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Abstract— Recently it has been demonstrated that causal 
entropic forces can lead to the emergence of complex phenomena 
associated with human cognitive niche such as tool use and social 
cooperation. Here I show that even more fundamental traits 
associated with human cognition such as ‘self-awareness’ can 
easily be demonstrated to be arising out of merely a selection for 
‘better regulators’; i.e. systems which respond comparatively 
better to threats to their existence which are internal to 
themselves. A simple model demonstrates how indeed the 
average self-awareness for a universe of systems continues to rise 
as less self-aware systems are eliminated. The model also 
demonstrates however that the maximum attainable self-
awareness for any system is limited by the plasticity and energy 
availability for that typology of systems. I argue that this rise in 
self-awareness may be the reason why systems tend towards 
greater complexity.  
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I. INTRODUCTION 
One of the by-products of the revolution in information 

technology over the last three decades has been our enhanced 
capacity to visualize, model and understand complex 
phenomena. This has allowed us to identify and visualize key 
traits associated with complexity such as self-similarity [1] and 
recursion [2], interconnectedness of elements [3], high 
sensitivity to initial conditions [4], and theorize about the 
sources of these traits [5-9] and evolution of complex systems 
[10]. These developments though have not brought us much 
closer to eliminating widespread skepticism about either our 
ability to build predictive models of complex phenomena [11] 
or arrive at feasible mechanisms to describe the emergence and 
selection of such phenomena associated with complexity as 
human cognition [12], though some of the findings are already 
being incorporated in systems analysis, design and architecting 
[13]. It has also been shown that in clustering systems without 
noise reaching consensus is directly proportional to the size of 
group [14].  

Recently however, it was demonstrated that traits 
associated with the human cognitive niche such as tool use and 
social cooperation can naturally emerge under the action of 
causal entropic forces [9]. Here, through a simple model, I 
demonstrate that even more rudimentary complex phenomena 
associated with human cognition such as ‘self-awareness’, can 

naturally emerge in systems in response to ‘internal stimuli’ as 
these internal stimuli eliminate less ‘self-aware’ systems. 

Mechanisms proposed so far only look at external stimuli 
(for instance in the case of natural selection) for evolution of 
complexity. The mechanism proposed here acknowledges that 
drivers of evolution of complexity can be transformations 
internal to the system as well. 

This paper presents a model that shows how internal 
stimuli through a proposed new mechanism leads to the 
selection of ever more complex systems. 

The work presented here can be seen as a corollary of the 
good regulator theorem [15] and has been done to show the 
limitations other works that propose entropic measures as 
drivers for complexity [9]  in a competitive environment but 
ignore internal stimuli; in the presence of which, competitive 
environment is not necessary for evolution of complexity. 

II. MATERIALS AND METHODOLOGY

To construct the model we start with a system which is a 
‘good regulator’ of itself [15]. It has been shown that any good 
regulator of a system is also a model of the system [15]. So if R 
is a good regulator of System S, then it is both a) internal to the 
system and b) a model of the system. Also for every ‘real 
world’ state the system S assumes, R (being a model of S) 
assumes a corresponding ‘model’ state. For the purposes of 
development of this model ‘self awareness’ (to be denoted by 
∆) now is defined as the change in internal model R with 
change in system S. 

∆ =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1) 

Defined in this manner, self-awareness stops being a binary 
property but instead can be represented by a continuous 
bounded function (with values between 0 and 1). Instead of just 
either having or not having ‘self-awareness’, systems can have 
varying degrees of self-awareness; self-similarity for instance 
being one of the cruder forms (lower degree) of self-awareness. 
Every system can be imagined to have an internal model of 
itself within it, the question remains only of quantifying the 
degree of accuracy of that model.  

Imagine now that starting from a state So, our system goes 
to a critical state Sc at which the system ceases to exist due to 
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Fig. 1. Systems with lower adaptive capacity (ΔεE) die-off under adaptive selection as universe evolves over time-steps a) 151, b) 157, c) 159, d) 163. Bubbles 
with dotted fill are systems with agency (ρ) = 0, while bubbles with solid fill are systems with agency (ρ) = 1. Bubble size indicates value of one system state 
variable X. Size of the dotted outlined bubble inside bigger bubbles indicates internal model value x for the same variable X in the internal model R. As can be 
seen in d at time-step 163, the surviving systems are ones with very high self-awareness (dotted outline is closest to solid outline) 

internal stimuli. At state So, the internal model of the system is 
in state Ro. However, the internal model (which is also a good 
regulator) also has a state Rc at which the system realizes the 
threat posed by the internal stimuli and adjusts its state before 
it reaches the critical state Sc. Any system for which the time 
TR taken for R to reach Rc is smaller than the time TS taken for 
S to reach Sc would have a longer time of existence compared 
to a system where TS<TR. This is the survival advantage that 
systems with higher ∆ would have, given all else is equal. So, 
for a regulator to be good enough to provide survival 
advantage;  

TR<TS 

Where; 

TS =  
Sc  −  So
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (2) 

And 

TR =  
Rc  −  Ro

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (3) 

Substituting in equation 1, for an internal model to be good 
enough to provide survival advantage; 

Rc  −  Ro
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 <  
Sc  −  So
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (4) 

Given that dR = ∆dS; 

Rc  −  Ro

Sc  −  So
 <  ∆ (5) 

The probability of condition specified in equation 5 being 
true increases with increasing ∆ (where ∆ is some function of 
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Fig. 2. Average Self-awareness of the set of living systems increases over time; b) Non-reactive systems die-off as the ratio of non-reactive to reactive systems 
decreases over time; c) Average agility of the set of living systems increases over time; d) Average plasticity of the set of living systems decreases over time 

the internal state variable/s of S with a range between 0 and 1) 
or ‘self-awareness’. What this results seems to imply is that not 
only is a good regulator one which is a model of the system 
being regulated, but the better this internal model of the system 
is -or the higher the self-awareness of the system- the more 
probable it is to survive (in response to internal threats to its 
existence). 

A simple numerical model consisting of a universe with 
hundred systems of varying self-awareness was built to further 
demonstrate how this mechanism naturally selects for systems 
with higher self-awareness. A binary property ρ to be called 
‘agency’ was also introduced in the model. When R equaled Rc 
for any system, the system readjusted only if ρ equaled 1. 
Overtime, we expected to see more systems with the agency 
switch ‘on’ (ρ = 1) survive as opposed to those where ρ was 
equal to 0. The magnitude of the readjustment depended upon 
the ‘plasticity’ of the system. Plasticity was defined as the 
deformation in S, per unit of available energy E, normalized to 
the initial value of S. Plasticity, denoted by ϵ can be expressed 
as; 

ϵ =  
𝑑𝑑𝑑𝑑
E𝑆𝑆

 (6) 

Further, Rc depended on how quickly the system was able 
to identify the need for a readjustment. This property was 

termed ‘agility’; defined as the difference between the system 
critical value (Sc) and internal model critical value (Rc), 
normalized to the system critical value Sc. Agility, denoted by τ 
can be expressed as; 

τ =  
(Sc −  Rc)

Sc
 (7) 

Four parameters are monitored across the set of ‘living’ 
systems as our universe evolved and some systems were 
eliminated due to S having reached critical value Sc; i) the 
average self-awareness ∆ave; ii) ratio of number of systems with 
0 agency against number of systems with agency equal to 1, 
ρR; iii) average agility τave and iv) average plasticity ϵave.  

III. RESULTS AND DISCUSSION

One immediately observable fact was that all these 
properties across the universe evolved in bursts 
(spasmodically) in a manner reminiscent of scale-free networks 
[3]. 

Average self-awareness for the set of living systems was 
indeed seen to increase with elimination of less self-aware 
systems, though it was observed that the maximum attainable 
self-awareness for any system was limited by the product of 
self-awareness, plasticity and energy for that system typology. 
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We term this product the adaptive capacity. Figure 1 shows the 
elimination process at four time steps during the model run. 

Figure 2 shows how the monitored properties evolved over 
time for the universe of living systems with average self-
awareness and agility increasing and ratio of positive agency 
over null agency systems decreasing as expected, and the 
average plasticity decreasing. The rise in plasticity is somewhat 
surprising. One should expect that the more plastic a system is, 
the more adaptable it should be, and hence the more resilient. 
What we see instead is that the systems that survive are the 
ones with lower plasticity. 

However, from equations 1 and 6 we deduce that the 
change in model normalized to the original system state is 
equal to the product of self-awareness, plasticity and energy 
availability. 

𝑑𝑑𝑑𝑑
𝑆𝑆

 =  ∆𝜖𝜖𝜖𝜖    (8) 

From equation 8 we can see that plasticity (ϵ) and self-
awareness (Δ) are inversely related. Upon consideration this 
result does appear to make intuitive sense. Plasticity is a 
measure of how much change R can incur in S, while self-
awareness is a measure of how R changes with changes in S. 
For any given system, the internal model can be made of either 
energy or matter, however in most cases, the internal model 
substitutes information for what is material in a system; actual 
quantities are replaced by say, a number representing that 
quantity. A state variable in the internal model say R though is 
more likely to either be ‘information’ or energy, while S, the 
corresponding system state variable, can be expected to have 
more of a material component. Imagine for instance a 
refrigerator, say S to a model of the refrigerator as it exists in 
your mind, say R. The former has a lot more material content 
compared to the latter. Self-awareness thus can be 
conceptualized as the amount of change incurred in 
informational content with change in real world material 
counterpart. Plasticity then is a measure of how that change in 
information comes back and affects a change in its real world 
material counterpart. This loop –system affecting model 
affecting system- is the essence of sentience and 
consciousness. The term ΔϵE arrived at in equation 8 defines 
the upper bounds for this property for any given system. For 
any given system ‘typology’ (all systems with the same 
plasticity and energy availability), the product ϵE determines 
the upper bounds of adaptive capacity. 

IV. CONCLUSIONS

This model demonstrates not only how systems naturally 
tend towards greater self-awareness but also how the potential 
for self-awareness is restricted by the plasticity of the system 
and the energy availability. For any given typology (here 
defined by the product of plasticity and energy) thus, we will 
see more self-aware systems survive over longer runs, but no 
system can rise above the limitations imposed upon it by its 
typology. For planetary systems for instance, the energy 
available as electromagnetic forces is very weak as 
electromagnetic forces are weak at that scale. Energy available 
as gravitational force, though stronger is still comparatively 
weaker in terms of its ability to cause strain in the system 

(hence lower plasticity). This means that ΔϵE has a low value 
compared to organic systems where electromagnetic forces act 
on organic matter (much more malleable hence susceptible to 
higher strain and having higher plasticity). Since both ϵ and E 
are quantifiable terms, establishing indicative values of ϵE for 
different system typologies should be trivial. It could be easy to 
show why the organic brain with its high material malleability 
and energy availability offers such a generous nursery for the 
rise of self-awareness. 

It should also be noted that for self-awareness Δ to be 
higher, the variables that define the state of internal model R 
should have higher number of stronger correlations with their 
corresponding counterparts in system S; the variables that 
define the state of system S. Higher self-awareness thus is a 
measure of higher number of stronger correlations between 
internal state variables of a system. This implies greater 
internal interconnectivity and thus greater complexity within 
the system. This means that the mechanism proposed here –an 
adaptive selection of better regulators- also elaborates how 
systems naturally tend towards higher complexity.  

Since like the good regulator theorem this work is 
applicable to all systems from ‘a cow’s digestive system’ [15] 
to national politics, examples of the mechanism proposed here 
can be seen in the process of regulation in many complex 
systems such as cities and national economies where increasing 
disparity and difficulty to model, increases the energy cost of 
regulation. 

In future the research shall be expanded by empirical 
analysis of regulation data from complex systems such as cities 
and national economies. 
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