
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 8, 2015

A Hybrid Heuristic/Deterministic Dynamic
Programing Technique for Fast Sequence Alignment

Talal Bonny
Department of Electrical and Computer Engineering

College of Engineering
University of Sharjah, UAE

Abstract—Dynamic programming seeks to solve complex
problems by breaking them down into multiple smaller problems.
The solutions of these smaller problems are then combined
to reach the overall solution. Deterministic algorithms have
the advantage of accuracy but they need large computational
power requirements. Heuristic algorithms have the advantage
of speed but they provide less accuracy. This paper presents a
hybrid design of dynamic programing technique that is used for
sequence alignment. Our technique combines the advantages of
deterministic and heuristic algorithms by delivering the optimal
solution in suitable time. we implement our design on a Xilinx
Zynq-7000 Artix-7 FPGA and show that our implementation
improves the performance of sequence alignment by 63% for
in comparison to the traditional known methods.
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I. I NTRODUCTION

A large computing problem can be handled using dynamic
programing. The programing that is a method for solving
a complex problem by breaking it down into a collection
of simpler sub-problems. This method appears to be both
very precise and efficient. However, it does require a very
large amount of computational power. An example of using
dynamic programing is sequence comparison in computational
linguistics [5], [9], [15]. In this field, researchers have
established that almost all European languages are related
and belong to a single family. Genetically related languages
originate from a common proto-language. In the absence of
historical records, proto-languages have to be reconstructed
from surviving cognates. Sequence comparison is used to
find the cognates in large database of divergent languages to
reconstruct their proto-form and consequently, to reconstruct
an entire proto-language which is an extremely time-
consuming process that has yet to be accomplished for many
language families.
Image processing is also using dynamic programing for
Sequence comparison to retrieve information on handwritten
document images [23]. Each word image is represented as a
sequence of graphs and the similarity between word images
is measured.
In Biology [10], [13], [14], dynamic programing is used
to search a large database of sequences for close matches
to particular sequence of interest, typically a recently
discovered protein. If correlations are found, new drugs may
be developed or better techniques invented to treat the disease.

Deterministic algorithms, such as Needleman-Wunsch [3]
(for global alignment) and Smith-Waterman [4] (for local
alignment), guarantee the return of the optimal alignment of
two sequences. The first one is called query sequence (Q)
and the second one is called database sequence (D). These
kinds of algorithms take a long time to find the highest
similarity score as the computing and memory requirements
grow proportionally to the product of the lengths of the two
sequences being compared, i.e, if n is the length of the query
sequence and m is the length of the database sequence, then
the previous algorithms provide the optimal alignment (highest
similarity score) in n x m steps. Therefore when searching
a whole database the computation time grows linearly with
the size of the database. Heuristic algorithms, such as FASTA
[1] and BLAST [2], provide an approximated solution by
comparing query sequence to database sequence and calculat-
ing the statistical significance of matches. An approximation
is obviously faster than an optimal solution provided by
deterministic algorithms since less and easier calculations need
to be performed, but it is less accurate because it might miss
one or more unexpected but important homologies that would
be found in the exact solution.

Various methods and techniques have been proposed to
improve the speed of implementations of such algorithms [7]:
In [11], the authors implemented the Recursive Variable Ex-
pansion (RVE) based technique, which is proved to give better
speedup than any best dataflow approach at the cost of extra
area. The authors computed a block of (k x k) elements
in parallel instead of computing one element on the FPGA.
Compared to dataflow approach, their implementation was 2.29
times faster at the expense of 2.82 times more area.
In [12], the authors developed new tool, called SWIPE, for
sequence alignment based on the Smith-Waterman algorithm.
In SWIPE, residues from 16 different database sequences are
processed in parallel and compared simultaneously to the same
query residue. The operations are carried out using vectors
consisting of 16 independent bytes. The 16 residues are fed
into sixteen independent channels. When the first of these
sixteen database sequences ends, the first residue of the next
database sequence is loaded into the channel. SWIPE was
found to be performing at a speed of 106 GCUPS with a 375
residue query sequence on a dual Intel Xeon X5650 six-core
processor system. The authors achieved over six times more
rapid than software based on Farrar’s ’striped’ approach [6].
In [16], the authors used GPU and CPU to improve the perfor-
mance of aligning the sequences by running the long sequences
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Fig. 1: Our technique combines the advantages of deterministic
and heuristic algorithms

on the GPU and the short ones on the CPU. Another different
methods were introduced for heuristic sequence alignment.
In [18], the authors proposed, a parallel algorithm that uses
GPU to align huge sequences. Their algorithm (CUDAlign
2.1 ) combined the Smith-Waterman algorithm with linear
space complexity. In order to achieve that, they proposed
optimizations which are able to reduce significantly the amount
of data processed, while enforcing full parallelism most of the
time. Using the NVIDIA GTX 560 Ti board and comparing
real DNA sequences that range from 162 KBP (Thousand
Base Pairs) to 59 MBP (Million Base Pairs), they showed
that CUDAlign 2.1 is able to produce the optimal alignment
between the chimpanzee chromosome 22 (33 MBP) and the
human chromosome 21 (47 MBP) in 8.4 hours.

In all previous work and applications, one object has to be
searched/compared/aligned with all objects in the database to
find the most closest one by using deterministic or heuristic
algorithm. The object might be database sequence, string file,
video stream, website page, etc. We have found that to get
the optimal alignment, we do not need to apply the align-
ment algorithms on the whole database sequences. Instead,
many database sequences may be excluded from the searching
process. In this case, the alignment algorithms may only be
applied on the remaining sequences of the database. This will
reduce the searching scope and consequently the time required
to find the optimal alignment.

In this work, an efficient hybrid design of dynamic pro-
graming technique is introduced. It has the advantage of
deterministic algorithms, which is delivering optimal solution,
and the advantage of heuristic algorithms, which is delivering
fast solution, to provide the optimal solution in suitable time
(see Fig. 1). Our technique uses new criteria to measure
the difference score for each sequence of the database. It
excludes the sequences which have high difference scores from
the searching process and applies the dynamic programing
algorithm (Needleman-Wunsch or Smith-Waterman) on part
of the database and not on the whole of it.
Using our technique, we explicitly improve the time perfor-
mance of the database sequence comparison applications by
63% in comparison to the traditional methods used. Applying
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Fig. 2: Sequence alignment in traditional methods and in our
technique

our technique in conjunction with the previous state-of-the-art
methods (as in [17], [20], [22]) will further improve their time
performance.

The rest of the paper is organized as follows. In Section 2,
we introduce the traditional methods for database sequence
computing applications using Needleman-Wunsch algorithm
and then introduce our technique. The complexity of our
technique is introduced in Section 3. In Section 4, we present
the hardware implementation of our technique on a FPGA.
Experimental results are presented in Section 5. We conclude
this paper in Section 6.

II. TYPICAL DATABASE SEQUENCE COMPUTING
APPLICATIONS

In any database sequence computing application, the data
must be coded into a set of sequences using a finite alphabet
of states. Then, a cost matrix must be defined on these states
and a gap cost scheme must be chosen. This matrix contains
the cost of each operation required to transform one of a pair
of sequences into the other. The operations used for transfor-
mation are insertion, deletion and replacement. An alignment
algorithm is then applied on the database sequence and the
compared one, resulting in a matrix of distances between all
pairs of sequences. The database sequence alignment method
is described in details, in the next sections, using the traditional
methods and using our technique.

A. SEQUENCE ALIGNMENT USING TRADITIONAL METH-
ODS

Traditional methods for aligning sequences are based on
align the query sequence1 ‘Q’ with each sequence of the
database starting from the first sequence ‘D1’ of the database
till the last one ‘Dn’ (see left part of Fig. 2). In each alignment
process, a score to each cell comparison between the two
sequences is computed. The score is based on the result of
the comparison, which is either match, or mismatch. If the
sequences are mismatched, then one of three operations may be

1the query is the searched sequence in the database or the compared
sequence with other sequences in the database
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done: insertion, deletion, or substitution. Gaps may be added
to one or both sequences to make them close to each others
Each of these operations has a previously defined score.
For each alignment process between the query and the database
sequence, an alignment score (AS) is computed as following:

AS = (# of matches × match score) (1)
+ (# of gaps × gap score)
+ (# of mismatches × mismatch score)

Usually, the match score is positive but the mismatch
and the gap scores are negative. Therefore, more number of
matches increases the alignment score but more number of
gaps or mismatches decreases the alignment score. The scores
of match, mismatch and gap are given as input parameters of
the alignment algorithm.
The optimal number of matches, mismatches and gaps are
computed using the Needleman-Wunsch algorithm [3] or
Smith-Waterman [4] algorithm. In any algorithm, a scoring
matrix of size ”m x n” (m is the length of the query sequence
and n is the length of the database sequence) is first formed.
The optimal score at each matrix element is calculated by
adding the current match score to previously scored positions
and subtracting gap penalties. Each matrix element may have
a positive, negative or 0 value. For two sequences, query (Q)
and database (D)
Q = a1a2..................am
D = b1b2..................bn
whereHij = T (a1a2..............am, b1b2.............bn) then the
element at the (i,j)th position of the matrixHij is given by

Hi,j = max

{

Hi−1,j−1 + S
Hi−1,j −Gx

Hi,j−1 −Gy

(2)

WhereHij is the score at position i in the sequence Q and
position j in the sequence D. S is the score of match or
mismatch. Gx is the penalty for a gap of length x in the
sequence Q and Gy is the penalty for a gap of length y in
the sequence D. After the matrix is filled up, to determine
an optimal alignment of the sequences from scoring matrix, a
method called trace back is used. The trace back keeps track
of the position in the scoring matrix that contributed to the
highest overall score found. The positions may align or may
be next to a gap, depending on the information in the trace
back matrix. There may exist multiple maximal alignments.
The time required to get the optimal alignment for two
sequences (the query sequence and just one sequence of the
database) is proportional to the product of the lengths of the
two sequences being compared, i.e, n x m steps.

B. SEQUENCE ALIGNMENT USING OUR TECHNIQUE

The database of the sequence computing applications con-
tains large number of sequences (as explained in Section I).
To align the query sequence ‘Q’ with each sequence of the
database ‘D’, we need to apply Needlman-Wunsch algorithm
on each pair of sequences (as explained in Section II-A).
Our technique is based on filtering the database such that the
database sequences which are not similar (not close) to the
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sequence

4- Applying comparing 

algorithm on the selected 
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Fig. 3: Steps of our technique

query are excluded from the searching and the Neddleman-
Wunsch algorithm is applied only on the database sequences
which are similar (close) to the query (see right part of Fig.
2).
Our technique passes through the following four steps (see Fig.
3):

1- Preparing the database for the comparison:
To prepare the database, we propose our new similarity mea-
sure, we call it similarity function. This function is based on
the mathematical parameters: frequency and standard deviation
of the alphabet codes for each database sequence. These codes
have been created previously (as explained in Section II).
The frequency similarity function (Freq) is the number of
repeated code in the sequence. It is an indicator for the sim-
ilarity between two sequences. For instance, if the frequency
of the code in a sequence is close to its frequency in another
sequence, this is a good indicator that the two sequences might
be similar.
To find the frequency for each code in the sequence, we scan
the sequence starting from the first code till the last one using
number of counters equal to the different codes. One counter
for each code. Each counter is incremented by one when it
meets new code of the same type. By the end of the scanning,
all counters save their values beside the database sequence.
The counter values beside any sequence refer to the frequency
of codes types for that sequence.
The frequency similarity function does not give always correct
results. For example, if the two sequences have the same
(or close) number of codes frequencies but the codes are
distributed in different way between the two sequences. In this
case, the frequency score is not correct score to measure the
similarity.
Therefore, we propose another similarity function which is the
standard deviation.
The standard deviation function (STD) shows the distribution
of the code in a sequence. It gives an idea of how close
the entire code of a sequence to the average value. Code
with large standard deviation has data spread out over a wide
range of values. The standard deviation (STD) is defined
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mathematically as:

STD =

√

∑i=n

i=1
(Xi − X̄)2

n− 1

Where X̄ is the the average value.

For each database sequence, the frequency and standard
deviation functions for each code are computed and stored
beside it. This step may take long time as the database
includes large number of sequences, but it is done off-line, i.e.,
independent from the comparison process. Therefore, it does
not matter how long time it takes because we do it only one
time and prepare the database for future comparison process.

2- Computing the difference score (DS):
Once a query sequence needs to be searched in (aligned with)
all database sequences, the technique computes the similarity
functions ”Freq” and ”STD” of all different codes for it.
Usually, the sequence has more than one different codes. To
find if there is similarity between two sequences each have
different codes, the technique computes the frequency differ-
ence score (FDS) and the standard deviation difference score
(DDS) and add them together to compute the difference score
(DS) which reflects the similarity between two sequences.
Difference Score (DS) = frequency difference score (FDS) +
standard deviation difference score (DDS)
The frequency difference score (FDS) is the sum of the
absolute values of the differences between the two sequences
for each code type. Mathematically, the frequency difference
score (FDS) between the query sequence ‘Q’ and the database
sequence ‘D’ is defined as following considering that both
sequences have ‘n’ alphabet codes:

FDS = |Freq code 1(Q)− Freq code 1(D)|

+|Freq code 2(Q)− Freq code 2(D)|

+|Freq code 3(Q)− Freq code 3(D)|

+ . . . (3)
+ . . .

+|Freq code n(Q)− Freq code n(D)|

Where ”Freq code 1(Q)” is the frequency of code 1 in the
query sequence. ‘”Freqcode 1(D)” is the frequency of code
1 in the database sequence, etc.
The standard deviation difference score (DDS) is the sum
of the absolute values of the differences between the two
sequences for each code type. Mathematically, the standard
deviation difference score (DDS) between the query sequence
‘Q’ and the database sequence ‘D’ is defined as following
considering that both sequences have ‘n’ alphabet codes:

DDS = |Dev code 1(Q)−Dev code 1(D)|

+|Dev code 2(Q)−Dev code 2(D)|

+|Dev code 3(Q)−Dev code 3(D)|

+ . . . (4)
+ . . .

+|Dev code n(Q)−Dev code n(D)|

Hi,j-

Hi- ,j- Hi- ,j

Fig. 4: Computation sequence of the similarity matrix. the
score of the cells which have the same color are computed
together

Where ”Dev code 1(Q)” is the standard deviation of code
1 in the query sequence. ”Devcode 1(D)” is the standard
deviation of code 1 in the database sequence, etc.
Our technique is based on filtering the database such that the
database sequences which are not similar (not close) to the
query are excluded from the searching and the optimal or the
heuristic alignment algorithm is applied only on the database
sequences which are similar (close) to the query.

3- Sorting the database sequences:
In this step, the database sequences are sorted according to
their difference score (DS), i.e. (FDS + DDS), such that the
sequences which have low difference scores (more close to the
query sequence) are shifted to the top of the database.

4- Applying the Alignment Algorithm:
In the last step, our technique applies the alignment algorithm
(in our case the Needleman-Wunsch Algorithm) only on the
sequences, which have the low difference scores (selected in
the previous step). The sequences which have high difference
scores will be excluded. This will provide the alignment in
reasonable time because the alignment algorithm is applied
only on a part of the database and not on whole of it.

III. COMPLEXITY OF OUR TECHNIQUE

In this section, we compare between the complexity of the
traditional methods and our technique. In case of the traditional
methods, when Needleman-Wunsch Algorithm is used, the
complexity is based on the length of the two sequences being
compared and the number of sequences in the database. Letm,
n are the lengths of the query sequence Q and the database
sequence D, respectively. As the Needleman-Wunsch Algo-
rithm is based on dynamic programing, then the complexity
to perform the alignment for one sequence isO(m × n). If
s is the number of sequences in the database, then the total
complexity will beO(m× n× s).
In case of our technique, assuming we havec different codes.
to compute the distribution of thec codes in the query
sequence, we need to scan the query along its length. If the
length of the query sequence ism, then we needm step
to perform the scan. To compute the difference score (DS)
between the query and one database sequence, we needc steps
to perform the subtraction for thec codes andc−1 steps to sum
up the results. Ifs is the number of sequences in the database,
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Fig. 5: The design implementation of our processing element
for sequence alignment

then we need((2c − 1) × s) steps to compute the difference
score. To sort thes difference scores from the smallest to the
largest one using Heap sort or merge sort algorithm, we need
(s× logs) steps.
Assuming that 50% of the database sequences are selected to
apply Needleman- Wunsch Algorithm on them. To perform
this step we needm× n× s/2 steps.
Consequently, the total steps of our technique is((m+ (2c−
1) × s + s × logs) + (m × n × s/2)), i.e., the complexity is
O(m× n× s/2).
For instance, if the length of the query m = 500, and the
number of the database sequences s = 10000. Each sequence
of the database has length n = 500. To align the query sequence
with the database sequences using the traditional method, we
need: 500 x 500 x 10000 = 2500000000 steps (2500 Million
steps). Using our technique, and assuming that the data are
codded with 4 different codes, we need:
500 + (7 x 10000) + (10000 x log 10000)+ (500 x 500 x 5000)
= ≈ 1250 Million steps.
Using our technique we save 50% of the time required to align
the sequences using the traditional methods.

IV. H ARDWARE IMPLEMENTATION

As explained in Section II-A, to implement the alignment
algorithm, we need first to form a similarity matrix of size
”m x n” using the Equation 2 and then we need to trace
the scores in the matrix back. The time complexity of the
alignment algorithm is O(MN). To reduce this complexity,
multiple entries of the matrix are calculated in parallel. From
the equation 2, we can determine that the score of any cell,
H(i,j), in the matrix depends on the scores of the three other
elements (see Fig. 4): The left neighbor, H(i,j-1), the up
neighbor, H(i-1,j), and the up-left neighbor, H(i-1,j-1). This
means that the score of any cell can not be computed before
computing the scores of cells located on the anti-diagonal
positions. Fig. 4 shows the sequence of the cell computation
in the similarity matrix. All the cells located on the same anti-
diagonal positions (have the same color) are computed together
(simultaneously) because they are independent of each other.
To measure the performance of the alignment implementation,

the Cell Updates per Second (CUPS) metric is commonly
used [8], which represents the time required to complete the
computation for one cell of the similarity matrix. The total
number of cell updates gives the implementation performance
of the sequence alignment algorithm:

Performance (CUPS) =
size(Query) x size(Database)

Time to complete the computation
(5)

We implement our technique using a FPGA-based linear sys-
tolic array to reduce the complexity order of the computation.
A linear systolic array [21] is an array of processing cores
where each cell shares its data with the other cells in the
array. Each processing core solves a subproblem and shares the
solution to all other cells in the array to prevent calculation
of the same problem twice. Each anti-diagonal has M cells,
and each cell can be updated in parallel, so the systolic array
consists of M Processing Elements (PEs) that each computes
a new value for the cell in the row that they are responsible
for [19].
We design the processing element (PE) of systolic array
using the FPGA logic components. The PE is used to build
a systolic array architecture of any size. Fig 5 shows the
design implementation of our processing element. Assuming
the sequences we are going to align are DNA sequences. Each
sequence consists of four codes (letters): A, C, G, T. In this
case, the two sequences Q and D are encoded using two bits
for each code (letter) as following:
A: 00, C: 01, G: 10, T: 11.
Based on the equation 2, the PE receives the values of the three
neighbor elements, the left neighbor, H(i,j-1), the up neighbor,
H(i-1,j), and the up-left neighbor, H(i-1,j-1). Each PE also
receives one code (2 bits) from each of the two sequences
(Q and D). The PE has four given parameters (marked in
yellow blocks in the figure) which are fixed for all PEs. These
parameters are the scores of match (M), mismatch (MS), gap
in sequence Q (Gx), and gap in sequence D (Gy). The PE
calculates the outcome of the matrix element H(i,j) using XOR
gate, one multiplexer, three adders, and one comparator. The
multiplexer chooses match or mismatch score based on the
similarity of the two codes compared, and sends the score to
the adder. The comparator selects the maximum value of the
three adders according to Eq. 2.
We implement our design on a Xilinx Zynq-7000 All Pro-
grammable SoC (XC7Z020-CLG484) Artix-7 FPGA from
Digilent [26]. Each PE utilizes 19 slices. The XC7Z020 has
13300 slices (1.3 M ASIC gates), i.e., we can fit a maximum
of 700 PEs on this FPGA chip. In our experimental results, we
utilize only 400 PEs as the sequences we align are of length
400 nucleotides, as explained in the next section.

V. EXPERIMENTAL RESULTS

In this section, the experimental results of our technique
are presented. To evaluate our technique, DNA sequences of
the database DNA Data Bank of Japan (ddbj) [24] are used.
100 sequences of BCT and CON divisions are selected as
case study. Each sequence has length of 400 nucleotides. The
accession numbers of the selected sequences start with the
ID ”AB”, ”AF”, ”AJ”, ”AM”, ”AY” and ”DQ”. We compare
our technique with the traditional methods which use the
first widely used program for optimal sequence alignment
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Fig. 7: Alignment and freuency difference scores for the query
(sequence number 19) with 100 database sequences

Needleman-Wunsch Algorithm [25]. The score of match, mis-
match, gap open, and gap extend are selected to be +2, -3, 0,
-4, respectively.
As our database has 100 sequences, 100 cases are tested
considering different query sequence for each case, i.e., in the
first case, we consider the first sequence as query sequence
and the remaining sequences as database. In the second case,
the second sequence is considered as query sequence and the
remaining sequences are considered as database, and so on.
The results are presented for the three similarity functions,
frequency (Freq), Standard Deviation (STD) and combination
of both functions (Freq + STD):

1- Using the frequency similarity function (Freq):
The experimental results when our technique uses (Freq) are
presented in Figures 6-9.
Figures 6, 7, and 8 show the results for three selected tested
cases, case 14, case 19 and case 40, respectively. In these
figures, the left y-axis shows the alignment score (AS) using
Needleman-Wunsch Algorithm. The right y-axis shows the
frequency difference score (FDS) of our technique. The x-axis
shows the ID of the database sequences.

11, -380 

42, -265 

11, 14 

42,94 

0

50

100

150

200

250

300

350

400

-500

-400

-300

-200

-100

0

100

1
1

4
9

3
6 7

5
5

8
6

6
4

4
8

3
9 8

6
6

3
0

5
6

2
3

3
1

6
7

6
3 6

3
3

9
4

4
6

6
1

5
3

9
2

6
2

8
9 4

6
0

2
6

9
9

8
2 5

5
0

9
1 9

1
9

3
7

1
3

4
4

5
8

4
3 1

1
0

6
9 3

2
9

4
2

1
8

3
8

1
2

5
7

5
4

2
7

2
8

Fr
e

q
u

e
n

cy
 D

if
fe

re
n

ce
 S

co
re

 (
FD

S)
 

A
lig

n
m

e
n

t 
Sc

o
re

 (
A

S)
 

Sequence ID 

Sorted Frequency  Scores

Alignment Scores for query 40# with 100 database sequences

Threshold = 46 Threshold = 46 Threshold = 46 Threshold = 46 

Fig. 8: Alignment and frequency difference scores for the
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The alignment score (AS) and the frequency difference score
(FDS) in these figures are computed for the query sequence
(sequence number 14 in Fig. 6, sequence number 19 in Fig. 7,
and number 40 in Fig. 8) with each sequence of the database.
Then, The sequences are sorted based on their frequency
difference score in ascending form, i.e., from the sequence
which has the smallest difference score to the one which has
the highest score.
The common result in these three figures is, when the fre-
quency difference score (FDS) increases across the sequences,
the alignment score (AS) decreases (or vice versa). This result
shows that the criterion we use in our technique, for selecting
the sequences to which we may apply Needleman-Wunsch Al-
gorithm on instead of the whole database sequences, is correct.
This is because the sequences which have low difference scores
have high alignment scores. In figures 6, 7, and 8, we define
new parameter called ”Threshold”. The threshold for any test
case is the number of sorted sequences between the sequence
which has the lowest frequency difference score (FDS) and the
highest alignment score (AS). In other words. The threshold
refers to the number of sequences we need to apply Needlman-
Wunsch Algorithm on them (using our technique) instead
of applying it on the whole database sequences (using the
traditional methods).
In Fig. 6, the frequency difference score (FDS) curve is marked
with a red label ”15,2”. This label means that the minimum
frequency difference score, ‘2’, occurs at the sequence number
‘15’. The alignment score curve is marked with the blue
label ”15,770”. It means that the maximum alignment score
‘770’ occurs at the sequence number ‘15’. In other words,
the sequence number ‘15’ has the lowest frequency difference
score (FDS) and the highest alignment score (AS) and the
threshold in this case is ‘0’. From this figure, we conclude that
using our technique implies that applying Needlman-Wunsch
Algorithm on the sequence number 15 is enough to get the
optimal alignment instead of applying it on the whole database
sequences (using the traditional methods). This is the best case
we get, but unfortunately it is not always the same for all cases.
In Fig. 7, the lowest frequency difference score, ‘16’, occurs
at the sequence number ‘34’ which has alignment score equal
to ‘-330’ (this alignment score is not the highest one). On the

www.ijacsa.thesai.org 229 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 8, 2015

0

5

10

15

20

25

30

35

40

45

50

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

T
h

re
sh

o
ld

 f
o

r 
e

a
ch

 c
a

se
 o

f 
th

e
 1

0
0

 c
a

se
s 

Case ID  

Threshold when our similarity  (Freq) is used

A
vg

. 

Fig. 9: The threshold for each case of the 100 cases when our
similarity function (Freq) is used

other hand, the highest alignment score, ‘-20’, occurs at the
sequence number ‘21’ which has frequency difference score
equal to ‘56’. The threshold in this case is ‘16’. In other
words, we need to apply Needlman-Wunsch Algorithm on
the lowest 16 frequency difference score sequences instead
of applying it on the whole database sequences. In Fig. 8, the
lowest frequency difference score, ‘14’, occurs at the sequence
number ‘11’ which has alignment score equal to ‘-380’ (this
alignment score is not the highest one). On the other hand, the
highest alignment score ‘-265’ occurs at the sequence number
‘42’ which has frequency difference score equal to ‘94’. The
threshold in this case is ‘46’, i.e., we need to apply Needlman-
Wunsch Algorithm on the lowest 46 frequency difference
score sequences instead of applying it on the whole database
sequences. From the previous three cases, we notice that the
threshold is not fixed. To find the maximum threshold, the test
has to be done for all cases. Fig. 9 shows the thresholds for all
100 cases. The last bar shows the average threshold through
all cases which is equal to ‘10.5’. In this figure, all 100 cases
are tested to find the highest alignment score and the lowest
frequency difference score for each case (one case for each
different query), and then the threshold were computed. From
Fig. 9, we notice that the threshold differs from one case to
another one based on the query sequence. And, the maximum
threshold among all other cases is ‘46’ which appears in the
case number 40 (as shown in Fig. 8). This is the worst case in
which we need to apply Needleman-Wunsch Algorithm on 46
sequences. In other words, when our technique is applied only
on the top 46% of the database sequences (or in general case
50%), then the maximum AS, in each case, will be included in
this top part, i.e., applying Needleman-Wunsch Algorithm on
this 50% of the database sequences will be enough to find the
maximum alignment score instead of applying the algorithm on
the whole database sequences as done by traditional methods.

2- Using the standard deviation similarity function (STD):
If the two sequences being compared/aligned have the same
(or close) number of codes frequency but the codes are
distributed in different way between the two sequences, then,
the frequency difference score (FDS) will not be correct score
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Fig. 11: The worst case threshold (the query is the sequence
number 13) when our combined similarity functions (Freq +
STD) is used

to measure the similarity. Therefore, we use the standard
deviation similarity function (STD).
Figure 10 shows the thresholds for all 100 cases when our
technique uses the STD similarity function. In this figure, the
maximum threshold (worst case) among all other cases is ‘89’
which appears in the case number 36. This is the worst case
in which we need to apply Needleman-Wunsch Algorithm on
89 sequences which is not worthy. From this figure, we can
conclude that using the standard deviation similarity function
(STD) to measure the similarity is not also a good idea because
the two sequences may have the same (or close) standard
deviation (STD) but the code frequency for each sequence
is different. Therefore, a combination of the two similarity
functions (Freq) and (STD) can give better results as shown
in the following section.

3- Using the combination of frequency (Freq) and standard
deviation similarity functions (STD):
The experimental results when our technique uses the com-
bination of the two similarity functions (Freq+STD) are pre-
sented in Figures 11-15.
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Fig. 12: The threshold for each case of the 100 cases when
our combined similarity function (Freq + STD) is used

Figure 11 shows The results, for the query (sequence number
14) with 100 database sequences, when our combined similar-
ity function (Freq + STD) is used. In this figure, the right y-
axis shows the alignment score (AS) using Needleman-Wunsch
Algorithm. The left y-axis shows the combined difference
score (FDS + DDS) of our technique. The x-axis shows the
ID of the database sequences. The combined difference score
(FDS + DDS) curve, in this figure, is marked with a red label
”66, 41”. This label means that the minimum (FDS + DDS)
difference score, ‘41’, occurs at the sequence ‘66’. The align-
ment score (AS) curve is marked with a blue label ”23,-75”. It
means that the maximum alignment score ‘-75’ occurs at the
sequence ‘32’. The number of sorted sequences on the x-axis
which are located between the minimum frequency difference
score sequence and the maximum alignment sequence (i.e.
”Threshold”) is 37.
Figure 12 shows the thresholds for all 100 cases when our
technique uses the combined similarity function (Freq + STD).
In this figure, the maximum threshold (worst case) among all
other cases is ‘37’, which appears in the case number 13.
This means, when our technique is applied only on the top
37% of the database sequences, then the maximum AS, in any
query case, will be included in this top part, i.e., applying
Needleman-Wunsch Algorithm on this 37% of the database
sequences will be enough to find the maximum alignment
score instead of applying the algorithm on the whole database
sequences as done by traditional methods. Using the combined
similarity function (Freq + STD) gives better results than
using the sole frequency function (Freq). Figure 13 shows
the threshold improvement when the combination is used. In
this figure, 47 cases are improved (bars located in the positive
area). The maximum improvement is ‘12’ which appears in
the case number 40 (the threshold of this case number is ‘46’
for frequency similarity function (Freq) and it becomes ‘34’
for the combined similarity function (Freq + STD)). There are
32 cases where the threshold is ’0’ using the (Freq) function
and they remain the same in the (Freq + STD) function. The
remaining 21 cases are changed negatively (bars located in
the negative area). When our technique applies Needleman-
Wunsch Algorithm on less than 37 sequences of the database
and repeated for 100 cases (each case with different query),
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Fig. 13: Improvement of the threshold when the combined
similarity functions (Freq + STD) is used instead of the sole
frequency similarity function (Freq)

0

10

20

30

40

50

60

70

80

90

9
9

9
6

9
3

9
0

8
7

8
4

8
1

7
8

7
5

7
2

6
9

6
6

6
3

6
0

5
7

5
4

5
1

4
8

4
5

4
2

3
9

3
6

3
3

3
0

2
7

2
4

2
1

1
8

1
5

1
2 9 6 3 0

#
 o

f 
w

ro
n

g
 c

a
se

s 
re

su
lt

e
d

 f
ro

m
 r

e
m

o
vi

n
g

 s
e

q
u

e
n

ce
s 

fr
o

m
 

th
e

 d
a

ta
b

a
se

 

# of removed sequences from each database for 100 cases 

Number of wrong cases based on

number of removed sequences

Fig. 14: The error rate resulted from removing sequences from
the database

then the result will not be correct for all the 100 cases, i.e.,
the sequence which has the lowest difference score is not the
same as the sequence which has highest alignment score. The
results differ based on the number of removed sequences from
the database.
Fig. 14 shows the error rate resulted from removing sequences
from the database. The x-axis shows the number of removed
sequences from each database for 100 cases (for clarity, we do
not show all 100 cases). The y-axis shows the number of wrong
cases resulted from removing sequences from the database. For
example, when 99 sequences are removed from the database
and our technique is repeated for the 100 cases, there will be
‘78’ wrong cases and only ‘12’ cases will have correct results,
i.e., in each case of the 12 cases, the the sequence, which has
the lowest difference score, has the highest alignment score.
When the number of removed sequences decreases, the error
rate will be decreased and the number of correct cases will
be increased. When the number of removed sequences is ‘63’,
i.e., only ‘37’ sequences are remained in the database, there
will be no wrong cases. This is the best case in terms of the
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size of the database and the execution time. Removing less
number of sequences will not effect on the result but negatively
will increase the size of the database and consequently the
time required to analyze it. Fig. 15 shows comparison between
the execution time of traditional methods and our technique.
In this figure, The x-axis shows the 100 cases (not all cases
are shown for clarity purpose). For each case, different query
sequence used to be aligned with the remaining sequences of
the database. The y-axis shows the execution time required for
each case. The blue bar shows the time for traditional methods
which apply NW algorithm on whole database sequences while
the red one shows the time for our technique which applies
NW algorithm on selected 37% of the database sequences. The
last bars show the average time through all 100 cases.
In this figure, the execution time using our technique is
63% improved in comparison to the execution time required
using the traditional methods. (the average time for traditional
methods is 4.18 sec. while the average time for our technique
is 1.8 sec.). This result we got because we have excluded
selected 63% of the sequences from the process of applying
Needleman-Wunsch Algoritm by using our technique.

VI. CONCLUSIONS

We have presented new technique to accelerate the database
sequence alignment. Our technique has the advantage of the
heuristic and deterministic algorithms that can delivers opti-
mal and fast solution We compared our technique with the
traditional methods which apply the alignment algorithms on
the whole database sequences and showed that our technique
saves almost 63% of the time required to perform the se-
quence comparing. Merging our technique with the state-of-
the-art database computing technique may further improve the
execution time.
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