
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

65 | P a g e

www.ijacsa.thesai.org

Automatic Construction of Java Programs from

Functional Program Specifications

Md. Humayun Kabir

Dept. of Computer Science and Engineering

Jahangirnagar University

Savar, Dhaka-1342, Bangladesh

Abstract—This paper presents a novel approach to construct

Java programs automatically from the input functional program

specifications on natural numbers from the constructive proofs of

the input specifications using an inductive theorem prover called

Poiti′n. The construction of a Java program from the input

functional program specification involves two phases. The

theorem prover is used to construct a higher order functional

(HOF) program from the input specification expressed as an

existential theorem. A set of mapping rules for a Programming

Language Translation System (PLTS) is defined for translating

functional expressions to their semantic equivalent Java code.

The generated functional program is translated into intermediate

Java code in the form of a Java function using the PLTS module.

The generated Java function requires a small refinement to

obtain a syntactically correct Java function. This Java function is

encapsulated within a user defined Java class as a member

operation, which is invoked within a Java application class

consisting of a main function by creating objects resulting in an

executable Java program. The constructed functional program

and the generated Java program both are correct with respect to

the input specification as they produce the same output.

Keywords—Functional Program Specification; Existential

Theorems; Higher Order Functional Program; Mapping Rules;

Programming Language Translation System; Java Program;

Refinement

I. INTRODUCTION

Automatic construction of executable programs from the
input program specifications is really a difficult task. A number
of theorem provers are available, for example, Poiti′n, Nuprl1,
and Coq, which can be used to construct functional programs
from the proofs of their specifications [1,2,3,4,5,6]. Several
code generation tools e.g., Rational Rose, Microgold and
Umbrello have been developed for automatic generation of
Java or C++ program code from UML design specification
expressed in terms of class diagrams for a particular computing
problem solution [1]. These tools can be used to generate
architectural code when class details in UML notation, i.e.,
class name, attributes, operations and class relationships are
provided within the class diagram. The details code for each
class operation has to be provided by the programmer. The
generated code can only be verified by executing the code to

1
Nuprl System:http://www.nuprl.org/html/NuprlSystem.html

see whether it provides the desired output and functionality.
The correctness, reliability and completeness of the generated
programs fully depend on UML class design expertness and
programming skill of the designer to encode the problem. The
verification is done manually [1] by the designer to check its
correctness.

Formal software development using mathematical rules
aids automatic or semi-automatic program development from
their specifications using their correctness proofs. Automatic
construction of higher order functional programs from the
proofs of their specifications using metasystem transition
proofs has been developed [2,3,1]. In the synthesis of
functional programs from specifications, various approaches
exist in which either a program is extracted from the proof of
the specification [4,6], or transformation rules are applied to
the specification to obtain a program [7].

Poiti′n [2,3,8] is an inductive theorem prover, which can be
used to perform constructive proof of an existential theorem
expressed in a simple higher order functional language (HOFL)
to extract functional program from the proof of a non-
executable input specification [2]. The constructed program is
an executable functional program in the source language (SL).
The language of Poiti′n is untyped and non-strict with first-
order quantifiers. In this paper, input specifications on natural
numbers are considered for program construction. The
universal variables are intended to be used as input variables
are not quantified, and therefore must remain within the
constructed HOFL program. The existential variables are ANY
quantified with explicitly defining their data types (e.g. nat for
natural number). These are the witness variables which
construct the output value. All of these variables are natural
number variables. The existential theorem with the required
function definitions, which is used as the input program
specification, describes the properties of the desired program to
be constructed [1]. The theorem prover applies distillation
program transformation algorithm [9,8,10,2,3] to the input
specification to obtain a distilled program, and applies the
proof rules to this program to verify the correctness of the input
specification. A set of program construction rules is applied to
the distilled program [2,3] to construct a functional program if
the specification is proved correct.

Java is an attractive platform independent object-oriented
programming language to the object-oriented software
development community. So far we know from on-line
literature search, no research work is found on automatic
construction of Java programs from input specifications, and

This research work is based on the work presented in [1] which was
funded by Jahangirnagar University, Savar, Dhaka, Bangladesh under the

research grants of 2009-2010 in the Faculty of Mathematical and Physical

Sciences.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

66 | P a g e

www.ijacsa.thesai.org

the available theorem provers can only be used to construct
functional programs [1,2,3,4,5]. This paper presents a new
approach for the construction of Java programs from the input
functional program specifications expressed in the functional
language of the theorem prover Poiti′n. A PLTS module
applies a set of mapping rules to translate the constructed
HOFL program into an equivalent Java function which is
further refined to obtain a correct Java function. An executable
Java program is developed to invoke this Java function which
computes values similar to that of the HOFL program.

The rest of the paper is organized as follows. Section II
presents the language of the theorem prover Poiti′n. Section III
provides an overview about the programming language
translation system (PLTS), and the related work. Section IV
presents the system architecture for the automatic construction
of Java programs from input functional program specification.
Section V describes the relevance of the proposed system
architecture for Java program construction from input
functional program specification. Section VI gives an overview
of higher order functional program construction from input
functional program specification. Section VII defines a set of
rules for translating the higher order functional program
expressed in the language of Poiti′n to Java code with the
refinement steps. Section VIII describes the process of
constructing executable Java program using the generated Java
code by defining Java classes with the required refinement.
Section IX describes the implementation and results, and
finally, section X concludes with a guideline to the future
work.

II. LANGUAGE

The language of the theorem prover Poiti′n is defined as a
simple higher order functional language. A finite set of free
variables {u, v, x, y, z, u', v', …} with any number of renaming
of these variables, a finite set of list variables {us, vs, xs, ys, zs,
us', vs', …} with any number of renaming of these variables,
and a finite set of function symbols {f, f0, f1, g, h} are
considered. The notation ei (for i = 1 to n) is used to represent
any expression in the language. A simple expression in the
language can be a variable x, a constructor c, a constructor
application c e1 ... en, a lambda expression λx.e, a function
variable f, or an application e0 e1 [2,3,8,9]. The language also
contains complex case and letrec expressions. A case
expression is defined as case e0 of p1 : e1 | ... | pk : ek consisting
of k alternate branches. The pattern pi appearing in the i

th
case

branch is defined by the expression c x1 … xn where c is a
constructor and xi are bound variables. A letrec expression is
defined as letrec f = e0 in e1, where e0 may contain a recursive
call to the function f [2,3,8,9].The language has two first order
quantifiers ALL and EX for quantifying universal and
existential variables along with an ANY quantifier in order to
specify the existential witness contained in the input program
specification [2,3]. The input specification can be expressed in
any of the following forms [2]:

ANY y:datatype.e (i)

ANY y:datatype.pre → post (ii)

where y is the existential variable representing existential
witness to be computed, datatype is the type of the witnessing

variable. In expression (i), e is the expression representing the
properties of the program to be constructed consisting of
functions and relations about natural numbers. Specification
(ii) contains a pre-condition (pre), which is a constraint to
restrict the program to be constructed from the proof of the
specification to generate only the desired witness values. The
input specification contains quantifier-free universal input
variables, which must remain within the functional program
constructed from the input specification [2,3]. The sub-
expressions pre and post are valid expressions in the language.

A program, conjecture or program specification is
expressed in the language in the following form [2,3,8,9]:

e
where
f1 = e1;
…
fn = en;

Conjectures to be proved are defined in the form ALL
x1…xn.EX y1…yn.e where xi and yi are universally and
existentially quantified variables respectively.

III. PROGRAMMING LANGUAGE TRANSLATION SYSTEM

(PLTS)

A programming language translation system (PLTS) can
translate expressions in a source programming language into
expressions in the target language (TL). For example, a C++
expression can be translated to a Java expression using a C++
to Java translator. The complexity of programming language
translation depends on the syntactic and semantic gap between
the source and target languages. Significant research works
have been done for developing PLTSs for generating Java code
from various source programming languages [1,11,12,13,14].
An approach to compile Standard ML program to Java
bytecode has been presented in [11]. Some translation
approaches have been proposed to obtain Java code from
Haskell code [12], C code from ATLAS code [13], and Java
code from COBOL code [14].

The author presents an approach to obtain Java program
from a functional program specification in this paper. The
proposed method translates the constructed functional program
in the higher order functional language of Poiti′n to Java code
using a set of mapping rules of the PLTS module. Poiti′n uses a
non-strict and untyped higher order functional language,
whereas Java is a strict and typed language. Because of a small
number of instructions in the source language, we can obtain a
few of the Java expressions for the input functional language to
construct equivalent Java code. A prototype system has been
developed which can be used to obtain Java code in the form of
a Java function from a functional program [1] by translating
the HOFL program constructed from the input functional
program specification.

IV. SYSTEM ARCHITECTURE

The architecture of the proposed system for automatic Java
program construction from functional program specification is
represented in Fig. 1. In the proposed system, the inductive
theorem prover Poiti'n constructs a functional program from
the input specification. The parsing module extracts the source

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

67 | P a g e

www.ijacsa.thesai.org

language constructs from the constructed functional program.
The mapping module applies a set of translation rules to
translate the functional program to Java code.

Fig. 1. System Architecture for Program Construction [1]

The process of Java program construction from a functional
program specification involves several phases. At first, a higher
order functional program is constructed from the input
specification. In the next phase, the constructed functional
program is translated to obtain equivalent Java code in the
form of a Java function [1]. This Java function is further
refined in the refinement phase to obtain a correct Java
function computationally equivalent to that of the higher order
functional program. In the construction phase, the Java
function is encapsulated within a Java class as a member
operation. This operation can be invoked by creating objects
within a Java application class consisting of a main function to
obtain an executable Java program.

V. RELEVANCE

Automatic construction of Java programs from input
program specifications to solve a computational problem using
program construction system is of great research interest to the
software development research community. As far we know
from the online literature, there is no work done so far to
construct Java program automatically from input program
specification expressed in Java language. The theorem prover
Poiti'n can be used to construct functional programs from the
input specifications expressed in its functional language.

A programming language translation system (PLTS) is
proposed which can be used to translate simple higher order
functional programs to Java functions. The research presented
in this paper focuses on the construction of Java program from
a functional program specification to solve a particular
computational problem. Our intention is to automatically
construct Java programs which can perform the same
computations as that of the constructed functional programs.
As there exists a functional program for the input functional

program specification, which can be proved true by
construction of that program from the constructive proof of the
input specification using the theorem prover Poiti'n, there
should exist a corresponding Java program to compute the
same output as that of the constructed functional program. This
paper presents an architecture shown in Fig. 1 for such Java
program construction from input functional program
specification about natural numbers only. The generated Java
function can be used to develop an executable Java program.
The proposed program construction system will lessen the
burden of a programmer of writing details Java program code
for those computational problems specified in HOFL of Poiti'n,
which have their constructive proofs in Poiti'n to construct
HOFL programs.

VI. FUNCTIONAL PROGRAM CONSTRUCTION

In the proposed system, the user has to define an input
specification about natural numbers in the language of Poiti′n
to automatically construct a functional program to solve a
particular computational problem. The input specification
describes the properties of the program to be constructed in
terms of constraints and input/output relationship [2,3]. The
input specification is expressed in the form of an existential
theorem in terms of quantifiers, variables, type of the
witnessing variable, predicates and functions. An equivalent
higher order functional program is obtained from this
specification using a set of program transformation rules called
distillation [2,3,8,9]. The theorem prover applies a set of
constructive proof rules [2,3,9] to this distilled program to
construct a functional program for witness construction. The
constructed functional program satisfies the properties
described in the specification, and can be used to compute the
value(s) of the existential witness which satisfies the program
specification [1,2,3]. This is the actual purpose of the
computational problem to be solved for which the input
program specification was defined.

Consider the program specification defined by expression
(1) as shown below.

ANY y:nat.or(eqnum(double y) x)
 (eqnum(Succ(double y)) x) (1)

where

or = x.y.case x of

True True

| False  y

| Bottom  y

eqnum =x.y.case x of

 Zero (case y of

 Zero  True

 | Succ(y') False)

 | Succ(x')(case y of

 Zero False

 | Succ(y')eqnum x' y')

double = x.case x of

 Zero Zero

 | Succ(x')Succ(Succ(double x'))
The specification states that the natural number y is to be

constructed such that for all values of x, x is either double of y
or the successor of the double of y. The constructed output

SL Tree
Lexical

Analysis
Parsing

Lexicon

Refinement

Construct

TL Program

Correct Java Code

Functional
Program

Refined Output
Java Program

Mapping of Functional

Expressions to Java Code

Token
List

Inductive
Theorem Prover

CFG

Input

Specification

Intermediate Java Code

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

68 | P a g e

www.ijacsa.thesai.org

functional program given by the following expression (2) is
obtained from the above input functional program specification
(1).

Letrec f0 = x.case x of (2)

 Zero Zero

 | Succ(x')case x' of

 Zero Zero

 | Succ(x'')Succ(f0 x'')
in f0 x

The functions and relations used in specification (1) have
their usual meaning and definitions using case expression
[1,2]. In the definitions, the value Bottom represents an
undefined value of a three-valued logic, i.e. True, False,
Bottom. Poiti'n constructs a functional program defined by
expression (2) from the input specification (1) [1,2].
Expression (2) can be redefined by expression (3) in the form
of a HOFL program both computing the same output value for
the same input. However, in this paper, expression (2) is used
for the translation purpose.

f0 x (3)
where

f0 = x.case x of

 Zero Zero

 | Succ(x')case x' of

 Zero Zero

 | Succ(x'')Succ(f0 x'');

Within the expressions, the symbol  is used for variable
binding and x' represents the predecessor of x, i.e., x-1. The
variable f0 is a recursive function which is defined by using a
letrec expression. Within expression (1), the functions and
relations used are on natural numbers, and the universal input
variable x and the existential variable y under construction both
are of type nat. As we have to input a natural number x to
construct the witness y for it using the constructed HOFL
program, x must remain within the HOFL program, i.e., x is
quantifier-free universal variable. In evaluating the constructed
HOFL program given by expression (2) using a natural number
input for x, the argument x decreases by 2 in each recursive call
to the recursive function f0 till x reduces to 0 using the
successive steps [1,2]. Verifying the program given by
expression (2), we see that the program constructs a value of y
for each input value of x satisfying the input specification (1).

VII. TRANSLATION OF FUNCTIONAL PROGRAM TO JAVA

CODE

The higher order functional program constructed by the
theorem prover is usually expressed by using a letrec
expression defining a recursive function, which is translated to
a Java function by the PLTS module. A set of the mapping
rules T is defined for the PLTS module as shown below [1] for

translating the HOFL expressions to intermediate Java code.

Var T<v>  = <int v>  (T1)

VarRenT<v′>  = <v - 1> , if v=v (T2)

 = <T<v> - 1> , Otherwise

 (if v is a renaming of v)

VarListT<vs>  = <int vs[]>  (T3)

Cons T<Zero>  = <0>  (T4)

ConsAppT<Succ(e)>  = < T<e> + 1>  (T5)

FuncVarT<f>  = <f() {}> , if f (T6)

FuncAppT<f e1,..., en>  = <f(T<e1>,...,T<en);>  (T7)

CaseExprT<case x of (T8)

 Zero: e1
 | Succ(x'): e2> 

 = <switch (x)

 {case 0: T<e1>

 break;

 default: {x' = x-1; T<e2>;} }> 

FuncDef T<f = x1.xn.e>  (T9)

 = <public void f(int x1, ... , int xn)

 {T<e>}> 

Letrec T<letrec f = x1.... .xn.case x1 of (T10)

 Zero: e1

 | Succ(x1'): e2
 in f x1 ... xn> 

 = <public void f(int x1, ... , int xn)

 {T<case x1 of

 Zero: e1
| Succ(x1'): e2>}   {x1,...,xn}

| f(x1,...,xn);>
The constructed functional program is tokenized to produce

a token list which is input to the parsing module along with
lexicon and the context free grammar (CFG) of the source
language as shown in Fig. 1. The parsing process generates
several component sub-expressions in the form of a tree by
processing this token list. The mapping rules T are applied to
the component sub-expressions to obtain their corresponding
Java code. The generated Java code is not executable in its
current form.

A HOFL expression can be defined by the following rule:

HOFLexpr<Var> | <Varlist> | <Cons> | ConsApp |
<CaseExpr> | <FuncApp> | <FuncVar> | <FuncDef> |
<Letrec> | …

where „|‟ represents switching between different functional
language constructs [1].

The general form of a mapping rule is defined as

HOFLexprType  T<HOFLexpr> <JavaCode>

where the variable HOFLexprType represents the type of
the HOFL expression under translation, HOFLexpr is the
HOFL expression to be translated, and JavaCode is the
equivalent Java code of this HOFL expression.

Each of the primitive HOFL expressions has its
corresponding equivalent Java code in its basic form where the
source and target language constructs have same variable
name. In these rules, f and f0 denote the function variable, x, x',
x1, x1', y, y' and vs are data variables, and e, e1, e2 are

expressions. The environment variable  is used to store the
universal input variables appearing within the input
specification. The expression type, keywords, identifiers and
sub-expressions of a HOFL expression are determined during

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

69 | P a g e

www.ijacsa.thesai.org

parsing of the constructed functional program, which are input
to the translation/mapping module for further processing of the
functional expression [1].

Rule T1 encounters a variable v in HOFL syntax, and since

the HOFL program contains only natural number variables as
specified in the input program specification, it is translated to
an integer type variable in Java. Rule T2 encounters a renaming

v′ of a natural number variable v. Since the renaming occurs

only at the recursive steps and as v′ is a sub-component of v,

hence v is decremented to its predecessor by decrementing v

by 1. If v is a renaming of v, then v is further translated using T.

Rule T3 encounters list type variable vs of natural numbers in

HOFL syntax, and it is translated to an integer array variable in
Java syntax. Rule T4 and Rule T5 deal with constructors. Rule T4

encounters the constructor Zero, which is translated to an
equivalent Java integer number 0. Rule T5 encounters the

constructor application Succ(e). In this rule, 1 is added with the
result of translating the argument e. Rule T6 translates a HOFL

function variable f with no arguments to a Java function f().
Rule T7 encounters a function application of the function f with

n number of arguments e1 ... en. The PLTS translates this
function application to a Java function call to the function f
with the results of separately translating the arguments e1,..., en
as the function arguments. Rule T8 encounters a HOFL case

expression which is translated to a switch statement in Java
syntax, and the HOFL sub-expressions in the case branches are
recursively translated to their equivalent Java code. Before
translating the case branches, any renamed variable occurring
within the case branches is searched within the environment

variable , and it is checked to see whether it is a renaming of

any of the variable found within . The renamed variable is
initialized with decrementing the original case selector variable
by 1 for each renaming. Rule T9 translates a HOFL function

definition of f with n bound variables. The lambda () bound
variables x1 ... xn used in the body of the function f are local to
the function f, which become the formal parameters int x1, ... ,
int xn of the corresponding Java function f. The body of the
Java function f is obtained by translating the HOFL expression
e of the function f. Rule T10 translates a HOFL letrec
expression which defines a function f with n parameters

including a function call to f. The  bound variables x1 ... xn
used in this expression are local to the function f, which
become the formal parameters int x1, ... , int xn of the
corresponding Java function f. The body of the Java function f
is obtained by translating the case expression of the letrec
expression. The function call f(x1 ... xn) used in the tail of the
letrec expression is translated to a Java function call f(x1, ...,

xn), and the variables x1, ..., xn are inserted into .

In the application of the rules T to an HOFL expression, the

matching of any component expression contained in the
constructed functional program with the appropriate mapping
rule skeleton is performed on the skeleton of the HOFL
component contained in the appropriate mapping rule [2,3,8,9].

Example
Consider the translation of a HOFL letrec expression

which defines the function f as given by expression (4) into
Java code using the rules T of the PLTS module. In this

expression, x is a natural number variable which is
decremented by 1 in each recursive call to the function f until x
reduces to 0.

letrec f = x.case x of
 Zero : Zero (4)

 | Succ(x'): f x'
in f x
The PLTS module generates the intermediate Java code as

shown below which defines the Java function f using the
mapping rules T. The Java function f needs to be refined to

obtain a syntactically correct Java function.

// Intermediate Java Code in the form of a function definition:

 public void f(int x)
{

switch (x)
 {case 0:
 0;

 break;
 default:

x' = x -1;
f(x');

}
}

// Function call:
f(x);

A. Refinement of the Java Code

The refinement phase makes few changes to the generated
Java code of the function f as shown above resulting in the
refined correct Java code as shown below.

 public int f(int x)
 {
 switch (x)

{
case 0:

res = 0;
break;

default:
x = x -1;
res = f(x);

 }
 return res;
}
During refinement, at first, the void type of the function f is

converted to int type. This change is mandatory as the
constructed HOFL program defined in the form of a letrec
function returns a natural number value as the output of the
function, so the generated Java function obtained from the
HOFL function must have the same return type declared in the
function header or function prototype declaration, i.e., int type
in Java. As it is difficult to handle the return type of the
generated Java function within the rules T, the return type of the

function is added during the refinement phase of the program
construction system as shown in Fig. 1. Second, the statements,
expressions or values which contribute to final result are
identified, and an output variable, e.g. res, is initialized with
these components. The output variable is declared as an
attribute of a Java class in which this function will be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

70 | P a g e

www.ijacsa.thesai.org

encapsulated as a member operation. Third, a return statement
is added to return the output from the Java function f. Finally,
as the renamed variable, e.g., x' is not a valid identifier in Java,
so, it is replaced with the value given in terms of the original
variable x. The initialization of the original variable to its
updated value can be defined in terms of the original variable
itself in Java, e.g., x = x – 1.

VIII. JAVA PROGRAM CONSTRUCTION

In the construction phase, an executable Java program can
be developed using the Java function obtained after refinement
such that both of the HOFL program constructed from the
input functional program specification and the developed Java
program from this HOFL program perform the same
computation.

Consider the generation of Java code using the rules T by

translating the letrec expression (2) which is the HOFL
program constructed from specification (1). The application of
the rules T to expression (2) translates it to the intermediate

Java code which defines function f0 is shown below.

 public void f0(int x)
 {

 switch (x)
 {
 case 0:
 0;
 break;
 default:
 {

 x' = x -1;
 switch (x')
 {
 case 0:
 0;
 break;
 default:
 { x'' = x -1-1;
 f0(x'') + 1;
 }
 }
 }

 }
 }

The function f0 can be used to compute the natural number
y for an input x such that x is either double of y or the successor
of the double of y as stated in the program specification (1).
The developed Java code of function f0 is a bit difficult for the
beginners to write successfully in one trial. The refined Java
code, which defines function f0 is shown below as a member
operation of the class F0.

public class F0
{
 int res = 0;
 F0() {};

 public int f0(int x)
 {
 switch (x)
 {

 case 0:
 res = 0;
 break;
 default:
 {
 x = x - 1;
 switch (x)
 {
 case 0:
 res = 0;

 break;
 default:

 { x = x – 1
 res = f0(x) + 1;
 }
 }}}

 return res;
 }}

The above Java class F0 contains the correct operation
details code for operation f0 after refinement of the previously
shown intermediate Java code.

A. Java Class Construction

Each of the HOFL functions defined with letrec expression
within the constructed HOFL program is translated to a Java
function using the rules T. A Java class F0 is defined following

the function name f0 of the outermost letrec function f0
defined by expression (2) to encapsulate the Java function f0

after refinement as a member operation is shown above. The -
bound variable of the constructed HOFL function f0 becomes
the formal parameter, i.e., int x, of the Java function f0, which
is defined by translating the HOFL letrec function f0. In most
of the cases, the theorem prover constructs the HOFL program
consisting of a single letrec expression from each input
specification [1]. The class F0 is defined with declaring the
constructor F0() and the output variable res.

B. Java Application Class Construction

A Java program usually executes by creating objects of the
user defined classes within a Java application class containing
the main() function. To execute the Java operation f0 of the
class F0 as shown below, we need to build a Java program
using a Java application class containing a main function to
invoke the function f0 by creating object of F0.

class F0app
{
static F0 ob = new F0();

public static void main(String args[])
{
 int x = 11;
 System.out.println("Input (x): "+ x);
 System.out.println("Existential Witness (y):"+ ob.f0(x));
 }
}

To develop an executable Java program, a Java application
class called F0app is defined as shown above. The argument x
of the HOFL letrec function call f0 x used in expression (2)
becomes the argument of the Java function call f0(x) using the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

71 | P a g e

www.ijacsa.thesai.org

object of the class F0 within the main function of the Java
application class F0app. The argument x of the HOFL letrec
function call f0 x is declared as an integer variable within the
main function. The operation f0 of the class F0 is invoked by
passing x by initializing an integer number 11 as an argument
to the Java function f0 by creating an object. The Java function
f0 computes the same value as the witness value computed by
the HOFL program defined by expression (2) for any input
value of x. The output of executing the constructed Java
program with invoking the operation f0 with an input 11 is
shown below, which computes an existential witness value 5.

Input (x): 11
Existential Witness (y): 5
The above output computed by the automatically developed

Java function f0 satisfies the properties defined by the input
functional program specification (1).

IX. IMPLEMENTATION AND RESULTS

A prototype version of the Java program construction
system based on the system architecture shown in Fig. 1 has
been tested. The theorem prover Poiti′n [2,3,8] implemented
using SML/NJ functional programming language is at the heart
of the program construction system. Poiti′n uses a simple
higher order functional language (HOFL) with first order
quantifiers. The functional program constructed from the input
specification is a HOFL letrec function, which is output to a
disk file for further processing using the PLTS module to
generate Java code from this HOFL function. A simple
application program has been written using NetBeans IDE Java
programming language to implement the rules T of the PLTS

module to translate the constructed HOFL program into
semantic equivalent Java code in the form of a Java function, is
still under improvement. The generated Java code of the
function requires refinement tasks to be performed through
using four steps of the refinement phase to build a syntactically
correct Java function. The construction of the Java class to
encapsulate the generated Java function as a member operation,
and the construction of the Java application class for object
creation and invoking the member operation are done manually
in the current version of the prototype, which is still under
improvement. The Java program construction system can be
used to generate Java code in all of the cases where the
theorem prover Poiti′n is able to construct HOFL program from
the constructive proofs of the input program specifications.

A. Validation and Correctness

A number of theorem provers are available besides Poiti′n,
e.g., Nuprl, Coq and automatic recursive program synthesis
system [4,5,6], which can be used to verify programs, and can
be used to construct programs from the proofs of the
specifications. Most of the theorem provers and program
synthesis systems use axioms or intermediate lemmas and
generalizations in order to complete the proof successfully.
Poiti′n does not make use of any lemmas, only need
generalization to complete the proofs [2]. Hence the number of
theorems that can be proved by Poiti′n is also small.

To show that the program construction system shown in
Fig. 1 can construct correct Java programs with respect to the

input program specification, the following two properties need
to be ensured:

 The functional program constructed from the input
functional program specification by Poiti′n is correct
and satisfies the input specification.

 The mapping rules T defined for the PLTS module for

translating the constructed functional program to
equivalent Java code are sound.

The proof of the above two properties is beyond the scope
of this paper. The details of the proof of the first property can
be found in [2,3,8,9]. To prove the second property, it is
sufficient to show that each HOFL construct that is dealt with
the rule of T is translated to equivalent Java code. It is beyond

the scope of this paper to give the details of this proof.

B. Examples of Some Program Specifications

Some examples of functional program specifications which
can be used to construct functional programs from their
constructive proof using Poiti′n are shown below [2].

1) ANY y:nat.(eqnum x Zero) \/ (eqnum x (Succ(y)))

2) ANY y:nat.eqnum y (plus x (Succ(Zero)))

3) ANY y:nat.(even x) → (eqnum (double y) x)

4) ANY z:nat.(less x y) → (eqnum(plus x z) y)

5) ANYy:nat.or (eqnum(double y) x)
 (eqnum(Succ(double y)) x)

X. CONCLUSION AND FUTURE WORK

The approach for Java program construction presented in
this paper to solve a particular computational problem uses an
inductive theorem prover called Poiti′n [2,3,8]. A HOFL
program is automatically constructed from the proof of a
functional program specification using Poiti′n, which is
translated to a Java function using a PLTS module in order to
generate a Java program to get the essence of constructing Java
programs from input program specifications. The constructed
HOFL program satisfies the input specification. The generated
Java function requires refinement to obtain a syntactically
correct Java function which can compute the same output as
that of the HOFL program [1]. To execute this function, it is
encapsulated within a user defined Java class as a member
operation, and invoked within a java application class by
creating object of the user defined class. The language of
Poiti′n is untyped, and hence the input specifications are
considered about natural numbers only in the current scope. As
far we know from the online literature, for the first time, the
approach for the automatic construction of a Java program
from the input program specification, i.e. a functional program
specification using the constructive proof of the specification is
presented in this paper based on the work presented in [1]. The
programs are constructed only from the specifications which
are proved correct. So, this system constructs correct programs
with respect to the specifications. Automatic construction of
programs is an interesting area of research in the field of
formal software development.

There are a number of directions for continuing further
research. First, the Java code generation phase can be improved

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

72 | P a g e

www.ijacsa.thesai.org

so that more efficient Java code can be generated, which will
require less refinement tasks. Second, the language of the
theorem prover Poiti′n can be extended to include type systems
[1], and try to handle more difficult specifications for program
construction. Finally, the Java class construction phase can be
automated to develop an executable Java program.

ACKNOWLEDGMENT

The author thanks all of the people who provided valuable
comments to this work.

REFERENCES

[1] Md. Humayun Kabir, Development of a Language Translator for
Automatic Construction of Java Programs from Functional Programs,
Project Report. Faculty of Mathematical and Physical Sciences,
Jahangirnagar University, 2010.

[2] Md. Humayun Kabir, Automatic Inductive Theorem Proving and
Program Construction Methods Using Program Transformation. PhD
Thesis, School of Computing, Dublin City University, Ireland,
September 2007.

[3] G.W. Hamilton and H. Kabir, “Constructing Programs From
Metasystem Transition Proofs”. Proceedings of the First International
Workshop on Metacomputation in Russia, pp. 9-26, 2008.

[4] Seokhyun Han, “Verification of Java Programs in Coq”, 2nd Conference
on Computer Science and Electronic Engineering (CEEC) 2010, IEEE,
pp. 1-8.

[5] F. Loulergue, V. Niculescu, and S. Robillard, “Powerlists in Coq:
Programming and Reasoning”, First International Symposium on

Computing and Networking (CANDAR) 2013, IEEE, pp. 57-65.

[6] A. Armando, A. Smail and I. Green, “Automatic Synthesis of Recursive
Programs: the Proof-planning Paradigm”, 14th IEEE International
Conference on Automated Software Engineering, pp. 2-9, 1997.

[7] Zohar Manna and R. Waldinger, “Synthesis: Dreams  Programs”,
IEEE Transactions on Software Engineering. vol. SE-5, Issue: 4, pp.
294-328, 1979.

[8] H. Kabir and G.W. Hamilton, “Extending Poitin to Handle Explicit
Quantification”, Proceedings of the 6th International Workshop on First-
Order Theorem Proving FTP 2007, pp. 20-34, Liverpool, UK.

[9] G.W. Hamilton, “Distilling Programs for Verification”, Proceedings of
the 6th International Workshop on Compiler Optimization meets
Compiler Verification, ETAPS 2007, pp. 21-35.

[10] Md. Humayun Kabir and G.W. Hamilton, “On Automatic Program
Transformation Algorithms”, Journal of Electronics and Computer
Science, Jahangirnagar University, vol. 10, pp.19-24, June 2009, ISSN
1680-6743.

[11] P. Bertelsen, Compiling SML to Java bytecode, Master's thesis,
Department of Information Technology, Technical University of
Denmark, January 1998.

[12] Mark Tullsen, Compiling Haskell to Java, Research Report, Department
of Computer Science and Engineering, Yale University, New Haven,
May 1996.

[13] E. Zieg, “An ATLAS to C Conversion Utility for VDATS”,
AUTOTESTCON 2008, IEEE, pp. 616-618, Salt Lake City, UT.

[14] H. M Sneed, “Migrating from COBOL to Java”, IEEE International
Conference on Software Maintenance (ICSM) 2010, pp 1-7, Romania.

