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Abstract—Genetic algorithms have been used extensively in 

solving complex solution-space search problems. However, 

certain problems can include multiple sub-problems in which 

multiple searches through distinct solution-spaces are required 

before the final solution combining all the sub-solutions is found. 

This paper presents a generic design of genetic algorithms which 

can be used for solving complex solution-space search problems 

that involve multiple sub-solutions. Such problems are very 

difficult to solve using basic genetic algorithm designs that utilize 

a single gene-set per chromosome. The suggested algorithm 

presents a generic solution which utilizes both multi-gene-set 

chromosomes, and an adaptive gene mutation rate scheme. The 

results presented from experiments done using an automatic 

graphical user interface generation case study, show that the 

suggested algorithm is capable of producing successful solutions 

where the common single-gene-set design fails. 
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I. INTRODUCTION 

Nature inspired algorithms have been presenting 
astonishing results in solving problems that are not structured 
in nature. Genetic algorithms (GAs) are a category of nature 
inspired algorithms that have been used extensively in solving 
problems requiring an advanced form of heuristic search 
throughout a solution space, besides numerical and 
combinatorial optimization problems [1]. 

GAs are inspired from the natural processes of sexual 
reproduction and natural selection [1, 2]. The complete 
characteristics of a living being is miraculously encoded within 
its chromosomes, which have those life codes stored as 
Deoxyribonucleic Acid (DNA) molecules [3]. These huge 
molecules contain the life codes as characteristic encoding 
genes comprised of combinations of the primary nucleobases 
which are cytosine, guanine, adenine, and thymine [4]. 

During the process of sexual reproduction, each of the 
parents contributes genetic characteristics through providing 
half of their child’s chromosomes. These chromosomes then 
undergo a process called crossover which causes parent 
chromosomes to break and then recombine into chromosomes 
with a gene set contributed by both parents. Hence, this child 
combines characteristics from both parents [3, 4]. The 
chromosomes and the genes they hold are referred to as the 
Genotype [5]. As for the characteristics that result from those 
genes, they are referred to as the Phenotype [6]. Moreover, 
sometimes genetic mutations occur. Such genetic mutations are 

changes in the original sequence of genes and can lead to 
evolution, health problems, or may have no effect [7]. 

After the introduction to GAs in section 1, a brief account 
of previous work is listed in section 2. The general structure of 
the GA is described in section 3. The proposed Aadaptive 
Multi-gene-set Genetic Algorithm (AMGA) is outlined in 
section 4 then section 5 details the architecture of this 
algorithm. Implementation and results are included in section 6 
and finally section 7 concludes the paper. 

II. PREVIOUS WORK 

GAs found a wide area of applications for which to 
generate useful solutions. These applications did not spare any 
direction such as physics, mathematics, chemistry, medical, 
economics, computer, bioinformatics, pharmacology, etc. In 
the remainder of this section, a brief literature review of 
applications utilizing GAs for obtaining solutions is presented. 

Shimamoto et al. [8] utilized a GA for flexible real-time 
dynamic routing control for traffic changes in broadband 
networks. It generates the exact solution for finding a routing 
arrangement that keeps the traffic loss-rate below a target 
value. 

Lienig [9] proposed a novel parallel GA approach for 
performance-driven VLSI routing running on a distributed 
network and optimizes physical constraints such as nets size, 
crosstalk and delay. 

Chun et al. [10], examined heuristic algorithms as the 
search tools for diverse optimization problems. The examined 
algorithms included the Immune algorithm (IA), the GA and 
the evolution strategy (ES). 

Chang and Ramakrishna [11] examined GAs for the 
shortest path routing solution of the traveling salesman 
problem TSP, proving that the GA is one of the best heuristic 
algorithms to solve this problem. Variable-length 
chromosomes and their genes were utilized for encoding the 
problem, and partial chromosomes crossover with curing of all 
the infeasible chromosomes by a simple repair function were 
used for creating the diversity within the population. 

Juang [12] proposed a recurrent fuzzy network for dynamic 
systems processing by using a neural network and a GA for 
optimizing the neural network. The fuzzy network was called 
TSK. It implements a series of recurrent fuzzy if-then rules 
with TSK type consequent parts with supervised learning. It 
proved superiority when applied to dynamic system. 
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Ozpineci et al. [13] proposed Harmonic optimization of 
multilevel converters using a GA. Optimum switching angles 
for cascaded multilevel inverters was achieved for eliminating 
some higher order harmonics while maintaining the required 
fundamental voltage. 

Chowdhury et al. [14] designed an Encryption and 
Decryption algorithm for communication networks using a GA 
to robustly speed up and secure the total cryptography process. 
One point crossover and block cipher techniques were 
implemented for the simplification of the GA cryptosystem 
technique. 

Mahdad et al. [15] presented a combined GA and fuzzy 
logic rules to enhance the optimal power flow with 
consideration of multi shunt flexible AC transmission systems. 
The presented method was effective in giving a near optimal 
solution and remarkably reduced the computation time. 

Malhotra et al. [16] proposed a GA as an optimization tool 
for heuristic search applied to optimize process controllers for 
using natural operators. Their work explores the well-
established methodologies of the literature to realize the 
workability and applicability of GAs for process control 
applications. GAs are applied to direct torque control of 
induction motor drive, speed control of gas turbines, and speed 
control of DC servo motors. 

Kabeer et al. [17] used Boosted Feature Subset Selection 
(BFSS) as a preprocessing step to provide a gene subset that is 
fed to a GA, thus reducing the feature subset to smaller 
numbers and helping to generate a better optimal subset of 
genes. They claim that their hybrid approach shows better 
results compared to other well-known approaches when 
applied to leukemia, colon and lung cancer benchmarked 
datasets. 

Ahmed [18] developed a simple GA using sequential 
constructive crossover to obtain heuristic solutions to the 
Bottleneck traveling salesman problem. He proposed a hybrid 
GA that incorporates 2-optimization search, another proposed 
local search and immigration to the simple GA for obtaining 
better solutions. 

Umbarkar et al. [19] proposed Dual Population GA for 
solving Constrained Optimization Problems. It is based on 
maximum constraints satisfaction applied as a constraints 
handling technique and a Dual Population GA used as a meta-
heuristic. It achieved close to optimum rather than exact 
optimum solution as compared with the Ant Colony algorithm, 
the Bee Colony algorithm, the Differential Evolution algorithm 
and the GA that have been used for solving the same problem 
set. 

Moin et al. [20] proposed a hybrid GA with multi parents 
crossover for job shop scheduling problem (JSSP). The search 
space is reduced by generating a full-active schedule that 
satisfies precedence constraints, a neighborhood search is 
applied to exploit the search space for better solutions and to 
enhance the GA. Simulation suggests sustainability of this 
hybrid GA in solving JSSP. 

Sankaran et al. [21] proposed a GA based parallel 
optimization technique aiming to improve the performance of 

batch schedule of two massively parallel application codes; a 
turbulent combustion flow solver (S3D) and a molecular 
dynamics code (LAMMPS). Experiments have shown a 
significant deviation from ideal weak scaling and variability in 
performance. This technique showed significant improvement 
in solving speed, besides improvement in variability and 
scalability. 

The work in this paper suggests the use of a multi-gene-set 
chromosome GA with an adaptive gene mutation rate scheme,  
aiming to deal with multiple sub-problems in order to find a 
viable solution for complex solution-space problem. Such 
problems are usually very difficult to solve using the traditional 
single-gene-set chromosomes GA designs. 

III. THE GENERAL STRUCTURE OF GENETIC ALGORITHMS 

GAs were inspired from nature to solve problems to which 
we have no structured solutions that can be coded into 
algorithms. Examples of such problems are building and 
refining a set of production rules [22], then creating and 
adapting computer programs [23]. 

 
Fig. 1. A chromosome with multi-gene-sets 

These kinds of problems require gradually evolved solutions 
rather than simply calculated ones. This is where GAs show 
their true power. They are evolutionary algorithms that use a 
number of initial solutions and attempt to evolve them in a way 
that eventually leads to the sought solution. 

In order to perform an evolutionary search into the solution 
space, a GA requires a number of data structures, some specific 
rules and certain procedures. The main data structure of a GA 
is the cchromosome. The chromosome represents the genotype 
of a solution. This genotype is usually encoded as a string of 
0’s and 1’s, however, it can be encoded using other types of 
data as well [1]. 

Another important part of a GA’s structure is the algorithm 
for calculating a chromosome’s fitness value. This algorithm is 
called the fitness function and it is responsible for providing a 
measure of a chromosome’s quality as a solution to the 
problem at hand. It is important to note that a fitness function is 
problem specific. That means we need to create a new fitness 
calculating algorithm for each different problem. A fitness 
value is usually a measure of how close a certain solution is to 
the required solution [1, 2]. 
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IV. THE PROPOSED ADAPTIVE MULTI-GENE-SET GENETIC 

ALGORITHM 

The problem under consideration in this research considers 
a complex system with multiple objectives. Hence, an 
algorithm is proposed that is capable of looking into a complex 
solution space. It suggests an Adaptive Multi-gene-set Genetic 
Algorithm that has multiple heterogeneous solution fitness 
aspects. In other words, the problem requires searching for a 
complex solution that requires a genotype that contains 
multiple types of genes. The main challenge with such a 
genotype would lie in the complex crossover process. We 
simply cannot exchange gene data between genes containing 
different data semantics even if the data types match. 

To visualize the multiple gene sets for a certain 
chromosome, a class diagram is shown in fig 4. Furthermore, 
neighboring multi-gene sets chromosomes would have some 
influence on each other through genetic operations such as 
crossover and mutations. 

The crossover process is meant to create a new set of 
solutions that mix aspects of existing solutions. For that reason, 
we need a proper encoding of the genotype that preserves the 
purpose of crossover. The proposed algorithm suggests the use 
of multiple gene sets within a single chromosome. This would 
enable a complex problem to be divided into multiple smaller 
sub-problems which will be handled separately, and then those 
sub-solutions are gathered in order to create a complete final 
solution. Fig 2 illustrates a sketch for the expected crossover 
process amongst multi-gene set chromosomes. 

 
Fig. 2. Crossover amongst multi-gene-set chromosomes 

Each sub-problem would require its own crossover process 
which is capable of generating offspring sub-solutions with 
data that are semantically correct. The fitness of each sub-
solution needs to be calculated in order to determine whether 
that part of the complete solution needs further search for the 
current generation of the algorithm execution or not. This 
means that a sub-solution that may seem optimal for the sub-
problem might not be suitable for the complete solution. 
Moreover, this would require searching for a new sub-solution 
during the coming generations until a suitable complete 
solution is found. 

Such an architecture of the GA also allows for multi-
threading to be efficiently used. This is made possible by 
separating the sub-solution search operations into distinct 
threads that run simultaneously and independently in parallel. 
This enables very efficient implementations of the algorithm to 
be created when compared to the traditional GA architecture. 

The fitness of the complete solution needs to be calculated 
in each generation to determine how each of the sub-solutions 
search algorithms should operate .Fig 3 clarifies the 
contribution of Gene-set fitness to the calculation of 
Chromosomes fitness. 

 
Fig. 3. Gene-set fitness values contribute towards the total chromosome 

fitness 

A. Adaptive mutation rates 

When the search results seem to converge towards 
unsuccessful solutions then it is time to add new genetic 
material to the mating pool. This is where mutation comes into 
play. Mutation is a process that changes the data of the 
genotype by creating new values that are usually randomly 
generated within predefined constraints. Mutation rate is 
usually predefined prior to the execution of the GA. This limits 
the behavior of the GA to a semi-static form when it comes to 
steering the search process towards a solution. Hence, the GA 
would not be able to increase the rate of introduction of new 
genetic material when the search converges towards 
unsuccessful solutions in order to escape that convergence. The 
GA will also be unable to reduce that rate of new genetic 
material introduction when the search seems to converge 
towards successful solutions. This reduction is very helpful 
when there is a need to concentrate the search within the 
existing genetic material that represents successfully evolving 
solutions. 

In order to succeed, a GA needs to be fine-tuned by setting 
a proper mutation rate through a process of trial and error. If an 
unsuitable mutation rate is used, the search may never be able 
to converge successfully towards a solution. A higher than 
needed mutation rate would cause the algorithm to search the 
solution space blindly. A lower than needed mutation rate may 
lead the algorithm to converge towards unsuccessful solutions. 
This would be the result of existing genes representing the 
current mating pool of solutions being overly dominant and if 
those solutions have low fitness values then the new generated 
solutions are most likely to have a low fitness values as well. 
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On the other hand, an adaptive mutation rate would steer 
the search conducted by the GA towards successful solutions 
more efficiently than using a static rate. In this adaptive 
scheme, the mutation rate is adapted for each sub-solution 
according to statistics showing convergence towards successful 
solutions, or convergence towards unsuccessful solutions. Each 
mutation rate is re-evaluated for each generation. According to 
that evaluation, the mutation rate is increased or decreased 

according to equation (1), where mrnew, mrold, and rc are the 

new mutation rate, old mutation rate and convergence rate, 
respectively. 

 

It is important to note that the rate of convergence is 
represented as negative values when the convergence is 
towards less successful solutions and it is positive when the 
convergence is towards more successful solutions. 

V. THE ARCHITECTURE OF THE ADAPTIVE MULTI-GENE-

SET GENETIC ALGORITHM 

The class diagram representing the architecture of a 
traditional single-gene-set chromosome GA is shown in fig 4. 
The GA consists of a population of chromosomes that 
accommodate genes and data structures representing gene-data.  

The proposed adaptive multi-gene-set chromosome GA is 
completely different from the traditional   generic model as 
clarified in the class diagram shown in fig 5. The algorithm is 
designed to be generic in nature as it requires minimal 
modifications in order to be used for solving any evolutionary 
search problem. For example, an interested developer using 
this architecture would only need to create new classes 
implementing the interfaces IGene and IGeneData in order to 
solve any type of problem requiring chromosomes with 
multiple gene sets. 

Fig. 4. Class diagram for the single-gene-set GA architecture 
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Fig. 5. Class diagram of the multi-gene-set GA architecture 

VI. IMPLEMENTATION AND RESULTS 

To demonstrate the effectiveness of the proposed AMGA, 
an experiment is conducted to implement it in the process of 
graphical user interface generation. The results are then 
compared to those obtained when conducting the same 
experiment using a static mutation rate single-gene-set GA. 

The problem of automated graphical user interface 
generation using GAs was discussed in [24-26]. 

The genetic material of the graphical user interface 
generation problem consists of two types of gene-sets per 
chromosome. The first gene-set contains information on the 
containers used to host controls on a form. The second gene-set 
contains information on the controls that are used to create the 
graphical user interface. 

The single-gene-set GA relies on a single gene-set to 
represent both the controls and the containers. In order to do 
that, the containers were treated as controls, and each regular 
control contained an attribute that stores a serial number 
representing its parent control. Each control was represented as 
a gene containing the following data: 

1) X-axis location in pixels. 

2) Y-axis location in pixels. 

3) Width in pixels 

4) Height in pixels. 

5) Margin in pixels. 

6) Padding in pixels. 

7) Parent container serial number. 

8) Dock location on the form (top, bottom, left, right, full, 

none) 
Using that gene data, the algorithm needs to search for 

candidate formations of the supplied controls in order to 
accommodate the following criteria: 

1) Controls of the same type should be located within the 

same container. 

2) Controls should be horizontally stacked if the parent 

container is vertically oriented and should be vertically 

stacked if the parent container is horizontally oriented. 

3) Controls should be left aligned if they exist in a 

vertically oriented container and should be center aligned if 

they exist in a horizontally aligned container. 

4) Controls of the same type within the same container 

should have the same height value in pixels. 

The multi-gene-set GA relies on two separate gene sets for 
representing the containers and the controls respectively. This 
requires creating two gene types. The first type represents the 
containers and it contains the following data: 
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1) Container serial number. 

2) Container type. 
While the exchangeable data include: 

1) Container dock location on the form (top, bottom, left, 

right, full, none). 

2) Container width. 

3) Container height. 
As for the second type, it represents the controls and it 

contains the following data: 

1) Control name. 

2) Control type. 
While the exchangeable data include: 

1) X-axis location in pixels. 

2) Y-axis location in pixels. 

3) Width in pixels. 

4) Height in pixels. 

5) Margin in pixels. 

6) Padding in pixels. 

7) Parent container serial number. 
The obtained best fitness values for the case study when 

implementing the single-gene-set algorithm running for a 
maximum number of 1000 generations and having 5 containers 
with different numbers of controls (e.g. 10, 20 & 30), are 
summarized in Tables I. While the obtained best fitness values 
for implementing the AMGA running for the same parameters, 
are summarized in table II. 

TABLE I.  RUNNING THE SINGLE-GENE-SET GA 

Single-gene-set Algorithm 

Max No. of generations = 1000 

No. of Containers 
No. of 

Controls 

Generation of 

termination 

Best 

fitness 

value 

5 10 1000 71.70% 

5 20 1000 72.60% 

5 30 1000 61.90% 

TABLE II.  RUNNING THE MULTI-GENE-SET GA 

Multi-gene-set Algorithm 

Max No. of generations = 1000 

No. of Containers 
No. of 

Controls 

Generation of 

termination 

Best 

fitness 

value 

5 10 81 100% 

5 20 556 100% 

5 30 1000 93.70% 

Comparison of the two tables indicates that the AMGA was 
able to achieve successful solutions where the single-gene-set 
GA failed for the same number of generations. 

The fitness values were calculated for both, AMGA 
algorithm and single-gene-set GA as a function of the number 
of generations for different numbers of controls, (namely 10, 
20 and 30). The results are plotted in fig 6 - 8. 

  
Fig. 6. Performance of the multi-gene-set algorithm when compared to its 

single-gene-set counterpart for the automated GUI generation problem with 5 

containers and 10 controls  

  

Fig. 7. Performance of the multi-gene-set algorithm when compared to its 

single-gene-set counterpart for the automated GUI generation problem with 5 

containers and 20 controls 

It is noticed that in the case of the multi-gene-set GA, 
convergence towards the best fitness (100% fitness) is 
achieved after 81 generations for 10 controls. But as the 
number of controls increases, the convergence gets slower as 
the available space on the canvas or form is too little to host all 
the required controls according to the required conditions, or it 
would even be impossible to place all the required controls on 
the canvas as the totality of the controls’ areas  

 

Fig. 8. Performance of the multi-gene-set algorithm when compared to its 

single-gene-set counterpart for the automated GUI generation problem with 5 

containers and 30 controls 
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would be larger than the actual available space on the canvas. 
On the other hand, it can noticed that no convergence was 
achieved at all in the case of the single-gene-set GA. 

VII. CONCLUSIONS 

The results presented in this paper show that the AMGA is 
capable of converging towards solutions more efficiently than 
its single-gene-set counterpart. The results presented also show 
that the algorithm is also capable of recovering from 
divergence from solutions adaptively by increasing the rate of 
mutation when that is required. It is also capable of reducing 
the rate of mutation when the algorithm begins to converge 
towards successful solutions using the existing genetic 
material. 

Future work relating to that presented in this paper would 
involve using meta-heuristic optimization techniques as part of 
the generic architecture of the AMGA. This would allow for 
more complex types of problems to be solved by avoiding the 
problem of the algorithm getting stuck on a local maxima. 
Such optimizations would also allow for better performance for 
the AMGA if implemented correctly. 
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