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Abstract—This paper presents a numerical model, based on 

transfer matrix method, for modeling the propagation of surface 

acoustic waves at the interface formed by the coupling liquid and 

a continuously inhomogeneous thin layer on a semi-infinite 

substrate. The tow-dimensional spectrum of reflection coefficient 

computed by this model, allows determining the modes which 

propagate at the studied interface, this model treats different 

profile of gradients, and the numerical results obtained show that 

the reflection coefficient is sensitive to the variation of these 

gradients. 
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I. INTRODUCTION 

The functionally graded materials are recently developed 
in Japan for to be used as thermal barrier materials for 
aerospace structures and fusion reactors (high temperature 
applications), and now they are developed for the general use 
in different engineering applications. The FGMs are made 
from different of material constituents, where their properties 
such as elastic constants and density are varying according to 
the spatial coordinates [1]. The profile of gradient in physical 
properties obtained is governed by the procedure of 
fabrications [2][3]. For modeling FGMs, tow approaches are 
possible. The first assumed that the gradient is piecewise 
varying, and the FGM is slicing into finite homogeneous 
layers [4][5]. The second approach assumed that the gradient 
is varying continuously between the tow basic material 
properties [6]. Due to their complex structure, the 
characterization of FGMs poses a great challenge. The surface 
acoustic wave is widely used for characterizing the profile of 
gradient near to their surface [7] because surface acoustic 
wave (SAW) propagation, is strongly dependent to the local 
properties of the materials [8]. The good Knowledge of the 
reflection coefficient is necessary to determine and analyze the 
reflected or transmitted modes propagating at the interface of 
studied structures [9]. 

In inhomogeneous medium, the equation governing the 
propagation of elastic wave, is a system of three second order 
differential equations with no constant coefficients, for the 
displacement field, in which involved spatial derivatives of the 
elasticity coefficients, these type of equations can be solved 
analytically for specific profile of gradients [10][11][12]. 

In the present article, we have used the transfer matrix 
method [13][14] and the theory developed by 
L.M.Brekhovskikh [15] to compute the reflection coefficient 

and the dispersion curves of different numerical profiles of 
gradient simulating an FGM structure. The numerical sample 
considers the transversal cut near to the surface of titanium 
plate after the oxidation process, where the titanium layer 
presents a continuous gradient in its elastic properties crossing 
its depth. The inhomogeneous area is divided into some 
elementary layers with the same thickness. The number of 
elementary layers is selected such that the error rate on the 
velocity of the Rayleigh mode is less than one percent in the 
frequency range. 

II. THEORY AND METHOD 

The geometry of the problem is illustrated in the Fig.1. At 
each layer the elastic properties are constants, and then, the 
continuous gradient is replaced by piecewise constant 
functions. The minimal slicing to ensure reliable results and 
easy calculations are determined. (Fig.2) 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of graded layer on  sem-infinte substrate 

The gradient variations are in the direction (ox3), and then, 
all properties of the material are only depending to the x3 
coordinate. Taken account of the boundary conditions, the 
displacement -stress vector at each tow adjacent layers can be 
written as following [15]: 

 
1

3 3 3( ) ( ) ( )m m mx A x x    (1)  

 Where   and A are, respectively, the displacement-stress 

vector and transfer matrix of the layer m, such as: 

11 33 33 13

m m m m mu u       And  
1

m m mA a a


  , these 

tow matrices are obtained for the same layer m (at its limits, 
upper and lower interface), they contain the same properties of 
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the layer m, but they differ by the term which contains the 

expression  3exp jkx  [15]. 

In the general case, the displacement-stress vector has six 
components and the matrix A is at sixth order [16]. But 
according to the theory developed by L.M.Brekhovskikh, the 
calculation of the reflection coefficient requires only fourth 
components of displacement-stress vector [15]. 

Step by step, using (1), and taken account the boundary 
conditions at the interface separating tow successive layers, it 
is possible to express the displacement-stress vector at the 
interface liquid/first elementary layer (x3=0) as a function of 
that at the interface last elementary layer/ substrate (x3=d): 

 
1 1 1...n n nA A A   (2)  

And then, the transfer matrix of the continuous graded 
layer is as following (n is the number of elementary layers): 

 

1
m

n

A A  (3)  

At the interface liquid/layer the shear component
13

n  is 

null (the liquid is considered perfect, its shear modulus is then 
null), and then from (2) and (3), we can deduced the following 
equation: 

             
1 1 1 1

41 11 42 33 43 33 44 13 13 0nA u A u A A        (4) 

By using (2) and (4), we deduce the following system of 
equations: 

 

1 1 1

33 22 33 23 33 24 13

1 1 1

33 32 33 33 33 34 13

n

n

u M u M M

M u M M

 

  

  

  
 (5)  

With: 

 
4 1

41

i p

pi pi

A A
M A

A


  , p  2, 3 and i  =2, 3, 4.  

At the tow interfaces liquid/first elementary layer and last 
elementary layer/substrate, the normal displacement and stress 
components can be written as following [14]: 

 
33

2

33

(1 )

(1 )

n

n inc

n

n inc

u j R

R

 

   

 

  
  (6) 

Φinc and R (quotient between amplitudes of incident and 
reflected waves) and ρn and αn are respectively, the amplitude 
of incident acoustic wave and reflection coefficient and 
density and wave number in coupling liquid. ω is the angular 
frequency of acoustic wave. θ is the incident angle of acoustic 
wave. θ1 and γ1 are the refraction angles of transmitted waves 
in the substrate. d is the thickness of graded layer. 
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 (7) 

1LC and 
1TC are the velocities of longitudinal and shear 

waves in the substrate. P and W (amplitudes of acoustic waves 

in the substrate) are tow unknowns, and only the rate 
P

W
is 

necessary to determine the reflection coefficient. This quotient 
can be deduced from (4) [15]. 

Finally, R is the reflection coefficient, it is a function of 
incident angle and frequency. By using (4) and (5) and (6) and 
(7), its expression can be written in the following form: 
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  (8) 

The tangent hyperbolic profile of longitudinal and 
transversal velocities is given by the following formula: 

 
3

0 0

tanh (x ) tanh ( )
2 2

(9)

tanh tanh
2 2

d

d d
a a

C C C C
d d

a a

    
      

      
    

         
C0 and Cd are the ultrasonic velocities in the surface of layer 

and in the substrate. a is a given parameter. 

III. NUMERICAL RESULTS AND DISCUSSION 

The ultrasonic velocities in substrate of Titanium alpha-
case and in Titanium layer [18] and the numerical data used in 
simulations are regrouped in the table I. The coupling liquid 
surmounted this structure is the water. 

TABLE I.  INPUT DATA USED IN SIMULATIONS 

A. Stabilization of the velocity of Rayleigh mode 

To determine the number of elementary layers sufficient to 
ensure the accuracy of calculations, the frequency is fixed at 
150 MHz and the input number of elementary layers is 
increasing until the stabilization of velocity of Rayleigh mode.  

  

 VL(m/s) VT(m/s) ρ(kg/m3) Thickness(µm) 

Titanium 

alpha-c 
6660 3553 4460 - 

Titanium 6060 3230 4460 100 

Water 1500 - 1000 - 
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In the Titanium, the wavelength of Rayleigh at the 
frequency of 150 MHz is λR=20µm, which is less than 
thickness of the graded layer (d=100µm). About twelve layers 
the velocity of Rayleigh mode (for linear profile) becomes 
constant and stabilizes at the 3020.30 m/s and the relative 
error is null (Fig. 2). For example, at teen layers the velocity 
of Rayleigh mode is 3010.10 m/s and the error is about 0.34%. 
For a graded aluminum layer on the substrate of silica, for to 
have an error less than 1%, it should about twenty layers 
[4][5][17]. This difference can be explained by the significant 
difference between the properties of the graded layer and 
those of substrate, in contrast to the Titanium alpha and 
Titanium where their properties are very close and the step of 
variation of the profile is weak, then, the continuity is assured 
only for several elementary layers. 

 

 

 

 

 

 
 

 

 

Fig. 2. Variation of the velocity of Rayleigh mode with elementary layers 

B. Reflection coefficient and dispersion curve 

The reflection coefficient in (8) is computed for each 
frequency at each incident angle. The length of vectors which 
contain frequencies and incident angles are respectively 
choosing 401 and 451 elements. The step between tow 
successive frequencies is fixed at Δf=0.375MHz in the 
frequency range of [0 150MHz]. For the incident angles the 
step is Δθ=0.1089 degree for the incident angle range of [0 50 
degree]. The reflection coefficient is then a matrix of 401×451 
elements. We have remarked that the image of the phase of 
this matrix (or its imaginary or its real part) gives the 
dispersion of the generalized Lamb modes reflected by the 
studied structure (fig. 3 and Fig.4). 

We have remarked that the counter of the image in Fig. 3 
can clearly show all generalized modes reflected in the 
coupling liquid (Fig.4), this method gives the dispersion curve 
from reflection coefficient without solving (4). 

The image in Fig.3 shows a series of modes which 
propagate at the interface of studied structure. Tow types of 
acoustic surface modes are present: 

The Rayleigh and pre-Rayleigh modes (sezawa modes): 

The first mode is the Rayleigh mode (Rayleigh wave), its 
velocity decrease, with frequency, from 4020 m/s to reach the 
asymptotic value of 3020.30 m/s at high frequencies. The 
velocity of first Sezawa mode decrease from the 6612 m/s (the 
longitudinal velocity in substrate is 6660 m/s) to the 

asymptotic value of 3342 m/s (the transversal velocity in layer 
is 3230 m/s). Other modes (sezawa modes) vary between 5600 
m/s and the asymptotic velocity of 3342 m/s at high 
frequencies. 

Higher order modes: which decrease rapidly from high 
velocities to the velocity of longitudinal mode in the layer (the 
asymptotic value of 6100 m/s) (Fig.4). 

 

 

    

 
 

 

 

 

Fig. 3. Dispersion image for linear profile-phase of the matrix R 

 

 

 

 

 

 

 

 

 

Fig. 4. Contour of the image in Fig. 3 

At low frequencies (f=0.375MHz, Fig.5) and at the 
incident angle of θ=22 degree, only the Rayleigh mode is 
existing, its acoustic energy is totally reflected by the interface 
liquid/graded layer (R=1). When the frequency increases, 
many modes appear at different incident angles (Fig.6). Their 
velocities can be determined by using the following formula: 

            
sin

liq

c

v
v


           (10) 

vliq is the longitudinal velocity in the coupling liquid and θc 
is the critical incident angle. This angle can be determined 
from the phase of the reflection coefficient, it corresponds to 
the pick figured in the phase of the reflection coefficient 
(Fig.5). 

The phase velocity of the Rayleigh mode and Sezawa 
mode is determined by using (10). At each frequency, the 
critical angles are determined by using an appropriate 
algorithm. The dispersion curve of these tow modes is 
presented in Fig.7.  
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Fig. 5. Modulus and phase of the RC at f=0.375MHz 

 

 

 

 

 

 

 

 

 

Fig. 6. Modulus and phase of the RC at f=74.62 MHz 

 

 

 

 

 

 

 

 

 

Fig. 7. Dispersion curve of  Rayleigh and sezawa modes 

C. effect of the gradient on reflection coefficient 

In the case of the inverse problem i.e. when the reflection 
coefficient and dispersion curve are known and elastic 
properties of the studied structure are unknown, in this case, 
the complete characterization of continuously graded profile is 
very delicate.  

However, the reflection coefficient is the good indicator of 
the profile of heterogeneity of graded materials. 

The modulus of reflection coefficient for different profiles 
is presented in the following figures: 

 

 

 

 

 

 

 

 

 

Fig. 8. Modulus of the reflection coefficient at normal incidence 

 

 

 

 

 

 

 

 

 

Fig. 9. Modulus of the reflection coefficient at θ=11 degree 

 

 

 

 

 

 

 

 

 

Fig. 10. Modulus of the reflection coefficient at θ=14 degree 

From the Fig.8 and Fig.9 and Fig.10, we can observe the 
influence of the profile of heterogeneity on the spectrum of 
reflection coefficient and we note the following remarks: 

 The resonance in the reflection coefficient. 

 The reflection coefficient is sensitive to the shape of 
gradient at certain frequency range and incident angles. 

 At normal incidence, the reflection coefficient is more 
sensitive to the profile of gradient (Fig.8). 

 At low frequencies (0 to 20MHz), the reflection 
coefficient is insensitive to the nature of the gradient. 
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Interpretations: 

 At normal incidence, the acoustic wave propagates in 
the direction of the gradient, the vertical interference 
with the heterogeneity occurs. 

 At low frequencies, the wavelength is important 
compared to the thickness of graded area, the whole of 
acoustic energy is located in the substrate.  

 At high frequencies, the wavelength is weak compared 
to the thickness of the heterogeneous area, the acoustic 
wave is sensitive to the spatial variation of gradient. 

D. Study of Rayleigh and Sezawa modes 

For exciting only these tow first modes, the incident angle 
is fixed at the critical angle of θ=26 degree, which correspond 
to the velocity of 3421 m/s for the both modes (Fig.11). 

 

 

 

 
 

 

 

 

 

Fig. 11. Dispersion curve for Rayleigh and Sezawa  modes-real part of the R 

At this incident angle, the modulus of reflection coefficient 
is equal to one in all frequency range (Fig.5 and Fig.6). For 
evaluating the influence of the profile of the gradient, the 
phase of reflection coefficient gives the best results. 

 

 

 

 
 

 

 

 

 

Fig. 12. Phase of the RC at θ=26 degree for  Rayleigh and sezawa modes 

From the Fig.12, we can observe the influence of the 
nature of the gradient on the phase of reflection coefficient for 
the Sezawa mode. The frequency of existence of this mode 
depends to the shape of gradients. The Rayleigh mode dose 

not influenced by the profile of gradient (fig.12). The results 
are regrouping in table II: 

TABLE II.  FREQUENCY OF EXCITATION OF  THE TOW FIRST MODES 

The second mode (or sezawa mode) is excited at high 
frequency (λ<d) that’s why the phase of reflection coefficient 
of this mode is more sensitive to the profile of gradients (table 
II). 

At the incident angle of θ=26 degree, the wavelength of 
the Rayleigh mode is important than thickness of graded layer, 
the acoustic wave is not affected by the heterogeneous area 
(λ>d) (Fig12), (table.II). 

When the incident angle increases, the Rayleigh mode 
(first mode) is excited at high frequencies and becomes 
sensitive to the profiles (λ<d) (Fig.13) (Table.III ). 

 

 

 

 

 

 

 

 

 

Fig. 13. Phase of the RC for  Rayleigh mode  at θ=30 degree 

TABLE III.  FREQUENCY OF ECXITATION OF  RAYLEIGH MODE 

IV. CONCLUSION 

This numerical study, based on transfer matrix method, of 
the propagation of acoustic wave in continuously graded thin 
layer on semi-infinite substrate, aims to understand the 
behavior of acoustic wave at the interface of such structure, in 
order to discover an efficient tool for characterizing the 
gradient in elastic properties present near to the surface of 
these structures.  

 gaussian pr. linear pr. tanh pr. 

Rayleigh mode  

f(MHz) 15.375 16.125 16.50 

λ(µm) 222.55 212.20 207.38 

Sezawa mode 

f(MHz) 91.125 132.75 109.5 

λ(µm) 37.550 27.776 31.249 

 gaussian pr. linear pr. tanh. pr. 

Rayleigh mode 

f(MHz) 49.875 121.500 48.375 

λ(µm) 60.557 24.858 62.435 
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We used the model described in this article to compute the 
tow-dimensional spectrum of the reflection coefficient which 
is a good indicator of the heterogeneity of materials. At 
normal incidence and at high frequencies, the reflection 
coefficient is more sensitive to the gradient. For the Rayleigh 
and Sezawa modes, the phase of the reflection coefficient is 
best for characterizing the profile of heterogeneity at high 
frequencies. The frequency of excitation of these modes is 
influenced by the shape of gradient. 

The gradient has little influence on the velocity of 
Rayleigh and Sezawa modes and this due to the nature of 
propagation of these modes, which propagate perpendicularly 
to direction of the heterogeneity, the vertical decreasing of the 
displacement field is very rapid, and then, the vertical 
interferences are very weak. 

The choice of the incident angle and the frequency is 
mandatory for ensuring best characterization of FGMs. 
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