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Abdelmalek Essaâdi University,
P.O. Box 2121, Tetuan, Morroco

Abstract—Over the past two decades, the use of distributed
embedded systems is wide in many applications. One way to
guarantee that these systems tolerate transient faults is done by
making them self-stabilizing systems, which automatically recover
from any transient fault.
In this paper we present a formalism of self-stabilization concept
based on Linear Temporal Logic (LTL), and model checked
the self-stabilization in embedded systems. Using a case study
inspired by industrial practice, we present in detail a model
checking to verify the self stabilization property of our embedded
system.
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I. INTRODUCTION

A general-purpose definition of embedded systems is that
they are devices used to control, monitor or assist the operation
of equipment, machinery or plant. Embedded reflects the fact
that they are an integral part of the system. In many cases,
their embeddedness may be such that their presence is far
from obvious to the casual observe [1]. There are cases in
which reliability is the most important requirement of those
systems. To guarantee that these systems tolerate transient
faults, we should make them self-stabilizing systems. This type
of fault-tolerance is desirable in many distributed embedded
systems [2], [3]. Verifying the correctness of those systems is
a challenging task while testing them is intractable.

To make a rigorous verification of these systems, properties
should be described in a precise and unambiguous manner.
This is typically done by using properties specification lan-
guage. There is several variety of different logics, according
to the types of properties that they can express. In particular,
we will focus on the use of LTL (Linear Temporal Logic)
[4] [5], as a property specification language. To verify that a
system meets its specification, we use the connection between
temporal logic and the automata theoretical approach to model
checking [5] [6]. The latter applies the intimate relationship
between LTL and automata on infinite words. In [7] it was first
proven that the set of infinite words, defined by LTL formula,
can be accepted by some automaton on infinite words. Several
procedures have been suggested which construct a generalized
Bchi automaton that recognizes all models of a LTL formula
[8] [9] [10].

Within computer science, the LTL has achieved a signifi-
cant role in formal specification and verification of concurrent

reactive systems. It is a very powerful specification mecha-
nism, since it allows the expression of complex requirements
through simple formulas. Actually it is widely used for ver-
ification of software systems [11] [12]. It provides a formal
specification mechanism allowing the quantitative definition
of the desired behaver of a systems. It makes it possible to
succinctly express complex objectives due to its similarity to
natural language.

The model checking is an automatic technique for verifying
correctness properties of reactive systems, the two feathers that
made the model checking [7] [12], so popular are that it can
easily be automated and that is often able to produce a coun-
terexample when the system can not meets its specifications.
However the applicability of model checking is limited by the
problem of the state space explosion. But luckily, the model
checking on the fly is a remedy to this problem.

The linear temporal logic can be appropriate way to
formalize the definition of self stabilisation of the systems.
The Self-stabilizing systems witch were first introduced by
Dijkstra in 1974 [13] [14] are the systems that can start in any
global configuration and achieve behaviour meeting the task
specification by them self.

Our main contribution in this paper is a proposition of an
LTL formalism of the self stabilization concept, and model
checking the embedded systems in order to verify there self-
stabilization, based on the different phases of model checking
Process:

i. Modelling the system: We will model our embedded
system. For this modelling, we use the transition
system and KRIPKE stricture that we will define
properly later.

ii. Specification of the property to check: In this step,
we will present our formalism of the self-stabilization
concept. Basing on the LTL language, we will check
the specification of our property.

iii. Using an algorithm or method to check whether the
property is satisfied by the model: For this step we
choose the model checking as a method of verification.

This paper is organized as follows: After the introduction,
we define the tools used in modelling our system and we
describe our model, in the second section called modelling
the system. In the section tree named the specifying of the
property, we put on the notation used in this paper and we
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present our formalism of the self stabilization based on the
LTL logic. In the forth section named algorithm of verification,
we describe in details the steps of model checking algorithm
that we use to verify our formalism. Finally in the conclusion,
we conclude and give a future extension of our work.

II. SYSTEM MODELISATION

The semantic framework for algorithmic verification sys-
tems is given by transition systems and Kripke structures.
These later and automata are used to model the reactive
systems. They must then validate the model by determining if
it satisfies the required properties of the systems. The system
of ownership is expressed in terms of its states, transitions or
paths.

In this part we are going to give the formal definitions of
transition systems and Kripke stricture used to describe our
system and define in details our model.

A. Background

Transition systems Transitions systems define the possible
states of a system, its initial states and transitions. They provide
a framework for describing the operating semantics for reactive
system. To describe the behaviour of systems, we can model
them by transition systems with are a digraphs where nodes
represent states, and edges model transitions.

A transition system TS is a tuple (S, S0, R) where

• S is a set of states.

• S0 is a set of initial states.

• R ⊆ S × S is a transition relation.

To define Kripke stricture we use the usual definition of
transitions systems and extended it by adding a labelling of
states with atomic propositions.

Definition AP is a set of atomic propositions. A Kripke
structure on AP is M = (S, S0, R, L) where:

• (S, S0, R) is a transition system.

• L : S −→ 2AP is a function that label each state
s ∈ S the set L(s) of atomic propositions true in s.

A path π of a M is a path of transitions system associated.

The trace σ of π is ω-word L(π) = L(s0)L(s1)... in the
alphabet

∑
= 2AP

1) Our Model: Our model is a parts conveying robot
presented with finite state model. It’s as a case study of
embedded systems. This example is presenting in [15]. The
robot has 3 devices: An inlet device parts called Dp, a
workpiece transport device, called Td which is an arm provided
with a clamp, and finally a workpiece removal device called
Rd, where Td transports parts arriving on Dp. At a certain
level of abstraction, the system is defined by three principles
operations that can be stated as:

1) Td transport device files the piece on the discharge
device if De is free.

2) Td transport device can mount just if it is taking up
a devise.

3) Td transport device can get off just if it is empty.

For simplicity, we ignore Dp and will only interested in the
introduction of the devise in Td and its release on De. We
will not take in consideration operations (opening, closing,
etc.) of the clamp, we will essentially look at the transport
parts. All the developments of the system, in this operation
mode is represented by the graph in bellow: The drawn

Fig. 1: Kripke Stricture of parts conveying robot

graph is called reachability graph. It represents all possible
executions of the system. These are infinite sequences of
couples (state transition) represented by a finite graph. As there
is no distinction of terminal states, we say that this structure is
a transition system. The states are decorated by the values of
variables De and Td, where ’free’ and ’occupied’ values are
represented schematically by the presence or absence of a part
shown by a gray rectangle. TS with decorated states is called
Kripke Structure. It is the The formal model that represents
all executions.

III. PROPERTY SPECIFICATION

Temporal logic was originally developed in order to rep-
resent tense in natural language. Temporal logic extends
propositional or predicate logic by modalities that permit to
referral to the infinite behaviour of a reactive system. They
provide a very intuitive and mathematical precise notation
for expressing properties about the relation between the state
labels in executions. Temporal logic allows for the specification
of the relative order of events. The linear temporal logic has
achieved its popularity from the number of useful concepts
that can formally and concisely be specified by using it.

A. Linear Temporal Logic

The linear temporal logic extends classical logic by tem-
poral modalities. Its formulas are interpreted on infinite se-
quences of states such as executions of a Kripke structure.
Before introducing LTL in more detail, LTL may be used to
express the timing for the class of synchronous systems in
which all components proceed in a lock-step fashion. In this
setting, a transition corresponds to the advance of a single
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time-unit. The underlying time domain is thus discrete, i.e.,
the present moment refers to the current state, and the next
moment corresponds to the immediate successor state.

This subsection describes the syntactic rules according
to which formulae in LTL can be constructed. The basic
ingredients of LTL-formulae are atomic propositions. The
Boolean connectors like conjunction ∧, and negation ¬, and
two basic temporal modalities © (pronounced next) and ∪
(ponounced until). The elementary temporal modalities that
are present in most temporal logics include the operators:

• ♦ eventually (eventually in the future).

• � always (now and forever in the future).

1) LTL Syntax: LTL formulae over the set AP of atomic
proposition are formed according to the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 ∪ ϕ2

where a ∈ AP .

We mostly abstain from explicitly indicating the set AP of
propositions as this follows either from the context or can be
defined as the set of atomic propositions occurring in the LTL
formula at hand.

The precedence order on the operators is as follows:
The unary operators bind stronger than the binary ones. ¬
and � bind equally strong. The temporal operator ∪ takes
precedence over ∧,∨ and→ Parentheses are omitted whenever
appropriate.

LTL formulae stand for properties of paths or in fact their
trace. A path can either fulfil an LTL-formula or not. To
precisely formulate when a path satisfies an LTL formula, we
can follow this steps: First, the semantics of LTL formula ϕ
is defined as a language Words(ϕ) that contains all infinite
words over the alphabet 2AP satisfy ϕ. That is, to every LTL
formula a single LT property is associated. Then, the semantics
is extended to an interpretation over paths and states of a
transition system.

2) LTL Semantic: Let ϕ be an LTL formula over
AP. The LT property induced by ϕ is: words(ϕ) =
σ ∈ (2AP )ω | σ |= ϕ where the satisfaction relation |=⊆
(2AP )ω × LTL is the smallest relation with the properties.

Here, for σ = A0A1A2 · · · ∈ (2AP )ω, σ[j . . . ] =
AjAj+1Aj+2 . . . is the suffix of σ starting in the (j+1)st
symbol Aj .

• ϕ |= true

• ϕ |= a iff a ∈ A0(i.e, A0 |= a)

• ϕ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 et σ |= ϕ2

• ϕ |= ¬ϕ iff σ 3 ϕ

• ϕ |=©ϕ iff σ ∈ [1 . . . ] = A1A2A3 . . . |= ϕ

• ϕ |= ϕ1 ∪ ϕ2 iff ∃j > 0 such that σ[j . . . ] |= ϕ2 and
σ[i . . . ] |= ϕ1, for all 0 6 i < j

Essentially, temporal logic extends classical propositional
logic with a set of temporal operators that navigate between
worlds using this accessibility relation. Typical temporal oper-
ators used in LTL are:

• ©p : p is true in the next moment in time

• �p : p is true in all future moment

• ♦p : p is true in some future moment

• p ∪ q : p is true until q is true

B. Self-Stabilization

The idea of self-stabilization in distributed computing was
first proposed by Dijkstra in 1974 [13]. The concept of self-
stabilization is that, regardless of its initial state, the system
is guaranteed to converge to a legitimate state in a bounded
amount of time by itself and without any outside intervention.

The self-stabilization principle applies to any system built
on a significant number of components which are evolving
independently from one another, but which are cooperating
or competing to achieve common goals. This applies, in
particular, to large distributed systems which tend to result
from the integration of many subsystems and components
developed separately at earlier times or by different people.

1) Formal Definition: Arora and Gouda [16] introduced a
more generalized definition of self-stabilization, called stabi-
lization, which is defined as follows:

The definition of stabilization for a system S with respect to
two predicates P and Q, over its set of global states. Predicate
Q denotes a restricted start condition. S satisfies Q −→ P (read
as Q stabilizes to P) if it satisfies the following two properties:

i. Closure: P is closed under the execution of S. That is,
once P is established in S, it cannot be falsified.

ii. Convergence: If S starts from any global state that
satisfies Q, then S is guaranteed to reach a global state
satisfying P within a finite number of state transitions.

The self-stabilization is a special case of stabilization where
Q is always true, that is, if S is self-stabilizing with respect to
P, then this may be restated as TRUE −→ P in S.

2) Self-Stabilization Formalism: Based on the definition
above, we propose a formalism of the self-stabilization. The
advantage that this definition has among the other versions, is
that it uses the predicate Q and P, thing that makes the use of
LTL logic easier. To formalize the self stabilization using the
LTL logic, we should do it for its two properties: closure and
Convergence.

Let P and Q be a predicates of S, and σ = [s1s2s3....]
is an execution of S, the |=, � and ♦ are defined in section:
semantic of LTL.

The semantic of the closure is provided by the definition:
Once S is in a legitimate state P, it will stay in that legitimate
state. Formally, we interpret it as follow:

• s |= ♦�p

For the convergence, it can be defined as: From any
arbitrary state that satisfy Q, S is guaranteed to reach a
configuration satisfying P, in a finite number of state tran-
sitions. This can be translated to LTL language as follow:
((σ, i) |= Q) =⇒ (♦((σ, k)i≤k<∝ |= P )) witch means that:
∀i,∃j such that i 6 j <∞ (si |= Q) =⇒ ♦(sj |= P )
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And we have
S |= φ ⇐⇒ σ |= φ(∀σ ∈ Exc(S)) and σ |= φ ⇐⇒ si |=
φ(∀si ∈ σ)
Hence we can write
(S |= Q) =⇒ ♦(S |= P )
Taking in consideration that (a =⇒ b)⇐⇒ (¬a ou b) we can
formalise the convergence as follow:
(S 2 Q) ∨ (♦(S |= P ))

IV. VERIFICATION ALGORITHM

In order to test the validity of this both LTL formula, we
should follow one of the verification methods. From the variety
of methods that exist in literature, we chose the verification of
model checking.

The model checking is a verification technique that ex-
plores all possible system states in a brute-force manner. It
is interested by the determination of whether a property ϕ is
verified by the system M as mention this figure:

Fig. 2: Modelization with Model Checking

In this way, it can be a good method of verification of our
self stabilization formalism, since it refers to the question of
whether a formula is true in an interpretation, denoted M |= ϕ.
Where a Kripke structure M can be a Petri net or a computer
system, and the formula ϕ specifies our formalism witch is a
property of system.

A. Model Checking

As principles, the model checking is an automated tech-
nique that, given a finite-state model of a system and a formal
property, it checks systematically whether this property holds
for that model.

A different phases can be distinguished In applying model
checking Process:
Modeling phase: We model the system under consideration
using the model description language of the model checker.
Formalization phase: We formalize the property to be checked
using the property specification language. Running phase: We
run the model checker to check the validity of the property in
the system model.

Fig. 3: The principle of model checking

In addition to these steps, the entire verification should be
planned, administered, and well organized as shown in this
algorithm:

• Input: KRIPKE stricture M, and LTL formula ϕ.

• Issue: If M |= ϕ

• Steps:
1) Transformation of Kripke stricture M to Buchi

automata AM .
2) Transformation of the LTL formula ϕ to

Buchi automata Aϕ.
3) Test whether L(AM ) ⊆ L(Aϕ) ⇐⇒

L(AM ) ∩ L(Aϕ)
c

This can be formally written as: Input: finite transition system
TS and LTL formula ϕ. Output: yes if TS|= ϕ; otherwise, no
plus a counterexample. Transforming ϕ to GBA: Construct an
NBA A¬ϕ such that ιω(A¬ϕ) = Words(¬ϕ). Construct the
product transition system TS ⊗ A if there exists a path π in
TS⊗A satisfying the accepting condition of A then return no
and an expressive prefix of π else return yes End if.

We presente the concept of model checking in somewhat
in the diagram bellow: Overview of LTL model checking

B. Running Phase

In this subsection we will respect the model checking al-
gorithm, and implement explicitly each step in more details. In
the execution of model checking algorithm, the most difficult
phase, is the second phase which is the transformation of the
LTL formula ϕ to a Buchi automaton Aϕ. For that reason, we
will make such a big deal about this step of algorithm.

1) ϕ to BA Transformation: This stage of model checking
algorithm is known of its difficulty. There are several ways to
realize it[ref]. We are going to choose the method of Tables.
Based on the following equivalences:
ϕ ∪ ϕ1 ≡ ϕ1 ∨ (ϕ ∧X(ϕ ∪ ϕ1)).
ϕRϕ− 1 ≡ (ϕ ∧ ϕ− 1) ∨ (ϕ− 1 ∧X(ϕ ∧ ϕ− 1)).
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And considering a Z-shaped set of negative normal formulas,
Z is reduced if:
For all z ∈ Z, z is of the form p, ¬p or X(z′).
We obtain the follow reduction of temporal connectors:

Fig. 4: Reduction of temporal conectors

This method involves, the reduction of the LTL formula
ϕ to the normale negative form, the reduction of the temporal
connectors, and finally the transformation to a Buchi automata.

From above, we obtain our Buchi automaton of closure and
convergence properties:

Fig. 5: Buchi automata for closure

Fig. 6: Buchi automata for convergence

2) Kripk Stricture to BA Transformation : From the Kripke
structure of our model, we can is obtain the follow Buchi
automata that it correspond:

Fig. 7: Buchi automata for convergence

This automaton is obtained by performing three transfor-
mations:

1) Introduction of the initial condition i connected by a
transition to the initial state of the Kripke structure.

2) Replacing Labels transitions by the decor of their
target state.

3) Make all statements as acceptance states.

3) Buchi Product Checking : The model-checking is re-
duced to a problem in automata theory, since finite-state
reactive programs can be represented quite naturally as Buchi
automata [17]. A Buchi automaton is a non-deterministic
finite-state automaton taking infinite words as input. A word
is accepted if the automaton goes through some designated
good states infinitely often while reading it. In this level,
we are going to make the synchronized product of both
Buchi automata, formula’s automata and model’s automata.
The product of model automata and formula’s automata is
given by : .

Fig. 8: Product of Buchi automata for closure

With the description of language of infinite strings with an
automaton having finitely many states, the infinite string must
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make a cycle though some of the states of the automaton. For
the string to be accepted, it must also be possible to reach
this cycle from the start state. We thus process the product
automaton by first finding the set of states that are reachable
from the start state, and then checking whether any of them is
in a cycle. This can be made more efficient by checking for
cycles as each state becomes reachable. If a reachable cycle
is found, then there is some string in the intersection of the
language of the model and the language of the negation of the
desired formula. Thus, the desired formula is not valid in the
model, and the found string is a counterexample. On the other
hand, if there is no reachable state that is part of a cycle, then
the language is empty and the original formula is valid in the
model.

I our case, the existence of these acceptors cycles indicates
that the property of closure is not satisfied, therefore our
system is not self stabilized.

V. CONCLUSION

In summary, we model checked our embedded system to
verify LTL self stabilization formalism requiring the following
steps:

1) Model: view it as a Buchi automaton, with all states
as final states.

2) Formula: Negate the formula of self stabilization
and perform the following conversion steps to obtain
Buchi automaton A¬ϕ
• Convert the formula to normal form (essen-

tially, push negations down to atoms).
• Convert the normal form to a graph.
• Convert the graph to a generalized Buchi

automaton (essentially identify the final states
and appropriate state labelling).

• Convert the generalized Buchi automaton to a
Buchi automaton (essentially convert the set
of sets of final states to a single set of final
states, by duplicating the automaton)

3) Compute the product of the two automata, which
accepts the intersection of the two languages.

4) Determine whether the product automaton accepts
any strings. we noticed that closure formulas is not
satisfied in our system, then our robot is not self-
stabilizing system.
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