
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

27 | P a g e

www.ijacsa.thesai.org

Flow-Based Specification of Time Design

Requirements

Sabah Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Abstract—This paper focuses on design requirements in real-

time systems where information is processed to produce a

response within a specified time. Nowadays, computer control

applications embedded in chips have grown in significance in

many aspects of human life. These systems need a high level of

reliability to gain the trust of users. Ensuring correctness in the

early stages of the design process is especially a major challenge

in these systems. Faulty requirements lead to errors in the final

product that have to be fixed later, often at a high cost. A crucial

step in this process is modeling the intended system. This paper

explores the potential of flow-based modeling in expressing

design requirements in real-time systems that include time

constraints and synchronization. The main emphasized problem

is how to represent time. The objective is to assist real-time

system requirement engineers, in an early state of the

development, to express the timing behavior of the developed

system. Several known examples are modeled and the results

point to the viability of the flow-based representation in

comparison with such time specifications as state-based and line-

based modeling.

Keywords—design requirements; conceptual model; time

constraints; model-based systems engineering; requirements

specification

I. INTRODUCTION

The product development life cycle in the engineering
domain aims at achieving, among other goals, a design process
with complete and precise specifications that satisfy all
requirements. Requirements are descriptions of functions,
features, and goals of the product. The requirements describe
‗what‘ the intended product should do, but the ‗how‘ is
specified as design requirements during the design phase,
where measurability and verifiability are of utmost importance.
Design requirements (the focus of this paper) include the
specifications that the intended product must meet in order to
pass the acceptance test. Specifications consist of information
that controls the creation of the intended product.

Early assurance of the correctness of design requirements is
a major challenge in any system. Faulty design requirements
lead to errors in the final product that have to be fixed later,
often at a high cost. Reoccurring causes of failures include:

 Inadequate definitions and modifications of
specifications

 Faulty interpretation and understanding

 Not meeting customer requirements

 Design not meeting manufacturing requirements

 Difficulties in specifying technical requirements

 Difficulties in interpreting and understanding
specifications [1]

There are various methods for specifying real-time systems.
For example, prototyping tools can be used by the designer and
user to view the product in the development stage [2].
However, prototyping is a phase that comes after the
specifications. If prototyping has produced unsatisfiable
results, then the designer may have to re-specify the
requirements. There are also formal specifications of real-time
systems that should enable the system designer to verify
mathematically that a system meets timing constraints.
However, formal methods are still limited as a verification tool,
especially for software systems, not to mention the complexity
introduced by timing. Various specification languages for real-
time systems with timing constraints can be expressed within
the specifications (e.g., [3]), ―but at the cost of restricting other
features‖ [4].

The specifications of design requirements are usually
formulated in a mixed of English, tables, graphs, screen shots,
and unified modeling language (UML) diagrams. According to
Palshikar [5], design requirements are examined in terms of:

 accurate reflection of the users‘ requirements

 clarity, unambiguity, and understandability

 flexibility and feasibility for the engineers

 easily defined acceptance test cases

 an abstract and high-level manner of writing, away
from design, implementation, and technology
platforms

―Despite some help from modeling tools such as UML, the
problem of ensuring the quality of requirements remains. The
process is heavily manual and time-consuming, involving
reviews and sometimes-partial prototyping. Using multiple
notations (such as those in UML) introduces additional
problems‖ [5].

Additionally, this paper is concerned with design
requirements in real-time systems where information is
processed to produce a response within a specified time. A
real-time system interacts with the environment within certain
timing constraints and the requirement specifications for such a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

28 | P a g e

www.ijacsa.thesai.org

system must include representation of timing which can
guarantee meeting these constraints. The notion of time is an
important element in such systems, especially if critical
features (e.g., safety) are functionally required. The problems
here are how to represent time, how to capture causality
behavior, and how to integrate functional and timing activities
[6].

Embedded systems where the software is completely
encapsulated by the hardware that it controls are often real-
time systems. An embedded system is a system that interacts
continuously with its physical sphere via sensors and actuators.
Nowadays, computer control applications embedded in chips
have grown in significance in many aspects of human life (e.g.,
medicine, mobile phones, and vending machines). These
embedded systems need a high level of reliability to gain the
trust of users. Ensuring correctness in the early stage of the
design process is especially a major challenge in these systems.

A crucial step in this process is modeling the intended
system. Model-based design has been introduced as the method
to deal with the design process where the requirements are
specified in a systematic way before continuing with the design
and implementation phases. A great deal of attention has
focused on this, such as interest in the unified modeling
language with its graphical notation, which is used for
documentation, communication, and requirement capture, as
well as being an abstraction base for implementation details.
This paper explores the potential of the flow-based modeling
[7–12] in expressing design requirements in real-time systems
that include time constraints and synchronization.

This paper focuses on the representation of timing
constraints. The objective is to assist real-time system
requirement engineers, at an early state of the development, to
express the timing behavior of the developed system.
Representation here refers to humans‘ and machines‘
representation of knowledge for the purpose of communication
and understanding and analyzing the embedded semantics
(e.g., diagrams, formal notations). Representation is usually
associated with reasoning (e.g., the computational
understanding of human-level cognitive abilities). This
concentrates on the representation aspect that can be used for
manual or computation analysis, as in problem solving in
artificial intelligence.

In preparation to recast the representation of several known
design problems in terms of flow-based modeling, and to make
this paper self-contained, the next section briefly reviews
published materials describing the flow-based model. Several
features of the model will be further illustrated.

II. FLOWTHING MODEL

The flowthing model (FM) is a uniform method for
representing ―things that flow,‖ called flowthings. Flow in FM
refers to the exclusive (i.e., being in one and only one)
transformation among six states (also called stages): transfer
(input/output), process, creation, release, arrival, and

acceptance, as shown in Fig. 1. We will use receive as a
combined stage of arrive and accept whenever arriving
flowthings are always accepted.

Fig. 1. Flowsystem

A flowthing has the capability of being created, released,
transferred, arrived, accepted, and processed while flowing
within and between ―units‖ called spheres. A flow system
(referred to as flowsystem) is a system with six stages and
transformations (edges) between them. In FM, flows can be
controlled by the progress (sequence) of the stream of events
(creation, release, transfer, transfer within the next sphere,
release, reception, …) or by a triggering (denoted by a dashed
arrow) that can initiate a new flow. Spheres and subspheres are
the environments of the flowthing, such as a company, a
computer, and a person. A sphere can include the sphere of a
flowsystem that includes the transfer stage. Triggering is the
transformation from one flow to another, e.g., a flow of
electricity triggers a flow of air.

Example: In studying a ―successful‖ model checking for
verifying requirements, Palshikar [5] used a simple pumping
control system that transfers water from a source tank A into
sink tank B using a pump P as shown in Fig. 2. Each tank has
two level-meters to detect whether their levels are empty or
full. The tank level is ok if it is neither empty nor full.

Initially, both tanks are empty. The pump is to be switched
on as soon as the water level in tank A reaches ok (from
empty), provided that tank B is not full. The pump remains
turned on as long as tank A is not empty and as long as tank B
is not full. The pump is to be switched off as soon as either
tank A becomes empty or tank B becomes full. The system
should not attempt to switch the pump off (on) if it is already
off (on). [5]

Fig. 2. A simple pumping control system (redrawn from [5])

Finite state machine (FSM) approach is utilized as an
abstract notation for defining requirements and design. Fig. 3
shows the FM representation of this pumping control system. It
impedes some assumptions which are illustrated in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

29 | P a g e

www.ijacsa.thesai.org

Fig. 3. FM representation of the pumping control system

Fig. 4. Illustration of assumptions in FM representation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

30 | P a g e

www.ijacsa.thesai.org

In Fig. 4, it is assumed that water flows in tank A with the
transfer of this flow controlled within that tank system. The
water does not flow to tank B (and therefore tank B is drawn
above tank A). Accordingly, the pump is installed between the
two tanks to push the water toward tank B.

Tank A is a flowsystem with transfer, receive, process, and
release stages. The transfer stage is drawn twice to simplify the
drawing. The gate valve controls the transfer to tank A. As
soon as the valve is opened the water is received in the tank.
The process in tank A involves measuring the amount of water
and, accordingly, the valve is opened or closed. At the bottom
of tank A there is no control, hence release and transfer to the
pump is immediate. This is analogous to passengers that
proceed immediately to a waiting airplane after finishing
passport processing. Imagine that this passport checking is on
one end of the boarding bridge while the airplane is at the other
end of the bridge. In this case, the bridge would correlate to the
release stage as part of the airport system. Moving from the
bridge end to the airplane door would be a flow between two
transfer stages. Accordingly, in tank A‘s control system, the
flow from the tank to the pipe (see the figure) leading to the
pump is a flow between two transfer stages. It is possible to
include each pipe in Fig. 3 as a flowsystem with transfer,
release, and transfer stages. However, this is not shown in the
Fig. 3.

The pump is similarly a flowsystem. The process stage
involves pushing/not-pushing the water toward tank B. There is
no need for valves because the water cannot flow to tank B
without pushing.

There seems to be incompleteness in Palshikar [5]‘s
original description of this system in a case where both tanks
are full. In this case, the valve to tank A is closed and the pump
is off forever. Accordingly, an outlet has been added in the
flowsystem in tank B.

Switching the description to Fig. 3, the water flows in
(circle 1 in the figure) to be processed (circle 2, measuring its
water level) and accordingly opens or closes the valve (3).
Also, the processing triggers (4) the control flowsystem of tank
A to send a signal (5) about the current level of water: empty,
okay, or full to the pump control system. On the other hand,
tank B also sends (6) such a signal. These signals are processed
in the pump control flowsystem (7) to turn on/off the pump (8),
which results in the stoppage or flow of the water to tank B (8).

The next section applies FM to the method known time
representations in order to compare the two methods side by
side.

III. TIME AND FM

Time requirements play a central role in understanding and
designing systems. Timing is typically incorporated after tasks
and software architectures are defined, when holistic
scheduling algorithms and expected worst-case execution times
are analyzed [13]. This paper does not involve such a detailed
level of description; rather, it is concerned with a very high
level of requirements specifications, e.g., the level of UML
use-case, sequence, and activity diagrams. Accordingly, this
section relates time to its representation in FM.

Philosophically, time can be conceptualized as a fourth-
dimensional phenomenon. Such a conceptualization is inspired
by Edwin Abbott‘s Flatland:

Dr. Abbott pictures intelligent beings whose whole
experience is confined to a plane, or other space of two
dimensions, who have no faculties by which they can become
conscious of anything outside that space and no means of
moving off the surface on which they live. He then asks the
reader, who has consciousness of the third dimension, to
imagine a sphere descending upon the plane of Flatland and
passing through it. How will the inhabitants regard this
phenomenon? […]

Their experience will be that of a circular obstacle
gradually expanding or growing, and then contracting, and they
will attribute to growth in time what the external observer in
three dimensions assigns to motion in the third dimension. If
there is motion of our three-dimensional space relative to the
fourth dimension, all the changes we experience and assign to
the flow of time will be due simply to this movement, the whole
of the future as well as the past always existing in the fourth
dimension. (Italics added.) [14]

The sphere (ball) is seen as constantly changing, and the
whole change from birth to disappearance is the ―lifetime‖ of
the sphere. Applying the 3-dimensional world, this time must
then be a 4th dimension.

Strachan [15]‘s conceptualization of the same phenomenon
is as follows:

Let‘s imagine a miniature world which is a cube. Now
suppose that one of the faces of the cube—say the bottom
face—is a little 2-dimensional world, a Flatland, inhabited by
creatures called ‗Toodies‘ (2-D) . . .

Since the Toodies‘ Flatland is infinitely thin . . . , then an
infinite number of Flatlands could be stacked into the cube . . .

But let us now suppose that a Toody is subjected to some
force which can lift him up the 3rd (up and down) dimension
of the cube. So he is propelled out of his own paper-thin world,
the bottom face of the cube, right up through the cube to its top
face. As he does so, he will pass through all the 2-dimensional
‗paper‘ Flatlands which lie in between. Since the whole cube
exists, then all of these Flatlands exist, even though they won‘t
exist for Toody until he reaches them. So they lie in Toody‘s
future.

But change occurs, and can only occur, in time. So his
movement in this 3rd (up/down) space dimension will seem
like the passage of time to Toody: it is his time dimension.
(Italics added.)

A. Time as spheres

Accordingly, from the FM point of view, these ―flatlands‖
are flowthings that flow through times spheres: past1, past2, . . .
, now, future1, future 2, . . . In this case, time is modeled as
spheres. All of these spheres are projections of different times
on flatlands. UML representation of this modeling of time is
shown in Fig. 5, which includes slices of time with processes
happening in them. Fig. 6 shows the corresponding FM
representation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

31 | P a g e

www.ijacsa.thesai.org

Fig. 5. Sample of UML representation of time (from [16])

Fig. 6. Time spheres with ―flatlands‖ flow through them

Fig. 7. Cylinder is used instead of a cube to illustrate time flows through ―Flatlands‖

B. Time as flowthings

Alternatively, time can be conceptualized as a flowthing
that flows through ―flatlands.‖ In this case, Strachan [15]‘ s
cube (though we prefer to use a cylinder instead of a cube; see
Fig. 7) passes through all the 2-dimensional Flatlands,
accomplishing the same result.In this case, time in FM is a
flowthing that can be released, transferred, received, and

processed. For each flowsystem, it is processed to count its
passing though counting, as will be illustrated in the next
section. In FM, time is something that flows contiguously from
a fourth-dimension sphere to any other sphere, as shown in Fig.
8. If this is of relevance to flows or triggering in that sphere, it
is represented by a flowsystem. This conceptualization of time
as a flowthing will be utilized in the discussions in the next
sections.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

32 | P a g e

www.ijacsa.thesai.org

IV. LINEAR TIME DIAGRAMS

Timing diagrams ―focus on conditions changing within and
among lifelines along a linear time axis … on time of events
causing changes in the modeled conditions of the lifelines‖
[17]. They utilize the notions of lifeline, state or condition
timeline, destruction event, duration constraint, and time
constraint. Timelines are one of the simplest means of
representing the flow of events. In UML 2, timing diagrams are
a special form of sequence diagrams where the axes are
reversed and the lifelines are shown in separate compartments
arranged vertically. These diagrams ―aren‘t the most popular‖
[18].

According to the Web site [17], time duration constraint
refers to the duration used to determine whether the constraint
is satisfied. It is an association between a duration interval and
the constructs that it constrains. For example, that ice should

melt into water in 1 to 6 minutes can be represented as shown
in Fig. 9. From the conceptual point of view, lining (putting in
one category) ice, melting, and water is a categorical mix. Ice
and water can be categorized as ―states‖ of H2O, but melting is
certainly not. Also, it seems that H2O is another name for
water. Fig. 10 shows the FM representation.

There are three subspheres: time, ice, and water. The units
of time are continuously received (1) and ignored. They are
processed (2) as soon as the melting (a kind of process (3))
starts in the ice sphere until ―counting‖ 6 units of time. When
the ice starts melting (3), it triggers (4) the counting
(processing (2)) of time. When the melting ends (5), the time is
ignored again (6) and water is generated (7). The model
reflects that time always flows through systems, and thus time
constraint is awareness of this flow and alignment of events
with the flowing time.

Fig. 8. Time conceptualization FM representation

In addition, a time constraint is time expression used to
determine whether the constraint is satisfied. ―All traces where
the constraints are violated are negative traces, i.e., if they
occur, the system is considered as failed‖ [17]. Fig. 11 is given
as a representation of this constraint. It involves two states:
sleep and awake. At the change from sleep to awake, the time
period {5:40 a.m., 6 a.m.} passes to accomplish this change.
The state (sleep or awake) is represented by a horizontal line:
no line, no state. The change from a state to another is
represented by a vertical line that connects the horizontal lines.
The delay that corresponds to the change is represented by the
diagonal line and the text {5:40 a.m., 6 a.m.} at the point of
beginning the awake state.

Fig. 9. Representation of how ice should melt into water in 1 to 6 minutes

(from [17])

Fig. 10. FM representation

Fig. 11. Person should wake up between 5:40 a.m. and 6 a.m

Semantically, {5:40 a.m., 6 a.m.} is the ―length‖ of sleep.
Accordingly, the diagonal line and {5:40 a.m., 6 a.m.} look
like a comment and not a modeling of the situation. If it is not a
comment, then the representation is misleading because it gives
the impression of a three-dimensional representation. Also,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

33 | P a g e

www.ijacsa.thesai.org

there is no indication of ―failure‖ as mentioned in the given
constraint. This example shows the limitations of the line
representation of time.

Fig. 12 shows the corresponding FM representation. These
are the spheres: time, sleep, awake, and the logical join. The
clock performs the following:

 At 5:40 a.m., it triggers sleeping

 At 6:00 a.m., it triggers awaking

 At 6:00 a.m. it also triggers checking whether the
awaking occurs

Time is generated by the clock and received by the sphere
of the time in the system (circle 1). This sphere is the part of
the total system that deals with time. The clock sends
continuous signals, say 12:00, 12:01, 12:02, . . . , and these data

arrive and are received and processed (2). This processing
involves the recognition of 5:40 a.m. and 6:00 a.m. If it is 5:40
a.m. then this triggers the person to enter into sleeping (3).
He/she is processed (absorbed) into sleeping (4). If it is 6:00
a.m., then this triggers:

 The release (5) of the person from sleeping to awaking
(6)

 The checking of whether the person has arrived to the
awaking state (7). If this is the case then this triggers
success (For simplification sake, success is reported
instead of failure; accordingly, the recipient of the
report assumes failure if success does not arrive.)

Note that the horizontal joint bar can be represented in FM
as shown in Fig. 13.

Fig. 12. FM representation

Fig. 13. FM representation without the joint bar

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

34 | P a g e

www.ijacsa.thesai.org

V. TIMING AND REAL-TIME SYSTEMS

Coffee machines have been used as a well-known example
of modeling real-time systems using such languages as Uppaal
and UML (e.g., [19–23]) In this section, we investigate the
specification of design requirements for the coffee machine
problem in the context of Uppaal, as it is described in many
publications and course materials.

The coffee machine problem involves modeling the
behavior of a system with three elements: a machine, person,
and an observer. The person repeatedly inserts coins to receive
coffee, after which he/she produces a publication. There is time
delay after each such action. The machine takes some time for
brewing the coffee.

It also takes a timeout if the brewed coffee is not taken
before a certain upper time limit. The observer complains if
more than 8 time units elapse between two consecutive
publications.

In modeling the coffee machine in FM, we find that to
complete the conceptual picture and flows, we need additional
items (spheres) in addition to person, machine, and observer.
One interesting aspect of FM description is the systematic
application of the same generic stages for entities, subentities,
and spheres. This repeatability of application creates
specifications that are more complete. It is also possible to
simplify the depiction by reducing the level of description in

several ways. As an introduction, before giving the complete
FM representation, Fig. 14 shows a brief description of the
―waves‖ of flow and the new additional spheres.

In the figure, coin flow (A) triggers the coffee (B) and cup
(C—a new sphere with an important role that will be explained
later) flows as well as the flow of ―counted time units‖ (D). As
was mentioned previously, time flows continuously, but it is
ignored until certain events (e.g., the arrival of coins) trigger
counting units of time. Accordingly in the figure with the
passing of the coffee preparation period, the coffee and the cup
flow to the ―filled cup compartment‖ (E) and start the ―fill cup‖
flow (F). In this case, time is also counted (G), and if the filled
cup does not flow (i.e., it is taken from the compartment), then
this triggers dispensing. The flow of the filled cup outside the
compartment (H) is supposed to trigger the flow of the coffee
to the person (I—e.g., being drank). This in turn triggers
producing publications (J) that flow to the observer (K). Upon
the arrival of publications the observer starts counting time (L)
and complains start to flow out (M) if time reaches its
maximum without receiving new publications.

The completeness and continuity of events (technical and
physical) are grounds for the validity of the model. Take the
state-based modeling of the machine as given by Anderson
[19] and represented in Fig. 15, according to Anderson [19–
20]:

Fig. 14. Flows in the coffee machine problem

Coffee machine accepts a coin and then delays for some
time (above it is 6 time units). It then sets a timeout timer, and
either (to the right) dispenses coffee, or (to the left) times out
and then dispenses coffee. The extra state on the left is because
Uppaal does not allow both guards and synchronizing elements
to appear on the same transition.

Note that this model assumes that the coffee flows outside
the machine immediately, after the brewing process, just as
water flows outside a pipe. This means the coffee does not wait
to be taken outside the machine. The flow-based FM
representation (see Fig. 16) forces introduction of a container

for the coffee because there is waiting time. Thus, the items of
cup and filled cup (cup+coffee) are necessary to convert the
flowthing coffee from the state of liquidity (which makes its
flow outside the machine compulsory) to the state of ―handle-
ability‖ (a thing that stands by itself waiting to be picked up).
From the ―state‖ perspective, Fig. 17 shows the two methods of
conceptualization. On the left, the model is not based on flows,
hence the conceptualization is represented by conceptual jumps
from one state to another. On the right side, the FM model is
casted in state jumps. In the figure, the two triggering arrows
that come from outside the machine sphere change the waiting
state.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

35 | P a g e

www.ijacsa.thesai.org

Fig. 15. Automata for machine (redrawn from [19])

Fig. 16. Flows in the coffee machine problem

Fig. 17. The coffee problem described in terms of states

The point here is that the flow-based conceptualization
―forces‖ continuity and completeness of the narration of

events, thus identifying items (e.g., cups) and processes (e.g.,
waiting liquid).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

36 | P a g e

www.ijacsa.thesai.org

Fig. 18. The problem described in terms of states

Fig. 18 shows the complete FM representation of the coffee
machine problem. We start with inserting the coins (circle 1).
The creation here (in the figure) means the appearance of coins
in the episode, just as the first appearance of a new character in
a play in theater.

The coins flow to the machine (2) where they are received
and trigger three events:

 Displaying ―in process‖ to the user. Initially, we
assume it displays ―ready‖ (3).

 Triggering the time counter (4)

 Triggering preparing the coffee (5)

The machine is continuously receiving time units; however,
the triggering makes it ―pay attention‖ and count these time
units. Note that the time sphere is represented by a clock
picture for illustrative purposes, but it is really the flowsystem
that creates time units. Also, it is possible to detail the coffee
sphere by drawing flowsystems for the coffee powder and
water separately to be processed and make coffee.

At the end of the coffee preparation time, the cup is
dropped (6) and the coffee is released (7); this happens in the

machine compartment subsphere to create the filled cup (8).
Creating the filled cup and releasing it trigger waiting time (9)
to pick up the cup and display that (10). If the person takes out
the filled cup (11), this triggers displaying ―ready‖ and triggers
(12) the flow of coffee to the person (13).

Note that, in general, the filled cup sphere includes three
subspheres: the filled cup (cup+coffee), coffee, and cup (see
Fig. 19). In any sphere, we can focus on any of its subspheres.
Accordingly, when the person removes the filled cup outside
the compartment the ―attention‖ (matters of interest) is on the
filled cup and the coffee subspheres (flowsystems (11 and 12)),
but the cup by itself is of no interest.

Continuing the flows, when the coffee is received by the
person (14), he/she drinks it to trigger creation of publications
(15) that flow to the observer (16), which in turn triggers
initializing a waiting time period for the next publication (17).
If no publication arrives, this triggers creation of a complaint
(18). We assume that initially the waiting timing here is set to
zero.

Returning to releasing the filled cup that triggers waiting
time (9); if the waiting time is over (19), then this triggers (20)
checking whether the filled cup has been already removed (21);
if not, the filled cup is dispensed with (22).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 8, 2015

37 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

Methodologies of time representation can be based on
states, UML, Petri nets, and other types of diagrams. Each has
its own advantages and weaknesses, especially with regard to

having the features of understandability and simplicity. This
paper proposed a flow-based representation that is based on the
notion of flow with a focus on exploring the representation of
time. The new methodology was demonstrated through sample
timing-related problems.

Fig. 19. The filled cup as a flowthing and its two flowthing components

FM can serve as an early system understanding and
communication among stakeholders, including those without
technical knowledge, and facilitate agreement between
clients/users and designers. Additionally, it can be used as a
base for system development and the design phase. The
resultant FM representation avoids ambiguous textual language
and heterogeneous diagramming. Of course, FM is still not
well developed in comparison with such well diagram-oriented
modeling methodology such as UML. Its weaknesses in terms
of expressivity and complexity have to be studied more in
different applications. Nevertheless, comparing FM diagrams
side by side with other types of modeling techniques reveals it
is a promising viable modeling tool.

We are currently exploring further time representation in
FM, especially its relation to the actual design phase.

REFERENCES

[1] H. Personnier, M.-A. le Dain, and R. Calvi. Failures in Collaborative
Design with Suppliers: Literature Review and Future Research Avenues.
21st Annual IPSERA Conference (2012) Italy.

[2] Luqi and V. Berzims, Knowlede-Based Support for Rapid software
Prototyping, IEEE Express, pp. 9–18 (1988)

[3] E. Klingerman and A. D. Stoyenko. Real-Time Euclid: A Language for
Reliable Real-Time Systems, IEEE Trans. Softw. Engng., SE-12, 9,
(1986) , pp. 941-949.

[4] S. Berryman and I. Sommerville. Modelling Real-Time Constraints.
Proceedings of the 3rd International Conference on Software
Engineering for Real-Time Systems, (1991); Cirencester, UK

[5] G. K. Palshikar. An Introduction to Model Checking. Available from
www.eetasia.com/ARTICLES/2005FEB/B/2005FEB16_EMS_ST_TA.p
df. (2005)

[6] T. A. Henzinger and J. Sifakis. The Embedded Systems Design
Challenge. Proceedings of the 14th International Symposium on Formal
Methods (FM), (2006)

[7] S. Al-Fedaghi, Pure Conceptualization of Computer Programming
Instructions. International Journal of Advancements in Computing
Technology, 3, 9 (2011)

[8] S. Al-Fedaghi and A. Alrashed, Threat Risk Modeling. International
Conference on Communication Software and Networks (ICCSN),
(2010) February 26–28; Singapore

[9] S. Al-Fedaghi. Flow-Based Enterprise Process Modeling. International
Journal of Database Theory and Application Compendex, 6, 3 (2013)

[10] S. Al-Fedaghi. Schematizing Proofs Based on Flow of Truth Values in
Logic. IEEE International Conference on Systems, Man, and
Cybernetics (IEEE SMC), (2013) October 13–16; Manchester, UK

[11] S. Al-Fedaghi. An Alternative Approach to Multiple Models:
Application to Control of a Production Cell. International Journal of
Control and Automation, 7, 4 (2014)

[12] S. Al-Fedaghi. System for a Passenger-Friendly Airport: An Alternative
Approach to High-Level Requirements Specification. International
Journal of Control and Automation, 7, 2 (2014)

[13] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems. Microprocessing and Microprogramming, 40
(1994)

[14] W. Garnett. Letter to the Editor. Nature (1920)

[15] B. Strachan. The Skirts of Alpha, APPENDIX I: SOME THOUGHTS
ABOUT DIMENSIONS. http://panpsychic-philosophy.org.uk/index.php

[16] Lucid Software Inc. 2, UML–Timing Diagram Tutorial. (2014)
https://www.lucidchart.com/pages/UML-timing-diagram-tutorial

[17] webmaster@uml-diagrams.org., Timing Diagrams, (2014)
http://www.uml-diagrams.org/timing-diagrams.html

[18] Lucid Software Inc, Timing Diagram, (2014)
https://www.lucidchart.com/pages/uml/timing-diagram

[19] H. Anderson. CS5270 Verification of Real Time Systems, 6.2.2 Coffee
Machine Example in Uppaal.
http://www.comp.nus.edu.sg/~cs5270/Notes/chapt6a.pdf

[20] H. Anderson. Verification of Real-Time Systems. (2007)
http://www.comp.nus.edu.sg/~cs5270/2006-
semesterII/foils11.colour.pdf

[21] K. G. Larsen. Quantitative Model Checking: Real-Time Systems,
Exercises. http://people.cs.aau.dk/~kgl/QMC2010/exercises/#coffee

[22] H. S. Hong, J. H. Kim, S. D. Cha, and Y. R. Kwon. Static Semantics and
Priority Schemes for Statecharts. Computer Software and Applications
Conference (COMPSAC), (1995)

[23] S. Van Langenhove. Towards the Correctness of Software Behavior in
UML: A Model Checking Approach based on Slicing, Ph.D. thesis,
Faculteit Wetenschappen — Universiteit Gent, (2006)
http://lib.ugent.be/fulltxt/RUG01/000/970/662/RUG01-
000970662_2010_0001_AC.pdf

http://www.comp.nus.edu.sg/~cs5270/Notes/chapt6a.pdf
http://people.cs.aau.dk/~kgl/QMC2010/exercises/#coffee

