
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

209 | P a g e

www.ijacsa.thesai.org

On a Flow-Based Paradigm in Modeling and

Programming

Sabah Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Abstract—In computer science, the concept of flow is reflected

in many terms such as data flow, control flow, message flow,

information flow, and so forth. Many fields of study utilize the

notion, including programming, communication (e.g., Shannon-

Weaver communication model), software modeling, artificial

intelligence, and knowledge representation. This paper focuses

on two approaches that explicitly assert a flow-based paradigm:

flow-based programming (FBP) and flowthing modeling (FM).

The first is utilized in programming and the latter in modeling

(e.g., software development). Each produces a diagrammatic

representation, and these are compared. The purpose is to

promote progress in a flow-based paradigm and its utilization in

the area of computer science. The resultant analysis highlights

the fact that FBP and FM can benefit from each other’s

methodology.

Keywords—flow-based programming; conceptual description;

data flow; flowthing model

I. INTRODUCTION

The notion of flow is quite ancient. The Greek philosopher
Heraclitus (540–480 BCE) is known for a philosophy of flow,
including his insight that one could not step twice into the same
river, and “everything is always flowing in some respects” [1].
In this context, flow signifies a change with movement, and
direction. It was viewed, metaphysically, as a universal
principle, change, and the fundamental characteristic of nature.
The notion of flow also appeared in China with Confucius
(551–479 BCE), a contemporary of Heraclitus, whom he
attributed with declaring that “everything flows like this,
without ceasing, day and night” [2]. Accordingly, flow in some
philosophical circles implies movement, change, and process
[3] (see process philosophy, [4]).

This ancient concept of flow has been greatly discussed
dialectically in many circles of philosophy, literature, and
science (time flow, energy flow, information flow). Currently,
it is a widely used concept in many fields of study. In
economics, the goods circular flow model is well known; in
management science, there is the supply chain flow. In
computer science, the classical model of flow is the 1949
Shannon-Weaver communication model, representing
electrical signal transfer from sender to receiver.

In computer programming, Flow-Based Programming
(FBP) is a programming paradigm that uses a “data factory”
metaphor for designing applications [5]. Other paradigms
include Imperative, Functional, and Object-Oriented
programming.

FBP utilizes networks of black box processes, which
exchange data across predefined connections by message
passing, where the connections are specified externally to the
processes [5].

FBP is … a brand new way of thinking about application
development, freeing the programmer from von Neumann
thinking, one of the major barriers to moving to the new
multiprocessor world, and has been evolving steadily over the
intervening years. [6]

Recently, a new flow model (FM) has been proposed and
used in several applications, including communication and
engineering requirement analysis [7-11]. In FM, the flow of
“things” indicates movement inside and between non-black
box processes.

This paper focuses on these two approaches that explicitly
assert that they adopt a flow-based paradigm: flow-based
programming (FBP) and flowthing modeling (FM). The first is
utilized in programming and the latter in modeling (e.g.,
software development). They are contrasted in terms of the
diagrammatic representation each produces. The paper
examines FBP and FM to find common concepts and
differences between the two methodologies. Several
advantages can be achieved from such a study:

 Enhancing of common concepts

 Identifying a foundation for tools and areas of
application

 Furthering the development in use of the notion of flow

This would promote progress in a flow-based paradigm and
its utilization in the area of computer science. After a review of
background materials in section 2, section 3 explores some of
the notions of FBP: Selector, Assign, Sequencizer, and
Interactive network, in terms of FM representation. Section 4
discusses a specific problem: the “telegram problem” that is
specified in FBP and then analyzed in FM.

II. BACKGROUND MATERIALS

As background information, subsection II.A differentiates
between the two traditional mechanisms, data flow and control
flow, with emphasis on data flow as the base of flow-based
approaches. Subsections II.B and II.C summarize main ideas in
FBP and FM. FM is covered more extensively because it is a
less known approach. The FM example at the end of section
II.C is a new contribution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

210 | P a g e

www.ijacsa.thesai.org

A. Data and Control Flow

In modeling and programming of software systems,
structuring the relationships among processes (activities)
described by two traditional mechanisms:

 Data flow, and

 Control flow, e.g., an execution order.

A data flow emphasizes data availability even within each
task. In the FM version of this flow, data has the characteristic
of liquidity (the state of being liquid). For example, according
to Langlois [12], “Information is some sort of undifferentiated
fluid that will course through the computers and
telecommunications devices of the coming age much as oil
now flows through a network of pipes.” FM generalizes such a
conceptualization to “anything that flows,” i.e., is created,
released, transferred, received, and processed.

Control flow gives the execution order of tasks in the form
of instructions, e.g., sequences, branches, loops, and so forth.
Conceptually, it is hard to think of a “control” that flows;
rather, a more accurate description is to say that the
instructions flow into the control sphere to be executed one
after another, equivalent to typical sequential computing in the
von Neumann model.

B. Flow-Based Programming

One of the important characteristics of FBP is the
utilization of black box reusable modules, “much like the chips
which are used to build logic in hardware” [13]. These black
boxes, called components (see Fig. 1) are the basic building
blocks used in constructing an application. “FBP is a graphical
style of programming, and its usability is much enhanced by
(although it does not require) a good picture-drawing tool”
[13].

Fig. 1. Sample component in FBP (from [13])

The conventional approaches to programming (control
flow) start with process and view data as secondary; business
applications usually start with data and view the (data flow)
process as secondary [13]. “Data” in FBP are atomic things and
called “information packets” (or IPs). An Application is built
up of many programs passing IPs around between them.

This is very like a factory with many machines all running
at the same time, connected by conveyor belts. Things being
worked on (cars, ingots, radios, bottles) travel over the
conveyor belts from one machine to another on conveyor
belts... [In a soft-drink bottling plant, you find] machines for
filling the bottles, machines for putting caps on them and
machines for sticking on labels, but it is the connectivity and
the flow between these various machines that ensures that what
you buy in the store is filled with the right stuff and hasn't all
leaked out before you purchase it! [13] (Italics added)

FBP service requests have to do with communication
between processes that include connections described in terms
of receive, send, drop, end of data, … “IN” and “OUT” are
called “ports” for receiving and sending IPs. They are doors
that have an “inside” aspect and an “outside” aspect. A port is
“a special place on the boundary through which input and
output flow” [14]. A port establishes a relationship between the
receives and sends inside the program, resembling subroutine
parameters of function [13].

C. Flowthing Model

The Flowthing Model (FM) is also based on the notion of
flow. It is a more model-oriented methodology.

Anybody having encountered the construction process will
know that there is a plethora of flows feeding the process.
Some flows are easily identified, such as materials flow, whilst
others are less obvious, such as tool availability. Some are
material while others are non-material, such as flows of
information, directives, approvals and the weather. But, all are
mandatory for the identification and modelling of a sound
process. [15].

The word flow is rooted in the meaning “to move in a
(steady) stream.” The cognitive image of a liquid is therefore
fused into every metaphor involving flow [16].

FM is used to develop a map of conceptual movement
(analogous to the movement of blood through the heart and
blood vessels) and states of things that are called flowthings.
Goods, people, ideas, data, information, and money moving
among spheres (e.g., places, organizations, machines …) are
flowthings. Hence, the focus is not on information and
information packets as it is in the case of FBP.

Flowthings flow in a non-black box system, called a
flowsystem. The flowsystem is the “bed of a river” and the
flowthing is the “water” that flows. It is a generalization of the
input-process-output (IPO) model that has been used in FBP. A
system is typically conceptualized as a set of interrelated
constituents that collect (input), manipulate (process), and
disseminate (output) data. The sequence of input-process-
output is probably the most used pattern in computer science.

The basic IPO conception, used in FBP (exemplified in Fig.
1), is captured by “a process P acting on an input I and
producing an output O” [17]. It views a system as a black box
process with an interface, and the environment denotes
everything outside that system. The interface can be invoked
either by the system (output) or by the environment (input).
The IPO notion of “process” hides structural divisions.

The FM flowsystem opens the black box by decomposing it
into several specific (atomic/mutually exclusive) compartments
and specifying flows within a system or a subsystem. Flow
refers to the exclusive transformation of a flowthing passing
among six states (also called stages) in a flowsystem: transfer
(input/output), process, creation, release, arrival, and
acceptance, as shown in Fig. 2. We use receive as a combined
stage of arrive and accept whenever arriving flowthings are
always accepted.

Filter IN OUT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

211 | P a g e

www.ijacsa.thesai.org

Fig. 2. Flowsystem

Each stage has its vocabulary:

 Create: generate, appear (in the scene), produce, make,
… In contrast to previous approaches, in FM Creation
is considered a type of flow, i.e., from the sphere of
nonexistence to the current sphere.

 Transfer: transport, communicate, send, transmit … in
which the flowthing is transported somewhere within
or outside the flowsystem (e.g., packets reaching ports
in a router, but still not in the arrival buffer).

 Process: stage in which the form but not the identity of
a flowthing is transformed, indicated by a seemingly
endless choice of English verbs (e.g., compressed,
colored, edited, marked, evaluated, ordered, …)

 Released: a flowthing is marked as ready to be
transferred (e.g., airline passengers waiting to board)

 Arrive: a flowthing reaches a new flowsystem

 Accepted: a flowthing is permitted to enter the system

These stages are mutually exclusive; i.e., a flowthing in the
Process stage cannot be in the Created stage or the Released
stage at the same time. An additional stage of Storage can also
be added to any FM model to represent the storage of
flowthings; however, storage is a generic stage, because there
can be stored processed flowthings, stored created flowthings,
and so on.

The flowthings flow in specific “flow channels,” changing
in form and interacting with outside spheres (flowsystems in
other systems), where solid arrows represent flows and dashed
arrows represent triggering, e.g., receiving an action (e.g., a hit
in the face) that triggers emotion (e.g., anger) that in turn
triggers a physical reaction. Triggering may signify several
semantics, including representing a flow. For example, in a
case where a flowsystem triggers another flowsystem, it can
indicate a signal flow, i.e., create a signal and send it to a
destination flowsystem. When a sphere includes a single
flowsystem, then only one box is drawn to represent both the
sphere and its flowsystem.

Example: In mathematics, a function f(x) takes an input x
and returns an output f(x). In teaching the concept of function,
one metaphor describes function as a “black box” that for each
input returns a corresponding output [18] (see Fig. 3). A
function is described as the set of rules that convert the input to
output, analogous to the work of a machine.

This approach can be applied to illustrate the Big-O
Notation used in elementary computer science courses. It has
been found that students have difficulty understanding the
definition and the method of finding the Big-O for a given
function.

Fig. 3. Black box representation of functions

For example, a textbook [19] used in that context defines
the Big-O as follows:

Let f and g be functions from the set of integers or the set
of real numbers to the set of real numbers. We say that f(x) is
O(g(x)) if there are constants C and k such that whenever x >
k.

Using FM (Fig. 4), the two functions f(x) and g(x) (circles
1 and 2, respectively, in Fig. 4) can be viewed as spheres with
x as a flowthing (circle 3 in Fig 4 – (a)).

The FM description highlights searching for k, g(x), and C
as follows:

 Select k such that x > k (circle 4),

 Select g(x)

 Select constant C (5)

 Multiply g(x) by C such that we produce Cg(x) > f(x)
(6).

Values of x > k flow to f(x) and the selected g(x). Both f(x)
and Cg(x) flow to create f(x) = O(g(x)) if Cg(x) > f(x). Fig 4
(b) illustrates finding the Big O for x2 + 2x + 1. In this case,
the students keep selecting k, g(x) (a minimum function is the
best), and C, in the FM depiction, as an educational game. This
visual representation helps in finding k = 1, g(x) = x

2

(minimum), and C = 4 to satisfy Cg(x) > f(x).

Note how the variables x, functions, and requirement
(Cg(x) > f(x)) are represented uniformly, as flowthings and
spheres.

III. CONTRASTING DIAGRAMMATIC REPRESENTATIONS OF

FBP AND FM

This section explores some of the features of FBP and FM
as part of the attempt to bring their diagramming
methodologies into closer alignment, possibly advancing the
flow-based paradigm in its different forms for programming
and modeling.

A. Selector

Fig. 5 shows a sample component call Selector in FBP. It
applies some criterion “c” to all incoming IPs, and sends out
the ones that match the specified criterion while sending the
rejects to the other output port (REJ) [13].

Here, we can identify a basic difference between FBP and
FM: conceptually, from the FM point of view, the output in
this component is a different type of flowthing from the input.
It is analogous to a currency handler who receives banknotes
and then separates them by currency, say, by dollars and
pounds. Accordingly, in the FM description of the selector
(Fig. 6), each flow is represented as a separate stream.

Create

Receive

 Transfer Release

Process Accept Arrive

Output Input
 FUNCTION f:

Input x

Output f(x)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

212 | P a g e

www.ijacsa.thesai.org

One basic FM principle is that different types of element
flows are not mixed in the same diagram, eliminating
ambiguity and difficulty in identifying the streams of flow.
This mixing of flows is a basic engineering assumption, for

example, the semantics of the arrows where different flows are
intermixed, analogous to representing electrical lines and water
pipes by the same arrow in the blueprint of a building. Figs. 7
show the corresponding pseudocodes in FBP and FM.

Fig. 4. Using an FM diagram to illustrate and find the Big O

Fig. 5. Sample component in FBP (from [13])

Fig. 6. IP is processed to generate one of two types of IPs

Selector IN
Acc

Rej

 Process
True?

False?

Release Transfer

Transfer Release

Create

Create

Transfer Receive

IP

Accepted IP

Rejected IP

x

x>k

C

g(x)

Process

f(x)

Transfer

Transfer

Process

Cg(x)>f(x)
Transfer Receive

Receive

Receive

Process

Process*

Create f(x)

f(x) is O(g(x))

Create g(x)

Transfer Transfer

Create
Cg(x)

 Cg(x)

k Release Receive
1

2

5

6

x>k

C= 4

G(x) = x
2

Process

x
2
+2x+1

Transfer

Transfer

Process

4x
2

>
x2+2x+1

Transfer

Receive

Process >

 Release

Transfer Receive Receive

Process

Process*

Create f(x)
 (x

2
+2x+1) is O(x

2
)

Create g(x)

Transfer Transfer

Create
Cg(x)

 Cg(x)

k=1

x

Release
Receive

Create

Create

3

Transfer

Receive

Release

Transfer

Process >

4

(a)

(b)

Receive

Transfer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

213 | P a g e

www.ijacsa.thesai.org

Fig. 7. Pseudocode in FBP (left [13]) and FM (right)

B. Sequencizer

Consider the component called “Sequencizer” used “in all
existing FBP systems which simply accepts and outputs all the
IPs from its first input port element, followed by all the IPs
from its second input port element, and so on until all the input
port elements have been exhausted” [13] (see Fig. 8).

Fig. 8. Diagrammatic representation of CONCAT in FBP (from [13])

A Sequencizer is often used to force a sequence of data
being randomly generated from a variety of sources, e.g., IPs
generated by different processes that can then be printed out in
a fixed order in a report. To simplify, we can understand the
Sequencizer in terms of, say, numbers, e.g., “123” and “567”,
that are concatenated, as into a sequence, e.g., “123 567”. In
this case, conceptually, the sequence is a different flowthing
from its constituents; thus it has its own flowsystem in
CONCAT, as shown in Fig. 9. Accordingly, “opening” the
black box, a notion that has been adopted by FBP, reveals not
only different internal processes, but also the structure of the
component.

Fig. 9. CONCAT in FM

Fig. 10. Diagrammatic representation of ASSIGN in FBP

C. Assign

The Assign component in FBP “simply plugs a value into a
specified position in each incoming IP, and outputs the
modified IPs” [13]. OPT receives the specification of where in
the incoming IPs the modification is to take place, and what
value is to be put there (see Fig. 10). The FM representation of
Assign is shown in Fig. 11. The arrows are drawn in different
colors to emphasize different flows.

According to Morrison [13], to tell the black box Select
component which fields to select, in FBP, the application
designer specifies this information through a mechanism called
an Initial Information Packet (IIP). For example, in the
Selector component discussed previously, the selection criteria
(true and false or any other values) can be fed to the Selector
along with other criteria (similar to OPT in Fig. 10).

Fig. 12 shows the FM representation of this structure. IPs
and OPT are input, and an IP/OPT flowsystem (circle 1) is a
system that deals with a type that is a supertype of IP and OPT
(2 and 3, respectively), analogous to fixing types in, say, C++.
In Fig. 12, the process triggers the creation of accepted and
rejected IPs (4 and 5, respectively).

D. Interactive network

An interactive network is a general schematic (see Fig. 13)
in which requests coming from users enter the diagram, and
responses are returned. The “back-ends” communicate with
systems at other sites. The cross-connections are requests that
do not need to go to the back ends, or that must cycle through
the network more than once before being returned to the user
[13].

Fig. 13 is conceptually disturbing because the cross-
connections mix flows of requests and responses. Imagine
mixing the ingoing/outgoing pipes in engineering projects.

Fig. 11. Diagrammatic representation of ASSIGN in FM

IP

 Transfer/receive

 Process: If True? then Accepted IP

 If False? then rejected IP

Accepted IP

 Create

 Release/Transfer

Rejected IP

 Create

 Release/Transfer

receive from IN using a

do while receive has not reached end of data

if c is true

 send a to ACC

 else
send a to REJ

 endif

 receive from IN using a

enddo

CONCAT
IN [0]

IN [1]

IN [2]

IN [3]

Process

Process

Process

Process

Create

Flowthing 0

Flowthing 2

Flowthing 1

Flowthing 3

Transfer Receive

Transfer Receive

Transfer Receive

Transfer Receive

Release Transfer

Sequence

CONCAT

ASSIGN
IN

OPT

OUT

Process

Process

Create

Transfer Receive

Transfer Receive

Release Transfer

OPT

IP
New IP

ASSIGN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

214 | P a g e

www.ijacsa.thesai.org

Fig. 12. Select component where the criteria of decision is input

Fig. 13. Simple interactive network (redrawn from [13])

Accordingly, Fig. 14, which shows the FM representation,
ignores these cross-connections. In the figure, the user creates
a request (circle 1 in the figure) that flows to the system (2),
where it is processed (3). Then it flows to the router (4) and is
processed (5) and sent to one of the back-ends (6). In the back-
end, the request is processed to trigger (7) the creation (8) of a
response. The response flows to the Handle back-end data (9)
where it is processed (10), then sent to the return module (11)
that sends it to the user (12). For simplicity sake, cross-
connections are ignored in Fig. 14. It is possible to handle them
by capturing such requests in process when they flow in the
Receive Request flowsystem and then treat them separately.

The flows of requests and responses are separated in the
FM representation. It seems that a definition of flow is lacking
from flow-based programming. In FM, a flow refers to the
movement of flowthings among stages and spheres. A
flowthing is a thing that can be created, released, transferred,
received, and processed. It has its own stream of flow. If flow
types are mixed, this is performed explicitly, in a flowsystem
that represents their supertype, e.g., integers and reals are
handled by the flowsystem number.

Fig. 14. Simple interactive network in FM

Fig. 15. FBP diagrammatic representation of the telegram problem (redrawn, partial from [13])

Fig. 16. FM diagrammatic representation of the telegram problem

OPT

 Process
OPT?

OPT?

Release Transfer

Transfer Release

Create

Create

Transfer Receive

IP/OPT

Accepted IP

Rejected IP

Process

Process Transfer Receive

Transfer Receive

IP
1

2

3

4

5

Process

request

Router

Return

response

Process

response

Handle back-

end data

Back-end 1

Back-end 2

Back-end 3

Receive

request

Create

Transfer

Transfer

Transfer

Transfer

Transfer

User

Process

Create

Transfer

Receive

Request

Release

Receive

System

Back-end n

Router

Process

Release

Release

Receive

Receive

Back-end i

Back-end …

Release

Process

Transfer

Receive

Process

 Receive

Process

Release

Transfer

Release

Response

Transfer

Response

Request

Handle back-

end data

Return

response

Receive request

Transfer

1

7

3

5

4
6

8 2

9

10

11

12

RSEQ DC RC WSEQ
IN IN IN

OUT OUT OUT

Proces

s

Create Process Create Process Creat

e

Telegra

m

Characte

r

Word Line

Transf

er

Receiv

e

Transf

er

Releas

e

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

215 | P a g e

www.ijacsa.thesai.org

IV. PROGRAMMING ASPECTS

This section discusses a specific problem: the “telegram
problem” that is specified in diagrammatic representation and
textual format. In FBP, the “black box” (component) seems to
be specified anew, with respect to the explicit flow-based high-
level diagram. In FM, the details of flow and its stages involve
just a refinement to the FM depiction.

Consider a simplified telegram problem [20] in which a
program is required to process telegrams. Each telegram is
available as a sequence of words and spaces. Telegrams are to
be processed to become output with all but one space between
words eliminated. In FBP, words are treated as IPs. Fig. 15
shows the FBP description of the solution where RSEQ means
“Read Sequential”, WSEQ means “Write Sequential”, DC is
“DeCompose”, and RC is “ReCompose”. Fig. 16 shows the
corresponding FM depiction.

Contrasting the two representations, we see the difference
in terms of retracing of components by a flowsystem. The
flowsystem expresses the type of flowthing and the basic

operations performed on it, e.g., create, process, …, in addition
to defining a flow in terms of flowthings. FBP represents all
types of flow with a solid arrow, implicitly relating the type of
flow to the component that outputs it.

As mentioned previously, triggering in FM may have
several semantics, including representing a flow. In Fig. 16,
triggering causes creation in the next flowsystem. For
example, Telegram (sphere) represents the flowsystem of a
string (flowthing) (remember that when a sphere includes a
single flowsystem, both are represented by one box). The
triggering causes the appearances (creation) of characters in
the Character sphere. Clearly, Telegram “slices” the “string”
into “characters” and sends them to Character. So, why do we
put Create in the Character sphere? From a purely semantical
point of view, Telegram does not know character. It is – from
the point of view of Telegram – a collection of processed
pieces of a string. This is similar to representing string as an
array of characters in C++. These “pieces of string” are then
shipped to Character. So, triggering (in this case) means the
flow of these pieces from String (where they are pieces of
string) to Character (where they are recognized as characters).

Fig. 17. FBP programming of the telegram problem (partial from [13])

Fig. 18. FM programming diagram of the telegram problem

DC
IN

OUT

DC (Decompose into Words):

receive from IN using a

 do while receive has not reached end of data

 do stepping through characters of input IP

 if “in word” switch is off and current char non-

blank

 set “in word” on

 save character pointer

 endif

 if “in word” on and current char blank

 set “in word” off

 build new string of length =

 current pointer - saved pointer)

...

 Telegram
Transfer Receive String Create

characters
Transfer

For every character (loop)
Character

Process:

Process:

 Transfer

Create Transfer

Line (initially Line

is empty)

word

New telegram

line

Transfer

Transfer Create

Transfer Line

Process Release

Receive

Transfer

Word

Release

Reset

Receive

Release

Reset flag2

Release Receive Transfer

Receive

1. If flag2 is set and specified length >

(line length + length of the received

word)

3. If flag2 is set and specified length <=

(line length + length of the received word)

If another space and flag1 is

set

If not space, then concatenate in word

If first space, then set flag1

characters

word

2. If flag2 is

reset, set it

Process: add new line

1

2
3

4

5
6

7

8

9

10

11

12

13

Process:

Concatenate to word

14

15

16

17

18

19 Process:

- Concatenate word with space before and

after

21

20
22

23

24

25

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

216 | P a g e

www.ijacsa.thesai.org

However, for simplicity‟s sake, in a more elaborate
specification, we will assume that in triggering of this type, the
creation happens in the source flowsystem, after which the
flowthings flow to the destination flowsystem of triggering.
For example, in Fig. 16, words are created (from characters) in
Character and flow to the Word sphere.

So, in moving to programming, Fig. 17 shows the FBP
pseudocode for component DC (see Fig. 15).

It seems that the “black box” DC has an extensive interior.
What is disturbing in the FBP implementation is the lack of
explicit connection between the diagrammatic and the
pseudocode representations. Where is the flow in the
pseudocode? Is it, implicitly, in the design of the so-called
Ports, IN and OUT?

In FM, the effort to realize a diagrammatic representation is
easily facilitated, as shown in Fig. 18, in a simplified telegram
problem where we assume that there are no multiple spaces.
The telegram flows (circle 1) in its sphere, which includes two
flowsystems, string (2) and character (3), drawn according to
our previous explanation of the semantics of triggering Create
(creating characters in the telegram sphere). The processing of
the telegram as a string triggers (4) the creation of characters
(e.g., string in C++ becomes an array of characters). The
characters flow to the Character sphere (6), which includes
characters and word flowsystems (7 and 8, respectively).
There is also a declaration of a loop for all incoming characters
(9). A loop is also a type of sphere in FM. Depending on
character processed, a decision is made:

 If it is a first space, then set flag1 and create an empty
word (10 and 11).

 If another space and flag1 is set (initially reset), then
release the word (12) and reset tflag1 (13). Note that
the created word flows to be processed and released.

 If not space, then concatenate it to the end of currently
built word (14 and 15, respectively)

Again, this mixing of character and word flowthings is
done to simplify the diagram, as discussed previously. For
Character, it is a matter of “padding up” characters, not
creating words.

The words flow (16) to the Word sphere, where they are
processed (17) to construct a line.

 (a) If flag2 is set and specified length > (line length +
length of the received word), then release line and rest
flag2 (18, 19)

 (b) If flag2 is reset, set it and a create new line –
initially flag2 is reset (20, 21)

 (c) If flag2 is set and specified length <= (line length +
length of the received word) then pad word to line (22,
23)

These if statements may need some synchronization, e.g., a
new word waits to output previous line and reset flag2.
Accordingly, the line flows to the Line sphere (because it
includes a single flowsystem, it is drawn as such - 24), then to
the New Telegram sphere (25).

Fig. 19 shows the textual pseudocode after removing
Transfer and Release stages.

The point in this type of description is to demonstrate FM
systematic refinement along a flow-base conceptualization.
Levels of detail follow the same rhythm of flow, in contrast to
an eruption that opens the “black box” in such a way that the
flow mostly vanishes.

V. CONCLUSION

This paper has focused on two approaches that explicitly
assert that they adopt a flow-based paradigm: flow-based
programming (FBP) and flowthing modeling (FM). Extensive
literature has been published on FBP dating back to the
nineties of the last century. FM is much more recent and has
not been utilized in programming. The resultant analysis
indicates that FBP and FM can benefit from each other‟s
methodology. It seems that FBP can benefit from the
theoretical ideas in FM, while FM can be improved by
considering the rich programming efforts in FBP. Both can
promote development in a flow-based paradigm and its
utilization in computer science.

Future work will explore the possibility of enhancement of
the programming aspects in FM utilizing proven notions of
FBP [21].

Fig. 19. FM pseudocode of the telegram problem

(All flags are initially reset, only one space between words)

Telegram
Process:

 Trigger Create character

Characters

For every character (loop)

Process:

If first space, then set flag1, Create word

If not space, then concatenate in word

If another space and flag1 is set, trigger releasing word, reset flag1

Words

Process:

1. If flag2 is set and specified length > (line length + length of the received word) trigger release

line, and reset flag2

2. If flag2 is reset, set it, and trigger Create new line

3. If flag2 is set and specified length <= (line length + length of the received word) trigger

padding word to line

Line (assumed that length is given)

Release line to New telegram

New telegram (assumed initially empty)

Process (add to the new telegram)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

217 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] W. Daniel, and D. W. Graham, Heraclitus. In: Stanford Encyclopedia of
Philosophy (2011), . http://plato.stanford.edu/entries/heraclitus/

[2] A. N. Beris, and A. J. Giacomin, πάντα ῥεῖ (Everything Flows): Motto
for Rheology, Polymers Research Group Technical Report Series QU-
CHEE-PRG-TR--2014-3 (May 23, 2014),
http://hdl.handle.net/1974/12193.

[3] D. Chen, Metaphorical Metaphysics in Chinese Philosophy: Illustrated
with Feng Youlan's New Metaphysics. Lexington Books, Lanham, MD
(2011).

[4] Process Philosophy. In: Stanford Encyclopedia of Philosophy (Oct 15,
2012), http://plato.stanford.edu/entries/process-philosophy/

[5] J. P. Morrison, Flow-based Programming,
http://www.jpaulmorrison.com/fbp/

[6] Flow-Based Programming, theTrendyThings blog (January 10, 2015),
http://thetrendythings.com/read/17922

[7] S. Al-Fedaghi, States and Conceptual Modeling of Software Systems.
Int. Rev. Comput. Softw. 4(6), 718–727 (2009).

[8] S. Al-Fedaghi, Developing Web Applications. Int. J. Softw. Eng. Appl.
5(2), 57–68 (2011).

[9] S. Al-Fedaghi, Conceptualization of Various and Conflicting Notions of
Information. Inform. Sci. 17, 295–308 (2014).

[10] S. Al-Fedaghi, An Alternative Approach to Multiple Models:
Application to Control of a Production Cell. Int. J. Control Automat.
SCOPUS 7(4) (2014).

[11] S. Al-Fedaghi, Information System Requirements: A Flow-Based
Diagram versus Supplementation of Use Case Narratives with Activity
Diagrams. Int. J. Bus. Inform. Syst. 17(3), 306–322 (2014).

[12] R. Langlois, Systems Theory, Knowledge and the Social Sciences. In
Machlup, F., Mansfield, U. (eds.) The Study of Information:
Interdisciplinary Messages, pp. 581-600. Wiley, New York (1983).

[13] J. P. Morrison, Flow-Based Programming: A New Approach to
Application Development. Van Nostrand Reinhold, New York, (1994).
ISBN 0-442-01771-5. http://cs-
wwwarchiv.cs.unibas.ch/lehre/fs08/cs506/_Downloads/book.pdf

[14] G. M. Weinberg, An Introduction to General Systems Thinking. John
Wiley and Sons, New York (1975).

[15] R. Stevens, P. Brook, P., K. Jackson, and S. Arnold, Systems
Engineering: Coping with Complexity. Prentice Hall PTR (1998).

[16] J. D. Casni, „Flow‟ Hits Its Peak. Blog entry,
http://metaphorobservatory.blogspot.com/2005/11/flow-hits-its-
peak.html

[17] D. Gile, Opening Up in Interpretation Studies. In: Snell-Hornby, M.,
Pöchhacker, F., Kaindl, K. (eds.) Translation Studies: An Interdiscipline,
pp. 149–158. John Benjamins, Amsterdam (1994).

[18] Boundless.com. Functions and Their Notation. In: Boundless Algebra.
Jan. 25, 2015. Retrieved Apr. 13, 2015 from
https://www.boundless.com/algebra/textbooks/boundless-
algebra-textbook/graphs-functions-and-models-2/functions-an-
introduction-17/functions-and-their-notation-98-5828/

[19] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. (2011).
ISBN: 0073383090.

[20] J. M. Barzdin, A. A. Kalnins M. I. Auguston, SDL Tools for Rapid
Prototyping and Testing. In: Faergemand, O., Marques, M.M. (eds.)
SDL'89: The Language at Work, pp. 127–133. North-Holland (1989).

[21] J. P. Morrison, Flow-Based Programming, 2nd Edition: A New
Approach to Application Development (2010). ISBN-10 1451542321.

http://plato.stanford.edu/entries/heraclitus/
http://plato.stanford.edu/entries/process-philosophy/
http://www.jpaulmorrison.com/fbp/
http://thetrendythings.com/read/17922
http://www.sersc.org/journals/IJCA/vol7_no4/12.pdf
http://www.sersc.org/journals/IJCA/vol7_no4/12.pdf
http://metaphorobservatory.blogspot.com/2005/11/flow-hits-its-peak.html
http://metaphorobservatory.blogspot.com/2005/11/flow-hits-its-peak.html

