improve the performance of the 
ECC operations. Their point multiplication technique used 
three types of algorithm Montgomery Ladder Algorithm, Point 
multiplication and Point multiplication using three multipliers 
and one divisor and precomputing x

P−1
. This design achieved 

point multiplication over GF (2
163

) in 19.38 μs in Virtex-E 
devices and in 5.48 μs in Virtex-5. 

Efficient RNS implementation of elliptic curve point 
multiplication over GF (p) was designed by Mohammad 
Esmaeildoust et.al [15]. In this design, based on the residue 
number system (RNS), new hardware architecture for ECPM 
over GF (p) was established. The designed architecture 
encompasses RNS bases with various word-lengths to 
efficiently implement RNS Montgomery multiplication. In 
that method two versions of fast and area-efficient designs for 
RNS Montgomery multiplication in six and four-stage 
pipelined architectures were used.  When compared to state-
of-the-art implementations, their implemented design achieved 
higher speeds and better area–delay. 

Kimmo U. Järvinen et.al [16] suggested efficient 
algorithm and architecture for elliptic curve cryptography for 
extremely constrained secure applications. They proposed an 
efficient implementation of point multiplication on Koblitz 
curves targeting extremely-constrained, secure applications. In 
design Gaussian normal basis (GNB) representation of field 
elements was adopted and employed an efficient bit-level 
GNB multiplier. The special property of normal basis 
representation and squarings was rewired in hardware very 
efficiently. Also, a new technique was introduced for point 
addition in affine coordinate which required fewer registers. In 
their newly designed technique extremely small processor 
architecture for point multiplication was used. Their 
architecture offered better results compared to the previous 
works, making it suitable for extremely-constrained, secure 
environment. 

Theoretical modeling of elliptic curve scalar multiplier on 
LUT-based FPGAs for area and speed efficiency was designed 
by Sujoy Sinha Roy et.al [17]. Two primitives used in elliptic 
curve scalar multiplier architecture (ECSMA) were 
implemented on k input lookup table (LUT)-based field-

programmable gate arrays to approximate the delay of 
different characteristic. It was used to determine the optimal 
number of pipeline stages and the ideal placement of each 
stage in the ECSMA. In order to perform point addition and 
doubling in a pipelined data path, suitable scheduling was 
created. The three stage pipelined architecture for double and 
add based scalar multiplication is performed on Xilinx Virtex 
V platforms over GF (2

163
). The implementation used a novel 

pipelined bit-parallel Karatsuba multiplier that has 
subquadratic complexity. In proposed design, efficient choice 
of scalar multiplication algorithm, optimized field primitives, 
balanced pipeline stages, and enhanced scheduling of point 
arithmetic resulted in a high-speed architecture with a 
significantly small area. 

Hossein Mahdizadeh and Massoud Masoumi [18] designed 
a novel architecture for efficient FPGA implementation of 
elliptic curve cryptographic processor over GF (2

163
). In 

architecture the critical path of the Lopez–Dahab scalar point 
multiplication architecture was organized and reordered by the 
maximum architectural and timing improvements, such that 
logic structures were implemented in parallel and operations 
in the critical path were diverted to noncritical paths. In the 
implemented design the execution delay of the LD algorithm 
has been reduced by parallelization of the multipliers in the 
implementation of the calculations of projective coordinates. 
The ECC processor was implemented using synthesizable 
VHDL codes, and synthesized, placed, and routed using 
Xilinx ISE 12.1. This design completes the computations in 
the projective coordinates in 326∗ ([m/G1]) +1304 cycles and 
coordinate conversion in 15∗( [m/G2])+214 cycles. With G1 
=33, their new design was four times faster than other designs. 

Hybrid binary-ternary number system for elliptic curve 
cryptosystems was designed by Jithra Adikari et.al [19]. The 
most computational intensive operations in elliptic curve 
based cryptosystems are Single and double scalar 
multiplications. The performance of operations was improved 
by means of integer recoding techniques; with an aim to 
minimize the scalars density of nonzero digits. Designed 
system housed three novel algorithms for both single and 
double scalar multiplications. The first algorithm is w-HBTF 
and the other two algorithms, namely, HBTJF and RHBTJF. It 
was used to find the short and sparse representation for a 
single scalar or a joint representation for a pair of scalars. The 
output results showed that hybrid algorithms are almost 
always faster than classical w-NAF methods or JSF. 

Kazuo Sakiyama et.al [20] implemented a tripartite 
modular multiplication. In multiplication, for maximizing a 
level of parallelism, systematic approach was implemented for 
modular multiplication. The algorithm which is used in this 
method effectively integrates three different existing 
algorithms, a classical modular multiplication based on Barrett 
reduction, the modular multiplication with Montgomery 
reduction and the Karatsuba multiplication algorithms in order 
to reduce the computational complexity and increase the 
potential of parallel processing. In multiprocessor 
environment for hardware and software implementations, this 
algorithm is very effective. This algorithm clocks a higher 
speed when compared to the other algorithms for modular 
multiplication. 
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III. PROPOSED METHODOLOGY 

Most of the methods implemented for point multiplication 
include a pre-computation stage before the actual process for 
point multiplication. The operation of pre-computation stage 
includes the computation of the intermediate points which are 
then used for increasing the throughput of the point 
multiplication process. Hence the need for highly efficient 
elliptic curve point multiplication is an important activity in 
the field of cryptography. The traditional and the less complex 
method for point multiplication is the binary method which is 
well known as double-and-add method. While, the other 
double point multiplication algorithm discussed in literature is 
naive method. But, all these methods only speed up the point 
multiplication and, since for VLSI architectures the hardware 
utilization is the major requirement, thus thrust should be on 
optimizing area required for the proposed system. Thus, in this 
paper, area efficient implementation of double point 
multiplication over binary elliptic curves is presented. Area 
analysis of double point multiplication algorithm based on 
differential addition chains method is investigated. The 
performance and efficiency of any scheme is based on the 
required area. Proposed architecture for double point 
multiplication is implemented on Xilinx Virtex-4 FPGA 
device. The proposed architecture is modeled in verilog-HDL 
and synthesized using Xilinx ISE 14.1 design software. 

IV. PROPOSED DOUBLE POINT MULTIPLICATION 

ALGORITHM 

Proposed implementation of Elliptic Curve double point 
Multiplication algorithm is loosely based on Montgomery‘s 
PRAC algorithm [13]. Algorithm is simplified and modified in 
order to make the design more area efficient than the exiting 
design. The modified double point algorithm used in proposed 
work is exhibited in figure 4 as a flowchart. 

 Flowchart for the proposed modified double point multiplication Fig.4.
scheme 

Let 1k
and 2k

 be the two integers such that
01 k

, and

02 k
,

21,kk
 Where   is a set of integers. 

),( 111 YXP
 

and 
),( 222 YXP

are two points on an Elliptic curve , such 

that
)2(, 21

mGPP 
, Where 

)2( mG
is Galois 

Binary extension field. The inputs to proposed double point 

algorithm are integers 21,kk
and the point in the elliptic curve 

 and the output generated by the algorithm is 2211 PkPk 

which is another point that lies on the same elliptic graph   

such that
)2(2211

mGPkPk 
. The values of 1k

and 
2k

 are 
updated based on conditions mentioned in the flowchart. 

Whenever the values of 1k
or 2k

are updated, a rule from the 
Table.I is invoked, which in turn generates a sequence of 
selector signal for the multiplexers in the architecture. The 
process continues for various iterations and end up with the 
output value of double point multiplication 

)2(2211
mGPkPk 

when 1k
 and 2k

becomes equal.  

 SELECTOR SEQUENCE AND OPERATIONS BASED ON THE RULES TABLE.I.

Rules 

Operation 

S0 S1 S2 S3 S4 S5 S6 S7 S8 Register 

P1 

Register 

P2 

Register 

Pd 

Initial P1 P2 Pd 0 0 1 0 0 0 0 0 1 

R1 2P1 P1+ P2 Pd 0 1 0 0 1 0 1 0 0 

R2 2P1 P2 P1 +Pd 0 0 0 0 1 0 0 0 1 

R1* P1+ P2 2P2 Pd 0 1 0 1 0 1 0 1 0 

R2* P1 2P2 Pd+(-P2) 1 0 0 1 0 0 0 1 1 

 

 Architecture for Proposed Double point Multiplication unit for ECC Fig.5.
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The architecture for proposed area efficient point 
multiplication scheme using double point multiplication is 

shown in figure 5. The architecture includes a processing unit, 
memory unit and a control unit. 

 Modified data dependency graph for the processing unit Fig.6.

A. Processing Unit 

The processing unit is a combined architecture for 
differential point addition and differential point doubling 
operations. The major portion of the available slices are 
occupied by the processing unit because of the involvement of 
various finite field arithmetic units for computing the output 
point addition and doubling values. So the main contribution 
of this work is focused on designing an area efficient 
processing unit with a reduction in number of incorporated 
Arithmetic units. The modified area efficient data dependency 
graph for the processing unit is shown in figure 6.  

Proposed data dependency graph for computing double 
point multiplication employs area efficient finite multipliers, 
squarers, and adders based on differential point addition and 
doubling formulae given in [4]. The processing unit is 
designed with 4 stages of pipeline process in order to reduce 
the usage of arithmetic units for computation.  

The inputs to the processing unit are three points and a 
difference between two points (the input points values are 
selected based on the sequence from the control unit). The 
parameter ‗a‘ is a constant integer value from the elliptic 
curve equation considered for cryptography. 
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When the input is loaded to the processing unit, the 
processing of the input points takes place in 4 stages. After the 
completion of the previous stage, the values are stored 
temporarily in the respective registers (Buffers) and then only 
the next level of process begins. Hence in proposed 
architecture, resources such as registers and other arithmetic 
units that are used in previous stage of process are reused. For 
example in data flow graph the multiplier used in the first 
stage of computation can be reused in the stage four and the 
squarer used in the fourth stage can be reused in the final 
output computation stage thereby reducing the need for extra 
multipliers and squarers. The buffers that are used in the 
previous stage and that are found to be empty in the next 
stages are reused efficiently for making processing unit area 
efficient The arithmetic units that are incorporated inside 
proposed resource reusable combined architecture for 
differential point addition and differential point doubling are 
discussed in detail in following  sections. 

B. Addition Unit 

The addition process that takes place in processing unit is a 

finite field modulo 2 binary additions. Let im

i
ixaA 






1

0

which in binary vector form represented as

),,.....,( 011 aaaA m  and im

i
i xbB 






1

0
 which in 

binary vector form represented as ),,.....,( 011 bbbB m . 

Addition of ‗A‘ and ‗B‘ produces the result ‗C‘ as

iii bac  , Where the symbol ‗  ‘ denotes the ‗XOR‘ 

operator. Hence in hardware realization of the addition unit, 
‗XOR‘ gate array is used as shown in figure 7 for adding two 
finite field binary elements. The addition process utilizes only 
one clock cycle for storing the results in the respective output 
register. 

 

 Finite field Adder Fig.7.

C. Squaring Unit 

The squaring of an element ‗A‘ in binary finite field is 
simpler than that of finite field multiplication. Squaring 
includes two steps of processing; in the first step zeros are 
inserted between each bit in the bit vector representing ‗A‘ 
shown in figure 8. In the Second step the bit vector obtained 

from first step is reduced by taking )(mod xf , where )(xf  

is a degree-m irreducible polynomial. In hardware 
implementation, reduction can be done by XOR and shifting 
operation. The squaring operation for ‗A‘ is represented as

)(mod21

0

2 xfxaA
im

i
i




 . 

 

 Zero insertion for squaring  Fig.8.

D. Multiplication Unit 

The design of Finite field multipliers is the complex issue 
in the implementation of the ECC processor. A number of 
multipliers with different area and time complexity are 
reported in the available literatures. In this work, an area 
efficient architecture for Karatsuba‘s multiplier which 
incorporates digit-level polynomial basis multiplier is adopted. 

The modified Karatsuba multiplier used in proposed 
architecture for double point multiplication multiplies 2 finite 
inputs ‗A‘ and ‗B‘ of m-bit length. In Karatsuba multiplier, 
each operand is first split into two equal parts and then 
processed. The internal processor includes 3 multipliers and 4 
adders.  

 The architecture for Karatsuba multiplier is as shown in 
figure 9. 

am-1   am-2     ……..      a1        a0 

 

0      am-1       0      am-2       0         0       a1          0      a0  …. 
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 Architecture for G(2m) Karatsuba multiplier Fig.9.

The multiplier used here is a digit-level polynomial basis 
multiplier for computing the product of two elements over

)2( lG , ( 2/ml  for this design) using a irreducible 

polynomial )(xf  . Hence the input to the digit-level 

polynomial basis multiplier is of bit length )116('2/' lm  

and the irreducible polynomial for )2( 116G  is

124116  xxx  in binary it is represented as 

(10000……10101). The digit-level multiplier exhibits an area 

complexity of )(mdO and time complexity of )/( dmO  

The operand ‗A‘ register is initially loaded with l-bits and 
operand ‗B‘ register is loaded with l-bits. The D-block is an 
array of AND gates as shown in figure 10 which performs the 

operation Bai   . Hence the output of the D-block is 

available only if the bit value of the corresponding A-register 
is ‗1‘ and if it is ‗0‘ then the output of D-block becomes ‗0‘. 

When all the d-partial products are computed the
ix* blocks 

perform corresponding shift operations and the )(mod xf

block performs reduction operation.  The )2( lG adder block 

add all the partial products obtained in the before step using a 
array of ‗XOR‘ gates same as that have been used for addition 
operation for field elements. The main advantage of using this 
multiplier in proposed technique is that it can operate at higher 
clock frequencies in comparison to the other multipliers 
reported in the literature. The architecture for the digit-level 
polynomial basis multiplier used in proposed technique is 
shown in figure 11. 

 

 Internal Structure of D-block Fig.10.

E. Inversion Unit 

Inversion is the most expensive arithmetic finite field 
operations. In general,  inversion can be computed as, 

221   mAA  
The general computation of inversion requires 1m  

squaring and 2m  multiplications. But the method proposed 

by Itoh and Tsujii (IT) [20] is the most efficient method of 
inversion and hence same technique has been adopted for 
hardware implementation of inversion module in proposed 
architecture. The IT technique requires only 

  1)1()1(log2  mHm  and 1m  squaring. Where 

H  is the number of ones in the binary representation of 1m  

bits known as ‗Hamming Weight’. The algorithm of Itoh and 
Tsujii method for inversion is given in Algorithm 1. 

Let, 2512,0),2( 25  smAGA  

Initially )1121(1)(  ssinceiandAA  

When ,0i )2()( 4)1(22 SquaringAA   

 )1(.4 tionMultiplicaFieldFiniteAAA
15  AA  

Algorithm 1 

))((Re

))2(()()(.5

))2(()(*)()(.4

)2()()(.3

11.2

)(.1

:

12,0),2(:

2

22

1

Aturn

GtionMultiplicaFieldFiniteAA

end

GtionMultiplicaFieldFiniteAAA

shiftscyclicAA

begin

dostoiFor

AA

AOutput

mAGAInput

m

m

ii

sm
























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 Digit-level polynomial basis multiplier Fig.11.

F. Control and Memory Unit 

The control unit designed with LUTs generates the control 
signals as per the input rule and flow chart given in figure 1. 
Based on the input rule, appropriate selector signals are 
generated and are fed to the multiplexers. For each clock 
pulse, the selectors signals are generated and based on this the 
contents from the registers are fed to the processing unit. At 
the start of the process, the Register P1 and Register P2 are 
initialized with the input points P1 and P2 respectively. The 
designed control unit is simple and utilizes only a smaller area 
than the other units in the architecture. 

The block diagram for the control unit is shown in figure 
12. For storing the points and all other data needed for the 
computation, register files are used instead of RAM blocks. 
This is because the RAM blocks require communication 
between the memory unit and the processing unit which is not 
required in case of the register files. 
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V. RESULTS AND DISCUSSION 

In this section, proposed architecture for double point 
multiplication is implemented to analyze its area and power 
requirements. 

 
 RTL schematic for the proposed double point multiplication Fig.13.

architecture 

The Xilinx® Virtex™-4 xc4vlx200 device is used as the 
target FPGA. The proposed architecture is modeled in verilog-
HDL and synthesized for different digit sizes using XST™ of 
Xilinx® ISE™ version 14.1 design software. All the 
experiments were performed on 3.10GHz Intel(R) i5, 4.00GB 
RAM, and 32-bit operating system with windows7 
professional. Figure 13 exhibits a snapshot of RTL schematic 
of proposed double point multiplication architecture.  

A. Area report of proposed scheme: 

Comparison of area utilization of proposed double point 
multiplication architecture with other existing methods such as 
Naive Method, B-NBC, JT -{±1, ±3} and AK-DAC is carried 
out. Target device includes 89,088 Slices (178,176 4 input 
LUTs and 178,176 Sliced FFs) and 960 bonded IOBs. Each 
slice contains 2 flip-flops (FFs) and 2 look-up tables (LUTs). 
The resource utilization comparison as depicted in table II 
below shows the slices utilized by proposed scheme are much 
lesser than the other existing methods. Proposed 
implementation utilizes only an average of 6.5% among the 
available 89,088 slices in the device. But all other methods 
report a high percentage of device utilization.  

With increase in‗d‘ value from 7 to 13, it is observed that 
there is increase in proposed architecture footprint. The area 
comparison of proposed method with other similar existing 
methods is shown in figure 14 for a clear understanding of the 
efficiency of proposed method.  For digit size of 7, proposed 
architecture uses 37.95% reduced slices as compared to Naive 
method, 25.9% fewer in comparison to B-NBC , 8% fewer 

slices as compared to JT –{±1, ±3} method and 6% lesser than 
AK-DAC technique. 

 AREA COMPARISONS OF DIFFERENT DOUBLE POINT TABLE.II.

MULTIPLICATION ALGORITHMS OVER )2( mG  WITH 233m  

d 
Naïve 

Method[13] 

[#Slices] 

B-
NBC[12] 

[#Slices] 

JT –{±1, ±3}[9] 

[#Slices] 

AK-
DAC[13] 

[#Slices] 

Propose
d 

[#Slices] 

7 6,218 5,207 4,196 4,146 3,858 

13 9,693 8,117 6,541 6,462 6,146 

18 11,335 9,492 7,649 7,557 6,887 

26 16,612 13,911 11,210 11,075 8,733 

 

 

  Bar chart showing Area comparison  Fig.14.

For digit size of 26, proposed architecture uses 47.42% 
reduced slices as compared to Naive method, 37.22 % in 
comparison to B-NBC, 22.09% fewer slices as compared to JT 
–{±1, ±3} method and 21.14% lesser than AK-DAC technique 

B. Power and Performance Report of proposed architecture 

The total clock periods required for the computation, 
frequency and power needed for the implemented architecture 
is tabulated in table III below. 

 IMPLEMENTATION RESULTS FOR OUR PROPOSED DOUBLE TABLE.III.
POINT MULTIPLICATION SCHEME 

d Clock period(ns) Frequency(MHz) Power(W) 

7 30.673 32.602 1.420 

13 35.473 28.191 1.429 

18 39.052 25.607 1.479 

26 44.058 22.698 1.503 

 
Figure 15 shows the graph plotted between ‗d‘ along x-

axis and Clock periods along y-axis. With the increase in digit 
size of the multiplier, the clock periods (Computation Time) 
increases. Hence a large digit size multiplier can boost up the 
throughput of architecture. But with the increase in digit size 
the need for registers, AND gates XOR gates and shift logic 
also increases which contributes to chip area. Since thrust is 
on area reduction, a low bit size for implementation has been 
chosen. 
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 Graph plot between‗d‘ and ‗Clock Periods (ns)‘    Fig.15.

From the graph shown in figure 16, it is observed that with 
the rise in the digit size of the multiplier, the operating clock 
frequency for implementation decreases. 

 

 Graph plot between‗d‘ and ‗Frequency (MHz)‘ Fig.16.

The power consumption by proposed design is mainly due 
to the leakage power and the clock power. Figure 17 shows 
the graph plot for digit size (d) Vs Total Power consumption 
by proposed module. It can be observed that with the increase 
in digit size of the multiplier, the power consumed by 
architecture increases. From the above analysis, if  ‗d‘ value is 
selected as a low value then Area and Power consumption 
decreases but the speed of computation decreases. On the 
other hand if ‗d‘ value is made high then the area and power 
consumption increases with a high speed computation. Hence 
in order to make proposed architecture efficient towards Area, 
Power and performance, a balanced value of digit size is to be 
chosen and is set to an average value as possible. 

 

 Graph plot between‗d‘ and ‗Power (W)‘  Fig.17.

VI. CONCLUSION 

In this paper, an area efficient elliptic curve point 
multiplication architecture using a double point multiplication 
technique is designed and implemented. Reutilization of idle 
resources and a pipelined data path scheme for data processing 
in the combined module for differential point adder and point 
doubler were presented clearly. The finite field arithmetic 
operators were designed efficiently to reduce the area 
utilization. The complete architecture was synthesized and 
simulated using Xilinx ISE 14.1. Reports were generated in 
terms of area, power and time by varying the digit size of the 
multiplier. The results obtained from area report were 
compared with other similar existing methods reported in the 
literatures and found to be much better. In future for further 
area optimization of the proposed architecture, research thrust 
should be on designing an efficient area optimized finite field 
multiplier. 
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