
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

12 | P a g e

www.ijacsa.thesai.org

A Generic Adaptive Multi-Gene-Set Genetic

Algorithm (AMGA)

Adi A. Maaita, Jamal Zraqou, Fadi Hamad and Hamza A. Al-Sewadi

Faculty of Information Technology

Isra University

Amman, Jordan

Abstract—Genetic algorithms have been used extensively in

solving complex solution-space search problems. However,

certain problems can include multiple sub-problems in which

multiple searches through distinct solution-spaces are required

before the final solution combining all the sub-solutions is found.

This paper presents a generic design of genetic algorithms which

can be used for solving complex solution-space search problems

that involve multiple sub-solutions. Such problems are very

difficult to solve using basic genetic algorithm designs that utilize

a single gene-set per chromosome. The suggested algorithm

presents a generic solution which utilizes both multi-gene-set

chromosomes, and an adaptive gene mutation rate scheme. The

results presented from experiments done using an automatic

graphical user interface generation case study, show that the

suggested algorithm is capable of producing successful solutions

where the common single-gene-set design fails.

Keywords—Genetic algorithm; Multi-gene-set; Single-gene-set;

Artificial Intelligence; Generic algorithm; Generic architecture

I. INTRODUCTION

Nature inspired algorithms have been presenting
astonishing results in solving problems that are not structured
in nature. Genetic algorithms (GAs) are a category of nature
inspired algorithms that have been used extensively in solving
problems requiring an advanced form of heuristic search
throughout a solution space, besides numerical and
combinatorial optimization problems [1].

GAs are inspired from the natural processes of sexual
reproduction and natural selection [1, 2]. The complete
characteristics of a living being is miraculously encoded within
its chromosomes, which have those life codes stored as
Deoxyribonucleic Acid (DNA) molecules [3]. These huge
molecules contain the life codes as characteristic encoding
genes comprised of combinations of the primary nucleobases
which are cytosine, guanine, adenine, and thymine [4].

During the process of sexual reproduction, each of the
parents contributes genetic characteristics through providing
half of their child’s chromosomes. These chromosomes then
undergo a process called crossover which causes parent
chromosomes to break and then recombine into chromosomes
with a gene set contributed by both parents. Hence, this child
combines characteristics from both parents [3, 4]. The
chromosomes and the genes they hold are referred to as the
Genotype [5]. As for the characteristics that result from those
genes, they are referred to as the Phenotype [6]. Moreover,
sometimes genetic mutations occur. Such genetic mutations are

changes in the original sequence of genes and can lead to
evolution, health problems, or may have no effect [7].

After the introduction to GAs in section 1, a brief account
of previous work is listed in section 2. The general structure of
the GA is described in section 3. The proposed Aadaptive
Multi-gene-set Genetic Algorithm (AMGA) is outlined in
section 4 then section 5 details the architecture of this
algorithm. Implementation and results are included in section 6
and finally section 7 concludes the paper.

II. PREVIOUS WORK

GAs found a wide area of applications for which to
generate useful solutions. These applications did not spare any
direction such as physics, mathematics, chemistry, medical,
economics, computer, bioinformatics, pharmacology, etc. In
the remainder of this section, a brief literature review of
applications utilizing GAs for obtaining solutions is presented.

Shimamoto et al. [8] utilized a GA for flexible real-time
dynamic routing control for traffic changes in broadband
networks. It generates the exact solution for finding a routing
arrangement that keeps the traffic loss-rate below a target
value.

Lienig [9] proposed a novel parallel GA approach for
performance-driven VLSI routing running on a distributed
network and optimizes physical constraints such as nets size,
crosstalk and delay.

Chun et al. [10], examined heuristic algorithms as the
search tools for diverse optimization problems. The examined
algorithms included the Immune algorithm (IA), the GA and
the evolution strategy (ES).

Chang and Ramakrishna [11] examined GAs for the
shortest path routing solution of the traveling salesman
problem TSP, proving that the GA is one of the best heuristic
algorithms to solve this problem. Variable-length
chromosomes and their genes were utilized for encoding the
problem, and partial chromosomes crossover with curing of all
the infeasible chromosomes by a simple repair function were
used for creating the diversity within the population.

Juang [12] proposed a recurrent fuzzy network for dynamic
systems processing by using a neural network and a GA for
optimizing the neural network. The fuzzy network was called
TSK. It implements a series of recurrent fuzzy if-then rules
with TSK type consequent parts with supervised learning. It
proved superiority when applied to dynamic system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

13 | P a g e

www.ijacsa.thesai.org

Ozpineci et al. [13] proposed Harmonic optimization of
multilevel converters using a GA. Optimum switching angles
for cascaded multilevel inverters was achieved for eliminating
some higher order harmonics while maintaining the required
fundamental voltage.

Chowdhury et al. [14] designed an Encryption and
Decryption algorithm for communication networks using a GA
to robustly speed up and secure the total cryptography process.
One point crossover and block cipher techniques were
implemented for the simplification of the GA cryptosystem
technique.

Mahdad et al. [15] presented a combined GA and fuzzy
logic rules to enhance the optimal power flow with
consideration of multi shunt flexible AC transmission systems.
The presented method was effective in giving a near optimal
solution and remarkably reduced the computation time.

Malhotra et al. [16] proposed a GA as an optimization tool
for heuristic search applied to optimize process controllers for
using natural operators. Their work explores the well-
established methodologies of the literature to realize the
workability and applicability of GAs for process control
applications. GAs are applied to direct torque control of
induction motor drive, speed control of gas turbines, and speed
control of DC servo motors.

Kabeer et al. [17] used Boosted Feature Subset Selection
(BFSS) as a preprocessing step to provide a gene subset that is
fed to a GA, thus reducing the feature subset to smaller
numbers and helping to generate a better optimal subset of
genes. They claim that their hybrid approach shows better
results compared to other well-known approaches when
applied to leukemia, colon and lung cancer benchmarked
datasets.

Ahmed [18] developed a simple GA using sequential
constructive crossover to obtain heuristic solutions to the
Bottleneck traveling salesman problem. He proposed a hybrid
GA that incorporates 2-optimization search, another proposed
local search and immigration to the simple GA for obtaining
better solutions.

Umbarkar et al. [19] proposed Dual Population GA for
solving Constrained Optimization Problems. It is based on
maximum constraints satisfaction applied as a constraints
handling technique and a Dual Population GA used as a meta-
heuristic. It achieved close to optimum rather than exact
optimum solution as compared with the Ant Colony algorithm,
the Bee Colony algorithm, the Differential Evolution algorithm
and the GA that have been used for solving the same problem
set.

Moin et al. [20] proposed a hybrid GA with multi parents
crossover for job shop scheduling problem (JSSP). The search
space is reduced by generating a full-active schedule that
satisfies precedence constraints, a neighborhood search is
applied to exploit the search space for better solutions and to
enhance the GA. Simulation suggests sustainability of this
hybrid GA in solving JSSP.

Sankaran et al. [21] proposed a GA based parallel
optimization technique aiming to improve the performance of

batch schedule of two massively parallel application codes; a
turbulent combustion flow solver (S3D) and a molecular
dynamics code (LAMMPS). Experiments have shown a
significant deviation from ideal weak scaling and variability in
performance. This technique showed significant improvement
in solving speed, besides improvement in variability and
scalability.

The work in this paper suggests the use of a multi-gene-set
chromosome GA with an adaptive gene mutation rate scheme,
aiming to deal with multiple sub-problems in order to find a
viable solution for complex solution-space problem. Such
problems are usually very difficult to solve using the traditional
single-gene-set chromosomes GA designs.

III. THE GENERAL STRUCTURE OF GENETIC ALGORITHMS

GAs were inspired from nature to solve problems to which
we have no structured solutions that can be coded into
algorithms. Examples of such problems are building and
refining a set of production rules [22], then creating and
adapting computer programs [23].

Fig. 1. A chromosome with multi-gene-sets

These kinds of problems require gradually evolved solutions
rather than simply calculated ones. This is where GAs show
their true power. They are evolutionary algorithms that use a
number of initial solutions and attempt to evolve them in a way
that eventually leads to the sought solution.

In order to perform an evolutionary search into the solution
space, a GA requires a number of data structures, some specific
rules and certain procedures. The main data structure of a GA
is the cchromosome. The chromosome represents the genotype
of a solution. This genotype is usually encoded as a string of
0’s and 1’s, however, it can be encoded using other types of
data as well [1].

Another important part of a GA’s structure is the algorithm
for calculating a chromosome’s fitness value. This algorithm is
called the fitness function and it is responsible for providing a
measure of a chromosome’s quality as a solution to the
problem at hand. It is important to note that a fitness function is
problem specific. That means we need to create a new fitness
calculating algorithm for each different problem. A fitness
value is usually a measure of how close a certain solution is to
the required solution [1, 2].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

14 | P a g e

www.ijacsa.thesai.org

IV. THE PROPOSED ADAPTIVE MULTI-GENE-SET GENETIC

ALGORITHM

The problem under consideration in this research considers
a complex system with multiple objectives. Hence, an
algorithm is proposed that is capable of looking into a complex
solution space. It suggests an Adaptive Multi-gene-set Genetic
Algorithm that has multiple heterogeneous solution fitness
aspects. In other words, the problem requires searching for a
complex solution that requires a genotype that contains
multiple types of genes. The main challenge with such a
genotype would lie in the complex crossover process. We
simply cannot exchange gene data between genes containing
different data semantics even if the data types match.

To visualize the multiple gene sets for a certain
chromosome, a class diagram is shown in fig 4. Furthermore,
neighboring multi-gene sets chromosomes would have some
influence on each other through genetic operations such as
crossover and mutations.

The crossover process is meant to create a new set of
solutions that mix aspects of existing solutions. For that reason,
we need a proper encoding of the genotype that preserves the
purpose of crossover. The proposed algorithm suggests the use
of multiple gene sets within a single chromosome. This would
enable a complex problem to be divided into multiple smaller
sub-problems which will be handled separately, and then those
sub-solutions are gathered in order to create a complete final
solution. Fig 2 illustrates a sketch for the expected crossover
process amongst multi-gene set chromosomes.

Fig. 2. Crossover amongst multi-gene-set chromosomes

Each sub-problem would require its own crossover process
which is capable of generating offspring sub-solutions with
data that are semantically correct. The fitness of each sub-
solution needs to be calculated in order to determine whether
that part of the complete solution needs further search for the
current generation of the algorithm execution or not. This
means that a sub-solution that may seem optimal for the sub-
problem might not be suitable for the complete solution.
Moreover, this would require searching for a new sub-solution
during the coming generations until a suitable complete
solution is found.

Such an architecture of the GA also allows for multi-
threading to be efficiently used. This is made possible by
separating the sub-solution search operations into distinct
threads that run simultaneously and independently in parallel.
This enables very efficient implementations of the algorithm to
be created when compared to the traditional GA architecture.

The fitness of the complete solution needs to be calculated
in each generation to determine how each of the sub-solutions
search algorithms should operate .Fig 3 clarifies the
contribution of Gene-set fitness to the calculation of
Chromosomes fitness.

Fig. 3. Gene-set fitness values contribute towards the total chromosome

fitness

A. Adaptive mutation rates

When the search results seem to converge towards
unsuccessful solutions then it is time to add new genetic
material to the mating pool. This is where mutation comes into
play. Mutation is a process that changes the data of the
genotype by creating new values that are usually randomly
generated within predefined constraints. Mutation rate is
usually predefined prior to the execution of the GA. This limits
the behavior of the GA to a semi-static form when it comes to
steering the search process towards a solution. Hence, the GA
would not be able to increase the rate of introduction of new
genetic material when the search converges towards
unsuccessful solutions in order to escape that convergence. The
GA will also be unable to reduce that rate of new genetic
material introduction when the search seems to converge
towards successful solutions. This reduction is very helpful
when there is a need to concentrate the search within the
existing genetic material that represents successfully evolving
solutions.

In order to succeed, a GA needs to be fine-tuned by setting
a proper mutation rate through a process of trial and error. If an
unsuitable mutation rate is used, the search may never be able
to converge successfully towards a solution. A higher than
needed mutation rate would cause the algorithm to search the
solution space blindly. A lower than needed mutation rate may
lead the algorithm to converge towards unsuccessful solutions.
This would be the result of existing genes representing the
current mating pool of solutions being overly dominant and if
those solutions have low fitness values then the new generated
solutions are most likely to have a low fitness values as well.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

15 | P a g e

www.ijacsa.thesai.org

On the other hand, an adaptive mutation rate would steer
the search conducted by the GA towards successful solutions
more efficiently than using a static rate. In this adaptive
scheme, the mutation rate is adapted for each sub-solution
according to statistics showing convergence towards successful
solutions, or convergence towards unsuccessful solutions. Each
mutation rate is re-evaluated for each generation. According to
that evaluation, the mutation rate is increased or decreased

according to equation (1), where mrnew, mrold, and rc are the

new mutation rate, old mutation rate and convergence rate,
respectively.

It is important to note that the rate of convergence is
represented as negative values when the convergence is
towards less successful solutions and it is positive when the
convergence is towards more successful solutions.

V. THE ARCHITECTURE OF THE ADAPTIVE MULTI-GENE-

SET GENETIC ALGORITHM

The class diagram representing the architecture of a
traditional single-gene-set chromosome GA is shown in fig 4.
The GA consists of a population of chromosomes that
accommodate genes and data structures representing gene-data.

The proposed adaptive multi-gene-set chromosome GA is
completely different from the traditional generic model as
clarified in the class diagram shown in fig 5. The algorithm is
designed to be generic in nature as it requires minimal
modifications in order to be used for solving any evolutionary
search problem. For example, an interested developer using
this architecture would only need to create new classes
implementing the interfaces IGene and IGeneData in order to
solve any type of problem requiring chromosomes with
multiple gene sets.

Fig. 4. Class diagram for the single-gene-set GA architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

16 | P a g e

www.ijacsa.thesai.org

Fig. 5. Class diagram of the multi-gene-set GA architecture

VI. IMPLEMENTATION AND RESULTS

To demonstrate the effectiveness of the proposed AMGA,
an experiment is conducted to implement it in the process of
graphical user interface generation. The results are then
compared to those obtained when conducting the same
experiment using a static mutation rate single-gene-set GA.

The problem of automated graphical user interface
generation using GAs was discussed in [24-26].

The genetic material of the graphical user interface
generation problem consists of two types of gene-sets per
chromosome. The first gene-set contains information on the
containers used to host controls on a form. The second gene-set
contains information on the controls that are used to create the
graphical user interface.

The single-gene-set GA relies on a single gene-set to
represent both the controls and the containers. In order to do
that, the containers were treated as controls, and each regular
control contained an attribute that stores a serial number
representing its parent control. Each control was represented as
a gene containing the following data:

1) X-axis location in pixels.

2) Y-axis location in pixels.

3) Width in pixels

4) Height in pixels.

5) Margin in pixels.

6) Padding in pixels.

7) Parent container serial number.

8) Dock location on the form (top, bottom, left, right, full,

none)
Using that gene data, the algorithm needs to search for

candidate formations of the supplied controls in order to
accommodate the following criteria:

1) Controls of the same type should be located within the

same container.

2) Controls should be horizontally stacked if the parent

container is vertically oriented and should be vertically

stacked if the parent container is horizontally oriented.

3) Controls should be left aligned if they exist in a

vertically oriented container and should be center aligned if

they exist in a horizontally aligned container.

4) Controls of the same type within the same container

should have the same height value in pixels.

The multi-gene-set GA relies on two separate gene sets for
representing the containers and the controls respectively. This
requires creating two gene types. The first type represents the
containers and it contains the following data:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

17 | P a g e

www.ijacsa.thesai.org

1) Container serial number.

2) Container type.
While the exchangeable data include:

1) Container dock location on the form (top, bottom, left,

right, full, none).

2) Container width.

3) Container height.
As for the second type, it represents the controls and it

contains the following data:

1) Control name.

2) Control type.
While the exchangeable data include:

1) X-axis location in pixels.

2) Y-axis location in pixels.

3) Width in pixels.

4) Height in pixels.

5) Margin in pixels.

6) Padding in pixels.

7) Parent container serial number.
The obtained best fitness values for the case study when

implementing the single-gene-set algorithm running for a
maximum number of 1000 generations and having 5 containers
with different numbers of controls (e.g. 10, 20 & 30), are
summarized in Tables I. While the obtained best fitness values
for implementing the AMGA running for the same parameters,
are summarized in table II.

TABLE I. RUNNING THE SINGLE-GENE-SET GA

Single-gene-set Algorithm

Max No. of generations = 1000

No. of Containers
No. of

Controls

Generation of

termination

Best

fitness

value

5 10 1000 71.70%

5 20 1000 72.60%

5 30 1000 61.90%

TABLE II. RUNNING THE MULTI-GENE-SET GA

Multi-gene-set Algorithm

Max No. of generations = 1000

No. of Containers
No. of

Controls

Generation of

termination

Best

fitness

value

5 10 81 100%

5 20 556 100%

5 30 1000 93.70%

Comparison of the two tables indicates that the AMGA was
able to achieve successful solutions where the single-gene-set
GA failed for the same number of generations.

The fitness values were calculated for both, AMGA
algorithm and single-gene-set GA as a function of the number
of generations for different numbers of controls, (namely 10,
20 and 30). The results are plotted in fig 6 - 8.

Fig. 6. Performance of the multi-gene-set algorithm when compared to its

single-gene-set counterpart for the automated GUI generation problem with 5

containers and 10 controls

Fig. 7. Performance of the multi-gene-set algorithm when compared to its

single-gene-set counterpart for the automated GUI generation problem with 5

containers and 20 controls

It is noticed that in the case of the multi-gene-set GA,
convergence towards the best fitness (100% fitness) is
achieved after 81 generations for 10 controls. But as the
number of controls increases, the convergence gets slower as
the available space on the canvas or form is too little to host all
the required controls according to the required conditions, or it
would even be impossible to place all the required controls on
the canvas as the totality of the controls’ areas

Fig. 8. Performance of the multi-gene-set algorithm when compared to its

single-gene-set counterpart for the automated GUI generation problem with 5

containers and 30 controls

0.00%

50.00%

100.00%

0 500 1000

F
it

n
es

s

Generations

Experiment 1

Multi-gene-set Single-gene-set

0.00%

50.00%

100.00%

0 500 1000

F
it

n
es

s

Generations

Experiment 2

Multi-gene-set Single-gene-set

0%

50%

100%

0 500 1000

F
it

n
es

s

Generations

Experiment 3

Multi-gene-set Single-gene-set

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

18 | P a g e

www.ijacsa.thesai.org

would be larger than the actual available space on the canvas.
On the other hand, it can noticed that no convergence was
achieved at all in the case of the single-gene-set GA.

VII. CONCLUSIONS

The results presented in this paper show that the AMGA is
capable of converging towards solutions more efficiently than
its single-gene-set counterpart. The results presented also show
that the algorithm is also capable of recovering from
divergence from solutions adaptively by increasing the rate of
mutation when that is required. It is also capable of reducing
the rate of mutation when the algorithm begins to converge
towards successful solutions using the existing genetic
material.

Future work relating to that presented in this paper would
involve using meta-heuristic optimization techniques as part of
the generic architecture of the AMGA. This would allow for
more complex types of problems to be solved by avoiding the
problem of the algorithm getting stuck on a local maxima.
Such optimizations would also allow for better performance for
the AMGA if implemented correctly.

REFERENCES

[1] Mitchell M., "An Introduction to Genetic Algorithms", 1998: MIT Press.
209.

[2] Luger G.F., "Artificial Intelligence: Structures and Strategies for
Complex Problem Solving", 2008: Addison-Wesley Publishing
Company. 784.

[3] Brown T., "Introduction to Genetics: A Molecular Approach", 1st Ed.
2011: Garland Science.

[4] Brooker, R.J., "Genetics: Analysis and Principles", 3rd Ed. 2008:
McGraw-Hill Higher Education.

[5] Sahni N. , Song Yi, Q. Zhong, N. Jailkhani, B. Charloteaux, M. E.
Cusick and M. Vidal, "Edgotype: a fundamental link between genotype
and phenotype", Elsevier, Current Opinion in Genetics & Development
2013, Vol. 23, pp. 649–657

[6] Cooper D. N., Michael Krawczak, Constantin Polychronakos, Chris
Tyler-Smith, and Hildegard Kehrer-Sawatzki, "Where genotype is not
predictive of phenotype: towards an understanding of the molecular
basis of reduced penetrance in human inherited disease", Hum Genet
2013, Vol. 132, PP1077–1130

[7] “The New Genetics, National Institute of General Medical Sciences
National Institutes of Health U.S. Department of Health and Human
Services”, NIH Publication No.10¬662Revised April2010,
http://www.nigms.nih.gov.

[8] Shimamoto, N., Hiramatsu, A. and Yamasaki, K. (2000). A dynamic
routing control based on a genetic algorithm, IEEE International
Conference on Neural Networks, 1993, Vol.2, pp. 1123-1128.

[9] Lienig, J. (1997). A parallel genetic algorithm for performance-driven
VLSI routing, IEEE Transactions on Evolutionary Computation, Vol. 1,
No. 1, pp. 29-39.

[10] Chun J. S., Hyun-Kyo Jung and Song-Yop Hahn, “A study on
comparison of optimization performances between immune algorithm
and other heuristic algorithms”, IEEE Transactions on Magnetics, Vol.
34, No 5, 1998, pp. 2972-2975.

[11] Chang W. A. and Ramakrishna, R.S., “A genetic algorithm for shortest
path routing problem and thesizing of populations”, IEEE Transactions
on Evolutionary Computation, Vol. 6, No. 6, 2002, pp. 566-579.

[12] Juang C. F., “A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms”,IEEE
Transactions on Fuzzy Systems, Vol. 10, No. 2, 2002, pp. 155-170.

[13] Ozpineci B., L. M. Tolbert, and J. N. Chiasson, “Harmonic optimization
of multilevel converters usinggenetic algorithms”, IEEE 35th Annual
Power Electronics Specialists Conference, vol.5, 2004, pp. 3911-3916.

[14] Chowdhury S., S. K. Das, and A. Das, “Application of Genetic
Algorithm in Communication Network Security”, International Journal
of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol. 3, No. 1, January
2015.

[15] Mahdad B., T. Bouktir and K. Srairi, “Optimal power Flow of the
Algerian Network using Genetic Algorithms/Fuzzy Rules”, Power and
Energy Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, 2008, pp. 1-8.

[16] Malhotra R., N. Singh & Y. Singh, “ Genetic Algorithms: Concepts,
Design for Optimization of Process Controllers”, Computer and
Information Science Vol. 4, No. 2; March 2011, www.ccsenet.org/cis

[17] Kabeer S. J., M. T.Moin, M. A. Rahman, A. Mottalib, M. H. Kabir,
“BFSSGA: Enhancing the Performance of Genetic Algorithm using
Boosted Filtering Approach”, IJCA Journal, Volume 51 - Number 19.
2012.

[18] Ahmad, Z. H., “A Hybrid Genetic Algorithm for the Bottleneck
Traveling Salesman Problem”, ACM Transactions on Embedded
Computing Systems, Vol. 12, No. 1, Article 9, Publication date: January
2013.

[19] A. J. Umbarkar A. J., M. S. Joshi, and P. D. Sheth, “Dual Population
Genetic Algorithm for Solving Constrained Optimization Problems”,
International Journal of Intelligent Systems and Applications(IJISA,
IJISA Vol. 7, No. 2, January 2015, PP.34-40, DOI:
10.5815/ijisa.2015.02.05

[20] Moin N. H., O. C. Sin, and M. Omar, “Hybrid Genetic Algorithm with
Multiparents Crossover for Job Shop Scheduling Problems,
Mathematical Problems in Engineering Volume 2015 (2015), Article ID
210680, 12 pages.http://dx.doi.org/10.1155/2015/210680

[21] Sankaran R., J. Angel and W. M. Brown, “Genetic algorithm based task
reordering to improve the performance of batch scheduled massively
parallel scientific applications, published on line on 8 APR 2015, DOI:
10.1002/cpe.345, to appear in Concurrency and Computation, Practice
and Experience.

[22] Holland, J. H., "Escaping brittleness: the possibilities of general-purpose
learning algorithms applied to parallel rule-based systems, in
Computation & intelligence", F.L. George, Editor. 1995, American
Association for Artificial Intelligence. pp. 275-304.

[23] Koza, J. R., "Genetic programming: on the programming of computers
by means of natural selection", 1992: MIT Press. 680.

[24] G., O.A.M.N.V., "Interactive Design Of Web Sites With A Genetic
Algorithm", 2002: Lisbon, Portugal. pp. 355 - 362.

[25] Quiroz, J.C.R.L., S.J. ; Shankar, A. ; Dascalu, S.M., "Interactive
Genetic Algorithms for User Interface Design", 2007, IEEE Singapore.
pp. 1366 - 1373.

[26] Plessis M. Cd. and L. Barnard, "Incorporating layout managers into an
evolutionary programming algorithm to design graphical user
interfaces", Proceedings of the 2008 annual research conference of the
South African Institute of Computer Scientists and Information
Technologists on IT research in developing countries: riding the wave of
technology. 2008, ACM: Wilderness, South Africa. pp. 41-47

