
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

24 | P a g e

www.ijacsa.thesai.org

P1(x1,y1)

2P (xi,yi)

-2

0

2

-2 0 2

y

x

Area Efficient Implementation of Elliptic Curve Point

Multiplication Algorithm

Sunil Devidas Bobade

Research Scholar

S.G.B.Amravati University

Amravati, India

Dr.Vijay R. Mankar

Deputy Secretary

Regional Board of Technical Education

Pune Region, Pune, India

Abstract—Elliptic Curve Cryptography (ECC) has

established itself as the most preferred and secured cryptography

algorithm for the secure data transfer and secure data storage in

embedded system environment. Efficient implementation of point

multiplication algorithm is crucial activity for designing area

efficient, low footprint ECC cryptoprocessors. In this paper, an

area efficient implementation of double point multiplication

algorithm over binary elliptic curve is presented. Area analysis of

double point multiplication algorithm based on differential

addition chains method is carried out and area report is

generated. Area optimization is achieved by using pipelined

structure and by reutilizing idle resources from previous stages

in processing unit. The proposed architecture for double point

multiplication is implemented on Xilinx Virtex-4 FPGA device.

Architecture is modeled in verilog-HDL and synthesized using

Xilinx ISE 14.1 design software and is found to be more efficient

in terms of area than the existing such architectures.

Keywords—Cryptography; Elliptic Curve Cryptography;

Double Point Multiplication; Binary Elliptic Curve; Differential

Addition Chain

I. INTRODUCTION

Victor Miller and Neal Koblitz proposed the concept of
elliptic curve cryptography in the mid of 1980‘s and was
considered as a next big step in public key cryptographic
systems. Few algorithms already existed such as DSA and
RSA. The main advantage of ECC over RSA is the usage of
shorter key and it is aided with a drawback that the design for
ECC when implemented in software performs at dead slow
speed, whereas if the implementation is done in hardware, the
process is much more efficient. Hence ECC is the best choice
for cryptographic hardware implementation. Due to these
many advantages of ECC, a number of hardware
implementations have been proposed, and included in
many standards such as IEEE 1363and NIST.

An operation called point addition is defined on an elliptic
curve. The point addition is an operation, where two points on
the curve are added and a third point, which is also on the
curve, is plotted as shown in figure 1. Importantly for
cryptography, it is very hard to analyze which two points
were added. Furthermore, using consecutive point
additions, an operation called ―Elliptic curve point
multiplication‖ is defined. The most exorbitant finite field
operation for point addition and point doubling is the
finite field inversion. However, one way to handle finite
field inversion is by transforming it into less expensive
finite field operation, such as finite field addition and

multiplication by using projective coordinates. The elliptic
curve point doubling and point multiplication activities are
shown in figure 2 and 3.

 Point addition P1+P2=P3 Fig.1.

 Point doubling 2P Fig.2.

A vast number of resource-constrained and high-
performance embedded applications utilize the ECC based
public key cryptography due to shorter key sizes.. The core
operation in ECC systems is the point multiplication. The
security of the cryptosystems like ECC depends mainly on the
difficulty of the discrete logarithm problem (DLP). A
commonly adopted method of solving DLP is to use the
Pollard‘s rho technique [1].

P2(x2,y2)

P1(x1,y1)

P3(x3,y3)

-2

0

2

-2 0 2

y

x

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

25 | P a g e

www.ijacsa.thesai.org

P1

3P1

2P1

-2

0

2

-2 0 2

y

x

 Point multiplication on Elliptic Curve Fig.3.

A traditional technique for computing side channel
information is to apply a variant of double-and-add type
algorithms with respect to the binary form of the secret
exponent ‗a‘. Such an algorithm would deteriorate due to
power analysis attacks when doubling and addition operations
are distinct [2]. One method to provide Diffie-Hellman type
protocols with some level of protection against side channel
attacks, is to divide the scalar a = r + (a r) for some secret
random integer r, and to compute aP = rP + (a r)P [3].

For the sake of generality, let G be an additive abelian
group. Given an integer a and a point P belonging to G, a
(single) point multiplication algorithm computes aP belonging
to G. Given two integers a, b and two points P, Q belonging to
G, a double point multiplication algorithm computes aP +bQ
belonging to G. Having an efficient and secure one double
point multiplication algorithm is important for most of the
cryptographic schemes. Another scenario where one needs
efficient and secure double point multiplication is to speed up
single point multiplication over elliptic curves with
endomorphism as in [4], [5], [6].

 A simple way to implement double point multiplication is
by making use of two single point multiplications in parallel.
Straus-Shamir‘s trick [7] and interleaving [8] are two such
methods. Straus-Shamir‘s type simultaneous double point
multiplication algorithms are sensitive to side-channel
analysis, because of which double and add instructions are not
accomplished in a linear fashion. Fortunately, recoding the
scalars a and b allows one to make use of Straus-Shamir‘s
type algorithms in such a way that the same instructions are
executed in the same order. Joye and Tunstall [9] introduced
several techniques of regular recoding of scalars for regular
point multiplication algorithms, which can immediately be
adapted to yield regular simultaneous double point
multiplication algorithms. Especially, their signed-digit
recoding technique with the digit set f1; 3g generate a regular
double point multiplication algorithm, referred as JT-f1;3g
algorithm. JT-f1; 3g costs 0.5 addition and 1 doubling per
scalar bit. Adapting differential addition chains (DAC) is
another technique to compute simultaneous double point
multiplication [10], [11], and [12]. DAC-method is more

prominent as it produces potentially simple power analysis
resistant algorithms due to the uniform pattern of operations
executed and it is particularly efficient towards elliptic curves
setting because of the fact that double and add operations can
be computed only using x-coordinates only. Bernstein [12]
proposed a double point multiplication algorithm related to the
new binary chain, known as the B-NBC algorithm. B-NBC
has a uniform framework, and costs 2 additions and 1
doubling per scalar bit. Recently, Azarderakhsh and Karabina
[13] designed a simultaneous double point multiplication
algorithm based on DAC, the AK-DAC algorithm. AK-DAC
has a uniform structure, and costs 1:4 additions and 1:4
doublings per scalar bit.

The above mentioned three double point multiplication
algorithms JT-f1; 3g, B-NBC, and AK-DAC are normal, and
hence they are potentially resistant towards power analysis
attacks. Nevertheless, comparing these algorithms with respect
to the efficiency point of view is not straight forward.
Although JT-f1; 3g shows the best per-bit cost, B-NBC and
AK-DAC have the benefit of being based on DAC. For
example, in elliptic curves setting, one can implement B-NBC
and AK-DAC by adapting the addition formulas that include
only the x-coordinates of the points, and are much more
efficient than that of their conventional counterparts.
Moreover, JT-f1; 3g cannot be executed in parallel because an
addition operation should be always performed following two
successive doubling operations. Double and add operations
can be completely parallelized in both B-NBC and AK-DAC.
If one redistributes 2 parallel addition/doubling units, then the
costs of B-NBC and AK-DAC per bit becomes 1A+1D and
1:4A. In the same way, if one redistributes 3 parallel
addition/doubling units, then the per-bit cost of B-NBC
becomes 1A.

In this paper, hardware architecture of Area efficient
Elliptic Curve Point Multiplication using AK-DAC standard
Weierstrass binary elliptic curve groups is implemented and is
investigated for area occupancy. This will be realized with the
promising regular algorithm with low hardware requirement
(area).

The rest of the paper is organized as, Section 2 reviews
some of the latest research works performed related to
proposed work and in Section 3 the motivation and the
methodology of research are discussed. Section 4 clearly
explains and analyzes the proposed architecture with neat
sketches and algorithms and in Section 5 the experimental
results are reported and compared with other existing works.
Finally the work concludes in Section 6.

II. RELATED WORK

Literature is a significant treasure house of various VLSI
architectures for point multiplication in ECC. At this juncture,
existing architectures offered in the literature need to be
understood. Reza Azarderakhsh and Koray Karabina [13]
designed a new double point multiplication algorithm and its
application to binary elliptic curves with endomorphism. In
this design, the algorithm was based on differential addition
chains. The architecture was designed with a uniform structure
and has some degree of built-in resistance against side channel

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

26 | P a g e

www.ijacsa.thesai.org

analysis attacks. Their double point multiplication algorithm is
based on an adaptation of Montgomery‘s PRAC algorithm.
Work also demonstrated how double point multiplication can
be employed to speed up the computation of single point
multiplication on elliptic curves with efficiently computable
endomorphisms. In design, gain acceleration is 30% and 18%
for computing single point multiplication with and without
availability of parallel multipliers, respectively.

Efficient elliptic curve point multiplication using digit-
serial binary field operations was designed by Gustavo D.
Sutter et.al [14]. They used a new high-speed point multiplier
for elliptic curve cryptography using either field
programmable gate array or application-specified integrated
circuit technology. Their design adapted a digit-serial
approach in GF multiplication and GF division in order to
construct an efficient elliptic curve multiplier using projective
coordinates. The design involved many basic arithmetic
operations in the underlying finite field. There are different
acceleration techniques to improve the performance of the
ECC operations. Their point multiplication technique used
three types of algorithm Montgomery Ladder Algorithm, Point
multiplication and Point multiplication using three multipliers
and one divisor and precomputing x

P−1
. This design achieved

point multiplication over GF (2
163

) in 19.38 μs in Virtex-E
devices and in 5.48 μs in Virtex-5.

Efficient RNS implementation of elliptic curve point
multiplication over GF (p) was designed by Mohammad
Esmaeildoust et.al [15]. In this design, based on the residue
number system (RNS), new hardware architecture for ECPM
over GF (p) was established. The designed architecture
encompasses RNS bases with various word-lengths to
efficiently implement RNS Montgomery multiplication. In
that method two versions of fast and area-efficient designs for
RNS Montgomery multiplication in six and four-stage
pipelined architectures were used. When compared to state-
of-the-art implementations, their implemented design achieved
higher speeds and better area–delay.

Kimmo U. Järvinen et.al [16] suggested efficient
algorithm and architecture for elliptic curve cryptography for
extremely constrained secure applications. They proposed an
efficient implementation of point multiplication on Koblitz
curves targeting extremely-constrained, secure applications. In
design Gaussian normal basis (GNB) representation of field
elements was adopted and employed an efficient bit-level
GNB multiplier. The special property of normal basis
representation and squarings was rewired in hardware very
efficiently. Also, a new technique was introduced for point
addition in affine coordinate which required fewer registers. In
their newly designed technique extremely small processor
architecture for point multiplication was used. Their
architecture offered better results compared to the previous
works, making it suitable for extremely-constrained, secure
environment.

Theoretical modeling of elliptic curve scalar multiplier on
LUT-based FPGAs for area and speed efficiency was designed
by Sujoy Sinha Roy et.al [17]. Two primitives used in elliptic
curve scalar multiplier architecture (ECSMA) were
implemented on k input lookup table (LUT)-based field-

programmable gate arrays to approximate the delay of
different characteristic. It was used to determine the optimal
number of pipeline stages and the ideal placement of each
stage in the ECSMA. In order to perform point addition and
doubling in a pipelined data path, suitable scheduling was
created. The three stage pipelined architecture for double and
add based scalar multiplication is performed on Xilinx Virtex
V platforms over GF (2

163
). The implementation used a novel

pipelined bit-parallel Karatsuba multiplier that has
subquadratic complexity. In proposed design, efficient choice
of scalar multiplication algorithm, optimized field primitives,
balanced pipeline stages, and enhanced scheduling of point
arithmetic resulted in a high-speed architecture with a
significantly small area.

Hossein Mahdizadeh and Massoud Masoumi [18] designed
a novel architecture for efficient FPGA implementation of
elliptic curve cryptographic processor over GF (2

163
). In

architecture the critical path of the Lopez–Dahab scalar point
multiplication architecture was organized and reordered by the
maximum architectural and timing improvements, such that
logic structures were implemented in parallel and operations
in the critical path were diverted to noncritical paths. In the
implemented design the execution delay of the LD algorithm
has been reduced by parallelization of the multipliers in the
implementation of the calculations of projective coordinates.
The ECC processor was implemented using synthesizable
VHDL codes, and synthesized, placed, and routed using
Xilinx ISE 12.1. This design completes the computations in
the projective coordinates in 326∗ ([m/G1]) +1304 cycles and
coordinate conversion in 15∗([m/G2])+214 cycles. With G1
=33, their new design was four times faster than other designs.

Hybrid binary-ternary number system for elliptic curve
cryptosystems was designed by Jithra Adikari et.al [19]. The
most computational intensive operations in elliptic curve
based cryptosystems are Single and double scalar
multiplications. The performance of operations was improved
by means of integer recoding techniques; with an aim to
minimize the scalars density of nonzero digits. Designed
system housed three novel algorithms for both single and
double scalar multiplications. The first algorithm is w-HBTF
and the other two algorithms, namely, HBTJF and RHBTJF. It
was used to find the short and sparse representation for a
single scalar or a joint representation for a pair of scalars. The
output results showed that hybrid algorithms are almost
always faster than classical w-NAF methods or JSF.

Kazuo Sakiyama et.al [20] implemented a tripartite
modular multiplication. In multiplication, for maximizing a
level of parallelism, systematic approach was implemented for
modular multiplication. The algorithm which is used in this
method effectively integrates three different existing
algorithms, a classical modular multiplication based on Barrett
reduction, the modular multiplication with Montgomery
reduction and the Karatsuba multiplication algorithms in order
to reduce the computational complexity and increase the
potential of parallel processing. In multiprocessor
environment for hardware and software implementations, this
algorithm is very effective. This algorithm clocks a higher
speed when compared to the other algorithms for modular
multiplication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

27 | P a g e

www.ijacsa.thesai.org

III. PROPOSED METHODOLOGY

Most of the methods implemented for point multiplication
include a pre-computation stage before the actual process for
point multiplication. The operation of pre-computation stage
includes the computation of the intermediate points which are
then used for increasing the throughput of the point
multiplication process. Hence the need for highly efficient
elliptic curve point multiplication is an important activity in
the field of cryptography. The traditional and the less complex
method for point multiplication is the binary method which is
well known as double-and-add method. While, the other
double point multiplication algorithm discussed in literature is
naive method. But, all these methods only speed up the point
multiplication and, since for VLSI architectures the hardware
utilization is the major requirement, thus thrust should be on
optimizing area required for the proposed system. Thus, in this
paper, area efficient implementation of double point
multiplication over binary elliptic curves is presented. Area
analysis of double point multiplication algorithm based on
differential addition chains method is investigated. The
performance and efficiency of any scheme is based on the
required area. Proposed architecture for double point
multiplication is implemented on Xilinx Virtex-4 FPGA
device. The proposed architecture is modeled in verilog-HDL
and synthesized using Xilinx ISE 14.1 design software.

IV. PROPOSED DOUBLE POINT MULTIPLICATION

ALGORITHM

Proposed implementation of Elliptic Curve double point
Multiplication algorithm is loosely based on Montgomery‘s
PRAC algorithm [13]. Algorithm is simplified and modified in
order to make the design more area efficient than the exiting
design. The modified double point algorithm used in proposed
work is exhibited in figure 4 as a flowchart.

 Flowchart for the proposed modified double point multiplication Fig.4.
scheme

Let 1k
and 2k

 be the two integers such that
01 k

, and

02 k
,

21,kk
 Where  is a set of integers.

),(111 YXP

and
),(222 YXP

are two points on an Elliptic curve , such

that
)2(, 21

mGPP 
, Where

)2(mG
is Galois

Binary extension field. The inputs to proposed double point

algorithm are integers 21,kk
and the point in the elliptic curve

 and the output generated by the algorithm is 2211 PkPk 

which is another point that lies on the same elliptic graph 

such that
)2(2211

mGPkPk 
. The values of 1k

and
2k

 are
updated based on conditions mentioned in the flowchart.

Whenever the values of 1k
or 2k

are updated, a rule from the
Table.I is invoked, which in turn generates a sequence of
selector signal for the multiplexers in the architecture. The
process continues for various iterations and end up with the
output value of double point multiplication

)2(2211
mGPkPk 

when 1k
 and 2k

becomes equal.

 SELECTOR SEQUENCE AND OPERATIONS BASED ON THE RULES TABLE.I.

Rules

Operation

S0 S1 S2 S3 S4 S5 S6 S7 S8 Register

P1

Register

P2

Register

Pd

Initial P1 P2 Pd 0 0 1 0 0 0 0 0 1

R1 2P1 P1+ P2 Pd 0 1 0 0 1 0 1 0 0

R2 2P1 P2 P1 +Pd 0 0 0 0 1 0 0 0 1

R1* P1+ P2 2P2 Pd 0 1 0 1 0 1 0 1 0

R2* P1 2P2 Pd+(-P2) 1 0 0 1 0 0 0 1 1

 Architecture for Proposed Double point Multiplication unit for ECC Fig.5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

28 | P a g e

www.ijacsa.thesai.org

The architecture for proposed area efficient point
multiplication scheme using double point multiplication is

shown in figure 5. The architecture includes a processing unit,
memory unit and a control unit.

 Modified data dependency graph for the processing unit Fig.6.

A. Processing Unit

The processing unit is a combined architecture for
differential point addition and differential point doubling
operations. The major portion of the available slices are
occupied by the processing unit because of the involvement of
various finite field arithmetic units for computing the output
point addition and doubling values. So the main contribution
of this work is focused on designing an area efficient
processing unit with a reduction in number of incorporated
Arithmetic units. The modified area efficient data dependency
graph for the processing unit is shown in figure 6.

Proposed data dependency graph for computing double
point multiplication employs area efficient finite multipliers,
squarers, and adders based on differential point addition and
doubling formulae given in [4]. The processing unit is
designed with 4 stages of pipeline process in order to reduce
the usage of arithmetic units for computation.

The inputs to the processing unit are three points and a
difference between two points (the input points values are
selected based on the sequence from the control unit). The
parameter ‗a‘ is a constant integer value from the elliptic
curve equation considered for cryptography.

*

X1 X2 Y1 Y2

R1 R2

R2 R3 R4 R5

R2 R3

R1 R2 R3 X0 Y0 a1

 X4 X3 Y3 Y4

^2

^2

Stage 1

Stage 2

Stage 3

Stage 4

1 1 2 2
2

1 2

1 1

2
2

3
3

4 4

1 2 3 4

1 1

 2

2

1 2

1 2 3

1 2 3

1 2

1
2

3 3

3 1 2

4

4

P1 P2

Pd

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

29 | P a g e

www.ijacsa.thesai.org

When the input is loaded to the processing unit, the
processing of the input points takes place in 4 stages. After the
completion of the previous stage, the values are stored
temporarily in the respective registers (Buffers) and then only
the next level of process begins. Hence in proposed
architecture, resources such as registers and other arithmetic
units that are used in previous stage of process are reused. For
example in data flow graph the multiplier used in the first
stage of computation can be reused in the stage four and the
squarer used in the fourth stage can be reused in the final
output computation stage thereby reducing the need for extra
multipliers and squarers. The buffers that are used in the
previous stage and that are found to be empty in the next
stages are reused efficiently for making processing unit area
efficient The arithmetic units that are incorporated inside
proposed resource reusable combined architecture for
differential point addition and differential point doubling are
discussed in detail in following sections.

B. Addition Unit

The addition process that takes place in processing unit is a

finite field modulo 2 binary additions. Let im

i
ixaA 






1

0

which in binary vector form represented as

),,.....,(011 aaaA m and im

i
i xbB 






1

0
 which in

binary vector form represented as),,.....,(011 bbbB m .

Addition of ‗A‘ and ‗B‘ produces the result ‗C‘ as

iii bac  , Where the symbol ‗  ‘ denotes the ‗XOR‘

operator. Hence in hardware realization of the addition unit,
‗XOR‘ gate array is used as shown in figure 7 for adding two
finite field binary elements. The addition process utilizes only
one clock cycle for storing the results in the respective output
register.

 Finite field Adder Fig.7.

C. Squaring Unit

The squaring of an element ‗A‘ in binary finite field is
simpler than that of finite field multiplication. Squaring
includes two steps of processing; in the first step zeros are
inserted between each bit in the bit vector representing ‗A‘
shown in figure 8. In the Second step the bit vector obtained

from first step is reduced by taking)(mod xf , where)(xf

is a degree-m irreducible polynomial. In hardware
implementation, reduction can be done by XOR and shifting
operation. The squaring operation for ‗A‘ is represented as

)(mod21

0

2 xfxaA
im

i
i




 .

 Zero insertion for squaring Fig.8.

D. Multiplication Unit

The design of Finite field multipliers is the complex issue
in the implementation of the ECC processor. A number of
multipliers with different area and time complexity are
reported in the available literatures. In this work, an area
efficient architecture for Karatsuba‘s multiplier which
incorporates digit-level polynomial basis multiplier is adopted.

The modified Karatsuba multiplier used in proposed
architecture for double point multiplication multiplies 2 finite
inputs ‗A‘ and ‗B‘ of m-bit length. In Karatsuba multiplier,
each operand is first split into two equal parts and then
processed. The internal processor includes 3 multipliers and 4
adders.

 The architecture for Karatsuba multiplier is as shown in
figure 9.

am-1 am-2 …….. a1 a0

0 am-1 0 am-2 0 0 a1 0 a0 ….

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

30 | P a g e

www.ijacsa.thesai.org

 Architecture for G(2m) Karatsuba multiplier Fig.9.

The multiplier used here is a digit-level polynomial basis
multiplier for computing the product of two elements over

)2(lG , (2/ml  for this design) using a irreducible

polynomial)(xf . Hence the input to the digit-level

polynomial basis multiplier is of bit length)116('2/' lm

and the irreducible polynomial for)2(116G is

124116  xxx in binary it is represented as

(10000……10101). The digit-level multiplier exhibits an area

complexity of)(mdO and time complexity of)/(dmO

The operand ‗A‘ register is initially loaded with l-bits and
operand ‗B‘ register is loaded with l-bits. The D-block is an
array of AND gates as shown in figure 10 which performs the

operation Bai  . Hence the output of the D-block is

available only if the bit value of the corresponding A-register
is ‗1‘ and if it is ‗0‘ then the output of D-block becomes ‗0‘.

When all the d-partial products are computed the
ix* blocks

perform corresponding shift operations and the)(mod xf

block performs reduction operation. The)2(lG adder block

add all the partial products obtained in the before step using a
array of ‗XOR‘ gates same as that have been used for addition
operation for field elements. The main advantage of using this
multiplier in proposed technique is that it can operate at higher
clock frequencies in comparison to the other multipliers
reported in the literature. The architecture for the digit-level
polynomial basis multiplier used in proposed technique is
shown in figure 11.

 Internal Structure of D-block Fig.10.

E. Inversion Unit

Inversion is the most expensive arithmetic finite field
operations. In general, inversion can be computed as,

221   mAA
The general computation of inversion requires 1m

squaring and 2m multiplications. But the method proposed

by Itoh and Tsujii (IT) [20] is the most efficient method of
inversion and hence same technique has been adopted for
hardware implementation of inversion module in proposed
architecture. The IT technique requires only

  1)1()1(log2  mHm and 1m squaring. Where

H is the number of ones in the binary representation of 1m

bits known as ‗Hamming Weight’. The algorithm of Itoh and
Tsujii method for inversion is given in Algorithm 1.

Let, 2512,0),2(25  smAGA

Initially)1121(1)( ssinceiandAA

When ,0i)2()(4)1(22 SquaringAA 

)1(.4 tionMultiplicaFieldFiniteAAA
15  AA

Algorithm 1

))((Re

))2(()()(.5

))2(()(*)()(.4

)2()()(.3

11.2

)(.1

:

12,0),2(:

2

22

1

Aturn

GtionMultiplicaFieldFiniteAA

end

GtionMultiplicaFieldFiniteAAA

shiftscyclicAA

begin

dostoiFor

AA

AOutput

mAGAInput

m

m

ii

sm

























(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

31 | P a g e

www.ijacsa.thesai.org

 l

Mod f(x)

Mod f(x)

 am-1 am-2 …….. a1 a0

bm-1 bm-2 …… b1 b0

D0

D1

D2

Dd-1

*x

*x
2

*x
d-1

Mod f(x)

Mod f(x)

*x
d-1

G(2
l
)

Adder

c0

c1

 cm-2

 cm-1

 l

 l

l

 l

 l

 l

 l

 l

 l

 l

l

l

 l

l

 d 1

 1

 1

 1

l

 l

 l

 l

…
..

…
.

 Digit-level polynomial basis multiplier Fig.11.

F. Control and Memory Unit

The control unit designed with LUTs generates the control
signals as per the input rule and flow chart given in figure 1.
Based on the input rule, appropriate selector signals are
generated and are fed to the multiplexers. For each clock
pulse, the selectors signals are generated and based on this the
contents from the registers are fed to the processing unit. At
the start of the process, the Register P1 and Register P2 are
initialized with the input points P1 and P2 respectively. The
designed control unit is simple and utilizes only a smaller area
than the other units in the architecture.

The block diagram for the control unit is shown in figure
12. For storing the points and all other data needed for the
computation, register files are used instead of RAM blocks.
This is because the RAM blocks require communication
between the memory unit and the processing unit which is not
required in case of the register files.

 Control Unit Fig.12.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

32 | P a g e

www.ijacsa.thesai.org

V. RESULTS AND DISCUSSION

In this section, proposed architecture for double point
multiplication is implemented to analyze its area and power
requirements.

 RTL schematic for the proposed double point multiplication Fig.13.

architecture

The Xilinx® Virtex™-4 xc4vlx200 device is used as the
target FPGA. The proposed architecture is modeled in verilog-
HDL and synthesized for different digit sizes using XST™ of
Xilinx® ISE™ version 14.1 design software. All the
experiments were performed on 3.10GHz Intel(R) i5, 4.00GB
RAM, and 32-bit operating system with windows7
professional. Figure 13 exhibits a snapshot of RTL schematic
of proposed double point multiplication architecture.

A. Area report of proposed scheme:

Comparison of area utilization of proposed double point
multiplication architecture with other existing methods such as
Naive Method, B-NBC, JT -{±1, ±3} and AK-DAC is carried
out. Target device includes 89,088 Slices (178,176 4 input
LUTs and 178,176 Sliced FFs) and 960 bonded IOBs. Each
slice contains 2 flip-flops (FFs) and 2 look-up tables (LUTs).
The resource utilization comparison as depicted in table II
below shows the slices utilized by proposed scheme are much
lesser than the other existing methods. Proposed
implementation utilizes only an average of 6.5% among the
available 89,088 slices in the device. But all other methods
report a high percentage of device utilization.

With increase in‗d‘ value from 7 to 13, it is observed that
there is increase in proposed architecture footprint. The area
comparison of proposed method with other similar existing
methods is shown in figure 14 for a clear understanding of the
efficiency of proposed method. For digit size of 7, proposed
architecture uses 37.95% reduced slices as compared to Naive
method, 25.9% fewer in comparison to B-NBC , 8% fewer

slices as compared to JT –{±1, ±3} method and 6% lesser than
AK-DAC technique.

 AREA COMPARISONS OF DIFFERENT DOUBLE POINT TABLE.II.

MULTIPLICATION ALGORITHMS OVER)2(mG WITH 233m

d
Naïve

Method[13]

[#Slices]

B-
NBC[12]

[#Slices]

JT –{±1, ±3}[9]

[#Slices]

AK-
DAC[13]

[#Slices]

Propose
d

[#Slices]

7 6,218 5,207 4,196 4,146 3,858

13 9,693 8,117 6,541 6,462 6,146

18 11,335 9,492 7,649 7,557 6,887

26 16,612 13,911 11,210 11,075 8,733

 Bar chart showing Area comparison Fig.14.

For digit size of 26, proposed architecture uses 47.42%
reduced slices as compared to Naive method, 37.22 % in
comparison to B-NBC, 22.09% fewer slices as compared to JT
–{±1, ±3} method and 21.14% lesser than AK-DAC technique

B. Power and Performance Report of proposed architecture

The total clock periods required for the computation,
frequency and power needed for the implemented architecture
is tabulated in table III below.

 IMPLEMENTATION RESULTS FOR OUR PROPOSED DOUBLE TABLE.III.
POINT MULTIPLICATION SCHEME

d Clock period(ns) Frequency(MHz) Power(W)

7 30.673 32.602 1.420

13 35.473 28.191 1.429

18 39.052 25.607 1.479

26 44.058 22.698 1.503

Figure 15 shows the graph plotted between ‗d‘ along x-

axis and Clock periods along y-axis. With the increase in digit
size of the multiplier, the clock periods (Computation Time)
increases. Hence a large digit size multiplier can boost up the
throughput of architecture. But with the increase in digit size
the need for registers, AND gates XOR gates and shift logic
also increases which contributes to chip area. Since thrust is
on area reduction, a low bit size for implementation has been
chosen.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

7 13 18 26

Naïve
Method[13]

B-NBC[12]

JT –{±1, ±3}[9]

AK-DAC[13]

Proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

33 | P a g e

www.ijacsa.thesai.org

 Graph plot between‗d‘ and ‗Clock Periods (ns)‘ Fig.15.

From the graph shown in figure 16, it is observed that with
the rise in the digit size of the multiplier, the operating clock
frequency for implementation decreases.

 Graph plot between‗d‘ and ‗Frequency (MHz)‘ Fig.16.

The power consumption by proposed design is mainly due
to the leakage power and the clock power. Figure 17 shows
the graph plot for digit size (d) Vs Total Power consumption
by proposed module. It can be observed that with the increase
in digit size of the multiplier, the power consumed by
architecture increases. From the above analysis, if ‗d‘ value is
selected as a low value then Area and Power consumption
decreases but the speed of computation decreases. On the
other hand if ‗d‘ value is made high then the area and power
consumption increases with a high speed computation. Hence
in order to make proposed architecture efficient towards Area,
Power and performance, a balanced value of digit size is to be
chosen and is set to an average value as possible.

 Graph plot between‗d‘ and ‗Power (W)‘ Fig.17.

VI. CONCLUSION

In this paper, an area efficient elliptic curve point
multiplication architecture using a double point multiplication
technique is designed and implemented. Reutilization of idle
resources and a pipelined data path scheme for data processing
in the combined module for differential point adder and point
doubler were presented clearly. The finite field arithmetic
operators were designed efficiently to reduce the area
utilization. The complete architecture was synthesized and
simulated using Xilinx ISE 14.1. Reports were generated in
terms of area, power and time by varying the digit size of the
multiplier. The results obtained from area report were
compared with other similar existing methods reported in the
literatures and found to be much better. In future for further
area optimization of the proposed architecture, research thrust
should be on designing an efficient area optimized finite field
multiplier.

REFERENCES

[1] J.M. Pollard. Monte Carlo, ―Methods for Index Computation (mod p)‖
Mathematics of computation, 32(143):918–924, 1978.

[2] J-S. Coron, ―Resistance against differential power analysis for elliptic
curve cryptosystems‖, Lecture Notes in Computer Science, CHES 1999,
1717:292–302, 1999.

[3] C. Clavier and M. Joye, ―Universal Exponentiation Algorithm – A First
Step towards Provable SPA-Resistance‖, Lecture Notes in Computer
Science, CHES 2001, 2162:300–308, 2001.

[4] R. Gallant, R. Lambert, and S. Vanstone, ― Faster point multiplication on
elliptic curves with efficient endomorphisms‖, Advances in Cryptology
– CRYPTO 2011, LNCS, 2139:190–200, 2001.

[5] D. Galbraith, X. Lin, and M. Scott, ― Endomorphisms for Faster Elliptic
Curve Cryptography on a Large Class of Curves‖, Journal of
Cryptology, 24:446–469, 2011.

[6] D. Hankerson, K. Karabina, and A. Menezes, ―Analyzing the Galbraith-
Lin-Scott point multiplication method for elliptic curves over binary
fields‖, IEEE Transactions on Computers, 58:1411–1420, 2009.

[7] A. Menezes, P. van Oorschot, and S. Vanstone, ―Handbook of Applied
Cryptography‖, New York, 1996.

[8] B. Moller, ―Algorithms for Multi-exponentiation‖, Selected Areas in
Computer Science SAC 2001, LNCS, 2259:165–180, 2001.

[9] M. Joye and M. Tunstall, ― Exponent recoding and regular
exponentiation algorithms‖, Lecture Notes in Computer Science,
AFRICACRYPT 2009, 5580:334–349, 2009.

[10] P. Montgomery, ―Evaluating recurrences via Lucas chains‖,
www.cwi.nl/ftp/pmontgom/Lucas.ps.gz, December 13, 1983; Revised
March, 1991 and January, 1992.

[11] T. Akishita, ―Fast Simultaneous Scalar Multiplication on Elliptic Curve
with Montgomery Form‖, Selected Areas in Computer Science SAC
2001, LNCS, 2259:225–267, 2001.

[12] D. Bernstein, ―Differential addition chains‖, Technical report, 2006,
Available at http://cr.yp.to/ecdh/diffchain-20060219.pdf.

[13] Reza Azarderakhsh and Koray Karabina,―A new double point
multiplication algorithm and its application to binary elliptic curves with
endomorphisms‖, IEEE Transactions on Computers, No.99, May 2013.

[14] Sutter.G.D, Deschamps.J and Imana J.L , ―Efficient elliptic curve point
multiplication using digit-serial binary field operations‖, IEEE
Transactions on industrial electronics, Vol.60, No.1, Jan 2013.

[15] Mohammad Esmaeildoust, ―Efficient RNS implementation of elliptic
curve point multiplication over GF(p)‖, IEEE Transactions on Very
Large Scale Integration systems, Vol. 21, No. 8, Aug 2013.

[16] Azarderakhsh. R, Jarvinen K.U and Mozaffari-Kermani. M,―Efficient
algorithm and architecture for elliptic curve cryptography for extremely
constrained secure applications‖, IEEE Transactions on circuits and
systems- I , Vol. 61, No. 4, April 2014.

0

10

20

30

40

50

7 13 18 26

C
lo

ck
 P

er
io

d
s

(n
s)

d

0

10

20

30

40

7 13 18 26

F
re

q
u

en
cy

 (
M

H
z)

d

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

7 13 18 26

P
o

w
er

 (
W

)

d

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

34 | P a g e

www.ijacsa.thesai.org

[17] Roy. S.S, Rebeiro,C and Mukhopadhyay. D, ―Theoretical modeling of
elliptic curve scalar multiplier on LUT-based FPGAs for area and
speed‖, IEEE Transactions on Very Large Scale Integration (VLSI)
systems, Vol. 21, No. 5, May 2013.

[18] Hossein Mahdizadeh and Massoud Masoumi, ―A novel architecture for
efficient FPGA implementation of elliptic curve cryptographic processor
over GF(2163)‖,IEEE Transactions on very large scale integration
systems, Vol. 21, No. 12, Dec 2013.

[19] Adikari. J, Dimitrov.V.S, and Imbert.L,―Hybrid binary-ternary number
system for elliptic curve cryptosystems‖, IEEE Transactions on
computers, Vol. 60, No. 2, Feb 2011.

[20] Kazuo Sakiyama, Miroslav Knezevica, Junfeng Fana, , Bart Preneela,
and Ingrid Verbauwhedea, ―Tripartite modular multiplication‖,
Integration, the VLSI Journal, Vol. 44, No.4, pp: 259–269, September
2011.

