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Abstract—This paper presents a novel approach to construct 

Java programs automatically from the input functional program 

specifications on natural numbers from the constructive proofs of 

the input specifications using an inductive theorem prover called 

Poiti′n. The construction of a Java program from the input 

functional program specification involves two phases. The 

theorem prover is used to construct a higher order functional 

(HOF) program from the input specification expressed as an 

existential theorem. A set of mapping rules for a Programming 

Language Translation System (PLTS) is defined for translating 

functional expressions to their semantic equivalent Java code. 

The generated functional program is translated into intermediate 

Java code in the form of a Java function using the PLTS module. 

The generated Java function requires a small refinement to 

obtain a syntactically correct Java function. This Java function is 

encapsulated within a user defined Java class as a member 

operation, which is invoked within a Java application class 

consisting of a main function by creating objects resulting in an 

executable Java program. The constructed functional program 

and the generated Java program both are correct with respect to 

the input specification as they produce the same output. 

Keywords—Functional Program Specification; Existential 

Theorems; Higher Order Functional Program; Mapping Rules; 
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I. INTRODUCTION 

Automatic construction of executable programs from the 
input program specifications is really a difficult task. A number 
of theorem provers are available, for example, Poiti′n, Nuprl1, 
and Coq, which can be used to construct functional programs 
from the proofs of their specifications [1,2,3,4,5,6]. Several 
code generation tools e.g., Rational Rose, Microgold and 
Umbrello have been developed for automatic generation of 
Java or C++ program code from UML design specification 
expressed in terms of class diagrams for a particular computing 
problem solution [1]. These tools can be used to generate 
architectural code when class details in UML notation, i.e., 
class name, attributes, operations and class relationships are 
provided within the class diagram. The details code for each 
class operation has to be provided by the programmer. The 
generated code can only be verified by executing the code to 

                                                           
1
Nuprl System:http://www.nuprl.org/html/NuprlSystem.html 

see whether it provides the desired output and functionality. 
The correctness, reliability and completeness of the generated 
programs fully depend on UML class design expertness and 
programming skill of the designer to encode the problem. The 
verification is done manually [1] by the designer to check its 
correctness. 

Formal software development using mathematical rules 
aids automatic or semi-automatic program development from 
their specifications using their correctness proofs. Automatic 
construction of higher order functional programs from the 
proofs of their specifications using metasystem transition 
proofs has been developed [2,3,1]. In the synthesis of 
functional programs from specifications, various approaches 
exist in which either a program is extracted from the proof of 
the specification [4,6], or transformation rules are applied to 
the specification to obtain a program [7]. 

Poiti′n [2,3,8] is an inductive theorem prover, which  can be 
used  to perform constructive proof of an existential theorem 
expressed in a simple higher order functional language (HOFL) 
to extract functional program from the proof of a non-
executable input specification [2]. The constructed program is 
an executable functional program in the source language (SL). 
The language of Poiti′n is untyped and non-strict with first-
order quantifiers. In this paper, input specifications on natural 
numbers are considered for program construction. The 
universal variables are intended to be used as input variables 
are not quantified, and therefore must remain within the 
constructed HOFL program. The existential variables are ANY 
quantified with explicitly defining their data types (e.g. nat for 
natural number). These are the witness variables which 
construct the output value. All of these variables are natural 
number variables. The existential theorem with the required 
function definitions, which is used as the input program 
specification, describes the properties of the desired program to 
be constructed [1]. The theorem prover applies distillation 
program transformation algorithm [9,8,10,2,3] to the input 
specification to obtain a distilled program, and applies the 
proof rules to this program to verify the correctness of the input 
specification. A set of program construction rules is applied to 
the distilled program [2,3] to construct a functional program if 
the specification is proved correct. 

Java is an attractive platform independent object-oriented 
programming language to the object-oriented software 
development community. So far we know from on-line 
literature search, no research work is found on automatic 
construction of Java programs from input specifications, and 
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the available theorem provers can only be used to construct 
functional programs [1,2,3,4,5]. This paper presents a new 
approach for the construction of Java programs from the input 
functional program specifications expressed in the functional 
language of the theorem prover Poiti′n. A PLTS module 
applies a set of mapping rules to translate the constructed 
HOFL program into an equivalent Java function which is 
further refined to obtain a correct Java function. An executable 
Java program is developed to invoke this Java function which 
computes values similar to that of the HOFL program. 

The rest of the paper is organized as follows. Section II 
presents the language of the theorem prover Poiti′n. Section III 
provides an overview about the programming language 
translation system (PLTS), and the related work. Section IV 
presents the system architecture for the automatic construction 
of Java programs from input functional program specification. 
Section V describes the relevance of the proposed system 
architecture for Java program construction from input 
functional program specification. Section VI gives an overview 
of higher order functional program construction from input 
functional program specification. Section VII defines a set of 
rules for translating the higher order functional program 
expressed in the language of Poiti′n to Java code with the 
refinement steps. Section VIII describes the process of 
constructing executable Java program using the generated Java 
code by defining Java classes with the required refinement. 
Section IX describes the implementation and results, and 
finally, section X concludes with a guideline to the future 
work. 

II. LANGUAGE 

The language of the theorem prover Poiti′n is defined as a 
simple higher order functional language. A finite set of free 
variables {u, v, x, y, z, u', v', …} with any number of renaming 
of these variables, a finite set of list variables {us, vs, xs, ys, zs, 
us', vs', …} with any number of renaming of these variables, 
and a finite set of function symbols {f, f0, f1, g, h} are 
considered. The notation ei (for i = 1 to n) is used to represent 
any expression in the language. A simple expression in the 
language can be a variable x, a constructor c, a constructor 
application c e1 ... en, a lambda expression λx.e, a function 
variable f, or an application e0 e1 [2,3,8,9]. The language also 
contains complex case and letrec expressions. A case 
expression is defined as case e0 of p1 : e1 | ... | pk : ek consisting 
of k alternate branches. The pattern pi appearing in the i

th 
case 

branch is defined by the expression c x1 … xn where c is a 
constructor and xi  are bound variables. A letrec expression is 
defined as letrec f = e0 in e1, where e0 may contain a recursive 
call to the function f [2,3,8,9].The language has two first order 
quantifiers ALL and EX for quantifying universal and 
existential variables along with an ANY quantifier in order to 
specify the existential witness contained in the input program 
specification [2,3]. The input specification can be expressed in 
any of the following forms [2]: 

ANY y:datatype.e   (i) 

ANY y:datatype.pre →  post               (ii) 

where y is the existential variable representing existential 
witness to be computed, datatype is the type of the witnessing 

variable. In expression (i), e is the expression representing the 
properties of the program to be constructed consisting of 
functions and relations about natural numbers. Specification 
(ii) contains a pre-condition (pre), which is a constraint to 
restrict the program to be constructed from the proof of the 
specification to generate only the desired witness values. The 
input specification contains quantifier-free universal input 
variables, which must remain within the functional program 
constructed from the input specification [2,3]. The sub-
expressions pre and post are valid expressions in the language. 

A program, conjecture or program specification is 
expressed in the language in the following form [2,3,8,9]: 

e 
where  
f1 = e1;  
…  
fn = en;    

Conjectures to be proved are defined in the form ALL 
x1…xn.EX y1…yn.e where xi and yi are universally and 
existentially quantified variables respectively. 

III. PROGRAMMING LANGUAGE TRANSLATION SYSTEM 

(PLTS) 

A programming language translation system (PLTS) can 
translate expressions in a source programming language into 
expressions in the target language (TL). For example, a C++ 
expression can be translated to a Java expression using a C++ 
to Java translator. The complexity of programming language 
translation depends on the syntactic and semantic gap between 
the source and target languages. Significant research works 
have been done for developing PLTSs for generating Java code 
from various source programming languages [1,11,12,13,14]. 
An approach to compile Standard ML program to Java 
bytecode has been presented in [11]. Some translation 
approaches have been proposed to obtain Java code from 
Haskell code [12], C code from ATLAS code [13], and Java 
code from COBOL code [14]. 

The author presents an approach to obtain Java program 
from a functional program specification in this paper. The 
proposed method translates the constructed functional program 
in the higher order functional language of Poiti′n to Java code 
using a set of mapping rules of the PLTS module. Poiti′n uses a 
non-strict and untyped higher order functional language, 
whereas Java is a strict and typed language. Because of a small 
number of instructions in the source language, we can obtain a 
few of the Java expressions for the input functional language to 
construct equivalent Java code. A prototype system has been 
developed which can be used to obtain Java code in the form of 
a Java function from a functional program [1] by translating 
the HOFL program constructed from the input functional 
program specification. 

IV. SYSTEM ARCHITECTURE 

The architecture of the proposed system for automatic Java 
program construction from functional program specification is 
represented in Fig. 1. In the proposed system, the inductive 
theorem prover Poiti'n constructs a functional program from 
the input specification. The parsing module extracts the source 
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language constructs from the constructed functional program. 
The mapping module applies a set of translation rules to 
translate the functional program to Java code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. System Architecture for Program Construction [1] 

The process of Java program construction from a functional 
program specification involves several phases. At first, a higher 
order functional program is constructed from the input 
specification. In the next phase, the constructed functional 
program is translated to obtain equivalent Java code in the 
form of a Java function [1]. This Java function is further 
refined in the refinement phase to obtain a correct Java 
function computationally equivalent to that of the higher order 
functional program. In the construction phase, the Java 
function is encapsulated within a Java class as a member 
operation. This operation can be invoked by creating objects 
within a Java application class consisting of a main function to 
obtain an executable Java program. 

V. RELEVANCE 

Automatic construction of Java programs from input 
program specifications to solve a computational problem using 
program construction system is of great research interest to the 
software development research community. As far we know 
from the online literature, there is no work done so far to 
construct Java program automatically from input program 
specification expressed in Java language. The theorem prover 
Poiti'n can be used to construct functional programs from the 
input specifications expressed in its functional language. 

A programming language translation system (PLTS) is 
proposed which can be used to translate simple higher order 
functional programs to Java functions. The research presented 
in this paper focuses on the construction of Java program from 
a functional program specification to solve a particular 
computational problem. Our intention is to automatically 
construct Java programs which can perform the same 
computations as that of the constructed functional programs. 
As there exists a functional program for the input functional 

program specification, which can be proved true by 
construction of that program from the constructive proof of the 
input specification using the theorem prover Poiti'n, there 
should exist a corresponding Java program to compute the 
same output as that of the constructed functional program. This 
paper presents an architecture shown in Fig. 1 for such Java 
program construction from input functional program 
specification about natural numbers only. The generated Java 
function can be used to develop an executable Java program. 
The proposed program construction system will lessen the 
burden of a programmer of writing details Java program code 
for those computational problems specified in HOFL of Poiti'n, 
which have their constructive proofs in Poiti'n to construct 
HOFL programs. 

VI. FUNCTIONAL PROGRAM CONSTRUCTION 

In the proposed system, the user has to define an input 
specification about natural numbers in the language of Poiti′n 
to automatically construct a functional program to solve a 
particular computational problem. The input specification 
describes the properties of the program to be constructed in 
terms of constraints and input/output relationship [2,3]. The 
input specification is expressed in the form of an existential 
theorem in terms of quantifiers, variables, type of the 
witnessing variable, predicates and functions. An equivalent 
higher order functional program is obtained from this 
specification using a set of program transformation rules called 
distillation [2,3,8,9]. The theorem prover applies a set of 
constructive proof rules [2,3,9] to this distilled program to 
construct a functional program for witness construction. The 
constructed functional program satisfies the properties 
described in the specification, and can be used to compute the 
value(s) of the existential witness which satisfies the program 
specification [1,2,3]. This is the actual purpose of the 
computational problem to be solved for which the input 
program specification was defined. 

Consider the program specification defined by expression 
(1) as shown below. 

ANY y:nat.or(eqnum(double y) x)    
   (eqnum(Succ(double y)) x)         (1)       

where 

or = x.y.case x of 

True True 

| False  y      

| Bottom  y 

eqnum  =x.y.case x of 

         Zero (case y of 

            Zero  True  

           | Succ(y') False) 

   | Succ(x')(case y of  

             Zero False  

           | Succ(y')eqnum x' y') 

double = x.case x of 

  Zero Zero 

              | Succ(x')Succ(Succ(double x')) 
The specification states that the natural number y is to be 

constructed such that for all values of x, x is either double of y 
or the successor of the double of y. The constructed output 
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functional program given by the following expression (2) is 
obtained from the above input functional program specification 
(1).  

Letrec f0 = x.case x of   (2) 

                           Zero Zero 

                          | Succ(x')case x' of   

                                                    Zero Zero 

                                                  | Succ(x'')Succ(f0 x'') 
in f0 x 

The functions and relations used in specification (1) have 
their usual meaning and definitions using case expression 
[1,2]. In the definitions, the value Bottom represents an 
undefined value of a three-valued logic, i.e. True, False, 
Bottom. Poiti'n constructs a functional program defined by 
expression (2) from the input specification (1) [1,2]. 
Expression (2) can be redefined by expression (3) in the form 
of a HOFL program both computing the same output value for 
the same input. However, in this paper, expression (2) is used 
for the translation purpose. 

f0 x      (3) 
where 

f0 = x.case x of 

                  Zero Zero 

                | Succ(x')case x' of    

                                          Zero Zero 

                                        | Succ(x'')Succ(f0 x''); 

Within the expressions, the symbol  is used for variable 
binding and x' represents the predecessor of x, i.e., x-1. The 
variable f0 is a recursive function which is defined by using a 
letrec expression. Within expression (1), the functions and 
relations used are on natural numbers, and the universal input 
variable x and the existential variable y under construction both 
are of type nat. As we have to input a natural number x to 
construct the witness y for it using the constructed HOFL 
program, x must remain within the HOFL program, i.e., x is 
quantifier-free universal variable. In evaluating the constructed 
HOFL program given by expression (2) using a natural number 
input for x, the argument x decreases by 2 in each recursive call 
to the recursive function f0 till x reduces to 0 using the 
successive steps [1,2]. Verifying the program given by 
expression (2), we see that the program constructs a value of y 
for each input value of x satisfying the input specification (1). 

VII. TRANSLATION OF FUNCTIONAL PROGRAM TO JAVA 

CODE 

The higher order functional program constructed by the 
theorem prover is usually expressed by using a letrec 
expression defining a recursive function, which is translated to 
a Java function by the PLTS module. A set of the mapping 
rules T is defined for the PLTS module as shown below [1] for 

translating the HOFL expressions to intermediate Java code. 

Var T<v>   = <int v>                       (T1) 

VarRenT<v′>    = <v - 1>  ,  if v=v  (T2)

    = <T<v> - 1>  , Otherwise 

   (if v is a renaming of  v)  

VarListT<vs>   = <int vs[]>     (T3) 

Cons T<Zero>  = <0>     (T4) 

ConsAppT<Succ(e)>   = < T<e> + 1>    (T5) 

FuncVarT<f>   = <f() {}>  ,   if f  (T6) 

FuncAppT<f e1,..., en>   = <f(T<e1>,...,T<en);>   (T7) 

CaseExprT<case x of    (T8) 

                           Zero: e1 
                        | Succ(x'): e2>   

       = <switch (x)  

                           {case 0: T<e1> 

                                    break;  

                             default: {x' = x-1; T<e2>;} }>   

FuncDef T<f = x1. ... .xn.e>                                 (T9) 

          = <public void f(int x1, ... , int xn) 

         {T<e>}>   

Letrec T<letrec f = x1.... .xn.case x1 of             (T10) 

           Zero: e1 

    | Succ(x1'): e2 
  in f x1 ... xn>      

        = <public void f(int x1, ... , int xn)  

                {T<case x1 of 

           Zero: e1 
| Succ(x1'): e2>}    {x1,...,xn} 

| f(x1,...,xn);> 
The constructed functional program is tokenized to produce 

a token list which is input to the parsing module along with 
lexicon and the context free grammar (CFG) of the source 
language as shown in Fig. 1. The parsing process generates 
several component sub-expressions in the form of a tree by 
processing this token list. The mapping rules T are applied to 
the component sub-expressions to obtain their corresponding 
Java code. The generated Java code is not executable in its 
current form. 

A HOFL expression can be defined by the following rule: 

HOFLexpr<Var> | <Varlist> | <Cons> | ConsApp | 
<CaseExpr> | <FuncApp> | <FuncVar> | <FuncDef> | 
<Letrec> | … 

where „|‟ represents switching between different functional 
language constructs [1]. 

The general form of a mapping rule is defined as    

HOFLexprType  T<HOFLexpr> <JavaCode> 

where the variable HOFLexprType represents the type of 
the HOFL expression under translation, HOFLexpr is the 
HOFL  expression to be translated, and JavaCode is the 
equivalent Java code of this HOFL expression. 

Each of the primitive HOFL expressions has its 
corresponding equivalent Java code in its basic form where the 
source and target language constructs have same variable 
name. In these rules, f and f0 denote the function variable, x, x', 
x1, x1', y, y' and vs are data variables, and e, e1, e2 are 

expressions. The environment variable  is used to store the 
universal input variables appearing within the input 
specification. The expression type, keywords, identifiers and 
sub-expressions of a HOFL expression are determined during 
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parsing of the constructed functional program, which are input 
to the translation/mapping module for further processing of the 
functional expression [1]. 

Rule T1 encounters a variable v in HOFL syntax, and since 

the HOFL program contains only natural number variables as 
specified in the input program specification, it is translated to 
an integer type variable in Java. Rule T2 encounters a renaming 

v′ of a natural number variable v. Since the renaming occurs 

only at the recursive steps and as v′ is a sub-component of v, 

hence v is decremented to its predecessor by decrementing v 

by 1. If v is a renaming of v, then v is further translated using T. 

Rule T3 encounters list type variable vs of natural numbers in 

HOFL syntax, and it is translated to an integer array variable in 
Java syntax. Rule T4 and Rule T5 deal with constructors. Rule T4 

encounters the constructor Zero, which is translated to an 
equivalent Java integer number 0. Rule T5 encounters the 

constructor application Succ(e). In this rule, 1 is added with the 
result of translating the argument e. Rule T6 translates a HOFL 

function variable f with no arguments to a Java function f(). 
Rule T7 encounters a function application of the function f with 

n number of arguments e1 ... en. The PLTS translates this 
function application to a Java function call to the function f 
with the results of separately translating the arguments e1,..., en 
as the function arguments. Rule T8 encounters a HOFL case 

expression which is translated to a switch statement in Java 
syntax, and the HOFL sub-expressions in the case branches are 
recursively translated to their equivalent Java code. Before 
translating the case branches, any renamed variable occurring 
within the case branches is searched within the environment 

variable , and it is checked to see whether it is a renaming of 

any of the variable found within . The renamed variable is 
initialized with decrementing the original case selector variable 
by 1 for each renaming. Rule T9 translates a HOFL function 

definition of f with n bound variables. The lambda () bound 
variables x1 ... xn used in the body of the function f are local to 
the function f, which become the formal parameters int x1, ... , 
int xn of the corresponding Java function f. The body of the 
Java function f is obtained by translating the HOFL expression 
e of the function f. Rule T10 translates a HOFL letrec 
expression which defines a function f with n parameters 

including a function call to f. The  bound variables x1 ... xn 
used in this expression are local to the function f, which 
become the formal parameters int x1, ... , int xn of the 
corresponding Java function f. The body of the Java function f 
is obtained by translating the case expression of the letrec 
expression. The function call f(x1 ... xn) used in the tail of the 
letrec expression is translated to a Java function call f(x1, ..., 

xn), and the variables x1, ..., xn are inserted into . 

In the application of the rules T to an HOFL expression, the 

matching of any component expression contained in the 
constructed functional program with the appropriate mapping 
rule skeleton is performed on the skeleton of the HOFL 
component contained in the appropriate mapping rule [2,3,8,9]. 

Example 
Consider the translation of a HOFL letrec expression 

which defines the function f as given by expression (4) into 
Java code using the rules T of the PLTS module. In this 

expression, x is a natural number variable which is 
decremented by 1 in each recursive call to the function f until x 
reduces to 0. 

letrec f = x.case x of 
      Zero : Zero                     (4) 

                    | Succ(x'): f x'  
in f x  
The PLTS module generates the intermediate Java code as 

shown below which defines the Java function f using the 
mapping rules T. The Java function f needs to be refined to 

obtain a syntactically correct Java function. 

// Intermediate Java Code in the form of a function definition: 

    public void f(int x)  
{  

switch (x)  
       {case 0:  
                 0;  

  break;  
 default:  

x' = x -1; 
f(x');  

} 
} 

// Function call:        
f(x); 

A. Refinement of the Java Code 

The refinement phase makes few changes to the generated 
Java code of the function f as shown above resulting in the 
refined correct Java code as shown below. 

     public int f(int x)  
  { 
      switch (x)  

{ 
case 0:  

res = 0;  
break;  

default:  
x = x -1; 
res = f(x);  

 } 
 return res; 
} 
During refinement, at first, the void type of the function f is 

converted to int type. This change is mandatory as the 
constructed HOFL program defined in the form of a letrec 
function returns a natural number value as the output of the 
function, so the generated Java function obtained from the 
HOFL function must have the same return type declared in the 
function header or function prototype declaration, i.e., int type 
in Java. As it is difficult to handle the return type of the 
generated Java function within the rules T, the return type of the 

function is added during the refinement phase of the program 
construction system as shown in Fig. 1. Second, the statements, 
expressions or values which contribute to final result are 
identified, and an output variable, e.g. res, is initialized with 
these components. The output variable is declared as an 
attribute of a Java class in which this function will be 
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encapsulated as a member operation. Third, a return statement 
is added to return the output from the Java function f. Finally, 
as the renamed variable, e.g., x' is not a valid identifier in Java, 
so, it is replaced with the value given in terms of the original 
variable x. The initialization of the original variable to its 
updated value can be defined in terms of the original variable 
itself in Java, e.g., x = x – 1. 

VIII. JAVA PROGRAM CONSTRUCTION 

In the construction phase, an executable Java program can 
be developed using the Java function obtained after refinement 
such that both of the HOFL program constructed from the 
input functional program specification and the developed Java 
program from this HOFL program perform the same 
computation. 

Consider the generation of Java code using the rules T by 

translating the letrec expression (2) which is the HOFL 
program constructed from specification (1). The application of 
the rules T to expression (2) translates it to the intermediate 

Java code which defines function f0 is shown below. 

     public void f0(int x)  
   {   

 switch (x)  
  {  
   case 0:  
           0;  
      break;     
   default:  
   {    

     x' = x -1; 
       switch (x')  
        {  
           case 0:  
                  0;  
           break;  
           default: 
       { x'' = x -1-1;  
          f0(x'') + 1;  
          } 
      } 
 } 

  } 
    } 

The function f0 can be used to compute the natural number 
y for an input x such that x is either double of y or the successor 
of the double of y as stated in the program specification (1). 
The developed Java code of function f0 is a bit difficult for the 
beginners to write successfully in one trial. The refined Java 
code, which defines function f0 is shown below as a member 
operation of the class F0. 

public class F0 
{ 
   int res = 0;    
   F0() {}; 

  
   public int f0(int x)  
   {   
     switch (x)  
      {  

         case 0:  
            res = 0;  
            break;  
         default:  
         {         
           x = x - 1; 
           switch (x) 
             { 
               case 0:  
                   res = 0;  

    break;  
 default:  

                  { x = x – 1 
                     res = f0(x) + 1;  
                  }  
        }}} 
 
      return res;  
  }} 

The above Java class F0 contains the correct operation 
details code for operation f0 after refinement of the previously 
shown intermediate Java code. 

A. Java Class Construction 

Each of the HOFL functions defined with letrec expression 
within the constructed HOFL program is translated to a Java 
function using the rules T. A Java class F0 is defined following 

the function name f0 of the outermost letrec function f0 
defined by expression (2) to encapsulate the Java function f0 

after refinement as a member operation is shown above. The -
bound variable of the constructed HOFL function f0 becomes 
the formal parameter, i.e., int x, of the Java function f0, which 
is defined by translating the HOFL letrec function f0. In most 
of the cases, the theorem prover constructs the HOFL program 
consisting of a single letrec expression from each input 
specification [1]. The class F0 is defined with declaring the 
constructor F0() and the output variable res. 

B. Java Application Class Construction 

A Java program usually executes by creating objects of the 
user defined classes within a Java application class containing 
the main() function. To execute the Java operation f0 of the 
class F0 as shown below, we need to build a Java program 
using a Java application class containing a main function to 
invoke the function f0 by creating object of F0. 

class F0app 
{  
static F0 ob = new F0(); 
 
public static void main(String args[]) 
{ 
    int x = 11;    
    System.out.println("Input (x): "+ x); 
    System.out.println("Existential Witness (y):"+ ob.f0(x)); 
 } 
} 

To develop an executable Java program, a Java application 
class called F0app is defined as shown above. The argument x 
of the HOFL letrec function call f0 x used in expression (2) 
becomes the argument of the Java function call f0(x) using the 
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object of the class F0 within the main function of the Java 
application class F0app. The argument x of the HOFL letrec 
function call f0 x is declared as an integer variable within the 
main function. The operation f0 of the class F0 is invoked by 
passing x by initializing an integer number 11 as an argument 
to the Java function f0 by creating an object. The Java function 
f0 computes the same value as the witness value computed by 
the HOFL program defined by expression (2) for any input 
value of x. The output of executing the constructed Java 
program with invoking the operation f0 with an input 11 is 
shown below, which computes an existential witness value 5. 

Input (x): 11   
Existential Witness (y): 5 
The above output computed by the automatically developed 

Java function f0 satisfies the properties defined by the input 
functional program specification (1). 

IX. IMPLEMENTATION AND RESULTS 

A prototype version of the Java program construction 
system based on the system architecture shown in Fig. 1 has 
been tested. The theorem prover Poiti′n [2,3,8] implemented 
using SML/NJ functional programming language is at the heart 
of the program construction system. Poiti′n uses a simple 
higher order functional language (HOFL) with first order 
quantifiers. The functional program constructed from the input 
specification is a HOFL letrec function, which is output to a 
disk file for further processing using the PLTS module to 
generate Java code from this HOFL function. A simple 
application program has been written using NetBeans IDE Java 
programming language to implement the rules T of the PLTS 

module to translate the constructed HOFL program into 
semantic equivalent Java code in the form of a Java function, is 
still under improvement. The generated Java code of the 
function requires refinement tasks to be performed through 
using four steps of the refinement phase to build a syntactically 
correct Java function. The construction of the Java class to 
encapsulate the generated Java function as a member operation, 
and the construction of the Java application class for object 
creation and invoking the member operation are done manually 
in the current version of the prototype, which is still under 
improvement. The Java program construction system can be 
used to generate Java code in all of the cases where the 
theorem prover Poiti′n is able to construct HOFL program from 
the constructive proofs of the input program specifications. 

A. Validation and Correctness 

A number of theorem provers are available besides Poiti′n, 
e.g., Nuprl, Coq and automatic recursive program synthesis 
system [4,5,6], which can be used to verify programs, and can 
be used to construct programs from the proofs of the 
specifications. Most of the theorem provers and program 
synthesis systems use axioms or intermediate lemmas and 
generalizations in order to complete the proof successfully. 
Poiti′n does not make use of any lemmas, only need 
generalization to complete the proofs [2]. Hence the number of 
theorems that can be proved by Poiti′n is also small. 

To show that the program construction system shown in 
Fig. 1 can construct correct Java programs with respect to the 

input program specification, the following two properties need 
to be ensured: 

 The functional program constructed from the input 
functional program specification by Poiti′n is correct 
and satisfies the input specification. 

 The mapping rules T defined for the PLTS module for 

translating the constructed functional program to 
equivalent Java code are sound. 

The proof of the above two properties is beyond the scope 
of this paper. The details of the proof of the first property can 
be found in [2,3,8,9]. To prove the second property, it is 
sufficient to show that each HOFL construct that is dealt with 
the rule of T is translated to equivalent Java code. It is beyond 

the scope of this paper to give the details of this proof. 

B. Examples of Some Program Specifications 

Some examples of functional program specifications which 
can be used to construct functional programs from their 
constructive proof using Poiti′n are shown below [2]. 

1) ANY y:nat.(eqnum x Zero) \/ (eqnum x (Succ(y))) 

2) ANY y:nat.eqnum y (plus x (Succ(Zero)))  

3) ANY y:nat.(even x) → (eqnum (double y) x) 

4) ANY z:nat.(less x y) → (eqnum(plus x z) y) 

5) ANYy:nat.or (eqnum(double y) x) 
   (eqnum(Succ(double y)) x) 

X. CONCLUSION AND FUTURE WORK 

The approach for Java program construction presented in 
this paper to solve a particular computational problem uses an 
inductive theorem prover called Poiti′n [2,3,8]. A HOFL 
program is automatically constructed from the proof of a 
functional program specification using Poiti′n, which is 
translated to a Java function using a PLTS module in order to 
generate a Java program to get the essence of constructing Java 
programs from input program specifications. The constructed 
HOFL program satisfies the input specification. The generated 
Java function requires refinement to obtain a syntactically 
correct Java function which can compute the same output as 
that of the HOFL program [1]. To execute this function, it is 
encapsulated within a user defined Java class as a member 
operation, and invoked within a java application class by 
creating object of the user defined class. The language of 
Poiti′n is untyped, and hence the input specifications are 
considered about natural numbers only in the current scope. As 
far we know from the online literature, for the first time, the 
approach for the automatic construction of a Java program 
from the input program specification, i.e. a functional program 
specification using the constructive proof of the specification is 
presented in this paper based on the work presented in [1]. The 
programs are constructed only from the specifications which 
are proved correct. So, this system constructs correct programs 
with respect to the specifications. Automatic construction of 
programs is an interesting area of research in the field of 
formal software development. 

There are a number of directions for continuing further 
research. First, the Java code generation phase can be improved 
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so that more efficient Java code can be generated, which will 
require less refinement tasks. Second, the language of the 
theorem prover Poiti′n can be extended to include type systems 
[1], and try to handle more difficult specifications for program 
construction. Finally, the Java class construction phase can be 
automated to develop an executable Java program. 
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