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Abstract—The resistance to statistical kind of attacks of
encrypted messages is a very important property for designing
cryptographic primitives. In this paper, the parastrophic quasi-
group PE-transformation, proposed elsewhere, is considered and
the proof that it has this cryptographic property is given. Namely,
it is proven that if PE-transformation is used for design of an
encryption function then after n applications of it on arbitrary
message the distribution of m-tuples (m = 1, 2, . . . , n) is uniform.
These uniform distributions imply the resistance to statistical
attack of the encrypted messages. For illustration of theoretical
results, some experimental results are presented as well.
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I. INTRODUCTION

Quasigroups and quasigroup transformations are very use-
ful for construction of cryptographic primitives, error detecting
and error correcting codes. The reasons for that are the
structure of quasigroups, their large number, the properties of
quasigroup transformations and so on. The quasigroup string
transformations E and their properties were considered in
several papers.

A quasigroup (Q, ∗) is a groupoid (i.e. algebra with one
binary operation ∗ on the finite set Q) satisfying the law:

(∀u, v ∈ Q)(∃!x, y ∈ Q) (x ∗ u = v & u ∗ y = v) (1)

In fact, (1) says that a groupoid (Q, ∗) is a quasigroup if
and only if the equations x ∗u = v and u ∗ y = v have unique
solutions x and y for each given u, v ∈ Q.

In the sequel, let A = {1, . . . , a} be an alphabet of integers
(a ≥ 2) and denote by A+ = {x1 . . . xk| xi ∈ A, k ≥ 1} the
set of all finite strings over A. Note that A+ =

∪
k≥1

Ak, where

Ak = {x1 . . . xk| xi ∈ A}. Assuming that (A, ∗) is a given
quasigroup, for any letter l ∈ A (called leader), Markovski and
al. (see [5]) defined the transformation E = E

(1)
l : A+ → A+

by

E(x1 . . . xk) = y1 . . . yk ⇔
{

y1 = l ∗ x1,
yi = yi−1 ∗ xi, i = 2, . . . , k

(2)

where xi, yi ∈ A. Then, for given quasigroup opera-
tions ∗1, ∗2, . . . , ∗n on the set A, we can define mappings

E1, E2, . . . , En, in the same manner as previous by choosing
fixed elements l1, l2, . . . , ln ∈ A (such that Ei is corresponding
to ∗i and li). Let

E(n) = E
(n)
ln,...,l1

= En ◦ En−1 ◦ · · · ◦ E1,

where ◦ is the usual composition of mappings (n ≥ 1). It is
easy to check that the mappings E is a bijection. In the same
paper, authors proposed a transformation E(n) as an encryption
function and proved the following theorem.

Theorem 1. Let α ∈ A+ be an arbitrary string and
β = E(n)(α). Then m-tuples in β are uniformly distributed
for m ≤ n.

Also, in Theorem 2 in [1], Bakeva and Dimitrova proved
that the probabilities of (n + 1)-tuples in β = E(n)(α) are
divided in a classes where a = |A|, if (p1, p2, . . . , pa) is
the distribution of letters in an input string and p1, p2, . . . , pa
are distinct probabilities, i.e., pi ̸= pj for i ̸= j. Each
class contains an elements with the same probabilities and

the probability of each (n + 1)-tuple in i-th class is
1

an
pi,

for i = 1, 2, . . . , a. If pi1 = pi2 = · · · = piν for some
1 ≤ i1 < · · · < iν ≤ a, then the classes with probabilities
1

an
pi1 =

1

an
pi2 = · · · = 1

an
piν will be merged in one class

with νan elements. Using these results, the authors proposed
an algorithm for cryptanalysis.

In paper [4], Krapez gave an idea for a new quasigroup
string transformation based on parastrophes of quasigroups. A
modification of this quasigroup transformation is defined in
[2]. In [3], authors showed that the parastrophic quasigroup
transformation has good properties for application in cryp-
tography. Namely, using that transformation the number of
quasigroups of order 4 useful in cryptography is increased.
To complete the proof of goodness of parastrophic quasigroup
transformation for cryptography, it is needed to prove that
Theorem 1 holds for that transformation, too. It will guar-
antee that message encrypted by the parastrophic quasigroup
transformation will be resistant to a statistical kind of attacks.

In Section II, we briefly repeat the construction of paras-
trophic quasigroup transformation given in [2]. In Section
III, we give the theoretical proofs that PE-transformation
guaranties a resistance to statistical kind of attacks. Some
experimental results (in order to illustrate the theoretical re-
sults) are presented in Section IV. In Section V, we make
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some conclusions about the goodness of PE-transformation
for application in cryptography.

II. PARASTROPHIC TRANSFORMATION

Recall that every quasigroup (Q, ∗) has a set of five
quasigroups, called parastrophes denoted with /, \, ·, //, \\
which are defined in Table 1.

TABLE I: Parastrophes of quasigroup operations ∗

Parastrophe operations
x\y = z ⇐⇒ x ∗ z = y
x/y = z ⇐⇒ z ∗ y = x
x · y = z ⇐⇒ y ∗ x = z
x//y = z ⇐⇒ y/x = z ⇐⇒ z ∗ x = y
x\\y = z ⇐⇒ y\x = z ⇐⇒ y ∗ z = x

In this paper the following notations for parastrophe oper-
ations is used:

f1(x, y) = x ∗ y, f2(x, y) = x\y, f3(x, y) = x/y,
f4(x, y) = x · y, f5(x, y) = x//y, f6(x, y) = x\\y.

Let M = x1x2 . . . xk be an input message. Let d1 be an
random integer such that (2 ≤ d1 < k) and l be random chosen
element (leader) from A. Also, let (A, ∗) be a quasigroup and
f1, . . . , f6 be its parastrophe operations.

Using previous transformation E, for chosen l, d1 and
quasigroup (A, ∗) we define a parastrophic transformation
PE = PEl,d1 : A+ → A+ as follows.

At first, let q1 = d1 be the length of the first block, i.e.,
M1 = x1x2 . . . xq1 . Let s1 = (d1 mod 6) + 1. Applying the
transformation E on the block M1 with leader l and quasigroup
operation fs1 , the following encrypted block is obtained.

C1 = y1y2 . . . yq1−1yq1 = Efs1 ,l
(x1x2 . . . xq1−1xq1).

Further on, using last two symbols in C1 we calculate the
number d2 = 4yq1−1 + yq1 which determines the length of
the next block. Let q2 = q1 + d2, s2 = (d2 mod 6) + 1
and M2 = xq1+1 . . . xq2−1xq2 . After applying Efs2 ,yq1

, the
encrypted block C2 is

C2 = yq1+1 . . . yq2−1yq2 = Efs2 ,yq1
(xq1+1 . . . xq2−1xq2).

In general case, for given i, let the encrypted blocks C1,. . . ,
Ci−1 be obtained and di be calculated using the last two sym-
bols in Ci−1, i.e., di = 4yqi−1−1 + yqi−1 . Let qi = qi−1 + di,
si = (di mod 6)+1 and Mi = xqi−1+1 . . . xqi−1xqi . Applying
the transformation Efsi ,yqi−1

on the block Mi the obtained
encrypted block is

Ci = Efsi ,yqi−1
(xqi−1+1 . . . xqi).

Now, the parastrophic transformation is defined as

PEl,d1(M) = PEl,d1(x1x2 . . . xn) = C1||C2|| . . . ||Cr, (3)

where || is a concatenation of blocks. Note that the length of
the last block Mr may be shorter than dr (depends on the
number of letters in the input message). The transformation
PE is schematically presented in Figure 1.

 M1  ||   M2  ||    . . .    ||  Mi     ||  . . .
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Fig. 1: Parastrophic transformation PE

For arbitrary quasigroup on a set A, random leaders
l1, . . . ln and random lengths d

(1)
1 , . . . , d

(n)
1 , we define map-

pings PE1, PE2, . . . , PEn as in (3) such that PEi is
corresponding to d

(i)
1 and li. Using them, we define the

transformation PE(n) as follows:

PE(n) = PE
(n)

(ln,d
(n)
1 ),...,(l1,d

(1)
1 )

= PEn ◦ PEn−1 ◦ · · · ◦ PE1,

where ◦ is the usual composition of mappings.

III. THEORETICAL PROOF FOR RESISTANCE TO
STATISTICAL KIND OF ATTACKS

Let the alphabet A be as above. A randomly chosen
element of the set Ak can be considered as a random vector
(X1, X2, . . . , Xk), where A is the range of Xi, i = 1, . . . , k.
Let consider these vectors as input messages. The transforma-
tion PE = PEl,d1 : A+ → A+ can be defined as:
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PEl,d1(X1, . . . , Xk) = (Y1, . . . , Yk) ⇔

⇔


Y1 = fs1(l,X1),
Yj = fs1(Yj−1,Xj), j = 2, . . . , d1,

Yqi+j = fsi+1(Yqi+j−1, Xqi+j),
i = 1, . . . , r − 1,
j = 1, . . . , di+1

(4)

Let (p1, p2, ..., pa) be the probability distribution of
the letters 1, ..., a in an input message. That implies pi > 0

for each i = 1, 2, ..., a and
a∑

i=1

pi = 1.

An important property of one transformation for appli-
cation in cryptography is the uniform distribution of the
substrings in the output message (Y1, . . . , Yk). This property
guarantee the resistance to statistical attack. Therefore, we
investigate the distribution of substrings in the output message
obtained using PE-transformation. At first we will prove that
after applying the transformation PE(1) on an input message
α, the letters in transformed message are uniformly distributed.

Theorem 2. The letter Yt has uniform distribution on the set
A = {1, . . . , a}, i.e., Yt ∼ U({1, . . . , a}) for each t (t =
1, 2, . . . , k).

Proof. In this proof we use the same notations as in construc-
tion of parastrophic quasigroup transformation given in the
previous section.

At first, note that the leader l can be consider as uniformly
distributed random variables on the set A since it is randomly
chosen from the set A. Therefore, l ∼ U({1, . . . , a}), i.e.,

P{l = i} =
1

a
, for each i ∈ A.

Also, leader l is independent of each letter Xi in the input
message.

Let t = 1. Using the equation (4) and total probability
theorem, for distribution of Y1, we obtain

P{Y1 = j} = P{fs1(l,X1) = j}

=

a∑
i=1

P{l = i}P{fs1(l,X1) = j|l = i}

=
a∑

i=1

1

a
P{fs1(l,X1) = j|l = i}

=
a∑

i=1

1

a
P{fs1(i,X1) = j}

=
1

a

a∑
i=1

P{X1 = f ′
s1(i, j)}

Here, f ′
s1 is the inverse quasigroup transformation of

fs1 , i.e., if fs1(u, x) = v, then f ′
s1(u, v) = x. Note that if

i runs over all values of A then for fixed j, the expression
X1 = f ′

s1(i, j) runs over all values of A, too. Therefore,

P{Y1 = j} =
1

a

a∑
i=1

P{X1 = f ′
s1(i, j)} =

1

a

a∑
i=1

pi =
1

a
,

i.e., Y1 ∼ U({1, . . . , a}).

The proof is proceed by induction. Let suppose that Yr ∼
U({1, 2, . . . , a}). Similarly as previous, using that fsr+1 is the
parastrophe operation applied in (r + 1)th step we compute
the distribution of Yr+1 as follows.

P{Yr+1 = j} = P{fsr+1(Yr, Xr+1) = j}

=
a∑

i=1

P{Yr = i}P{fsr+1(Yr, Xr+1) = j|Yr = i}

=

a∑
i=1

1

a
P{fsr+1(i,Xr+1) = j|Yr = i}

According to definition of parastrophic operation given with
(4), one can conclude that the random variables Xr+1 and Yr

are independent. Applying that in previous equation, we obtain

P{Yr+1 = j} =

a∑
i=1

1

a
P{fsr+1(i,Xr+1) = j}

=
1

a

a∑
i=1

P{Xr+1 = f ′
sr+1

(i, j)}

=
1

a
.

As previous, f ′
sr+1

is the inverse quasigroup transformation of
fsr+1 . In the last equation, we use that Xr+1 = f ′

sr+1
(i, j)

runs over all values of A when j is fixed and i runs over all
values of A, i.e.

a∑
i=1

P{Xr+1 = f ′
sr+1

(i, j)} =
a∑

i=1

pi = 1.

On this way, we proved that Yt has uniform distribution on
the set A, for each t ≥ 1.

From the Theorem 2 the following can be concluded.
If M ∈ Ak and C = PEl,d1(M) then the letters in the
message C are uniformly distributed, i.e., the probability of
the appearance of a letter i at the arbitrary place of the string

C is
1

a
, for each i ∈ A.

Theorem 3. Let M ∈ A+ be an arbitrary string and C =
PE(n)(M). Then the m-tuples in C are uniformly distributed
for m ≤ n.

Proof. Let (Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
k ) = PE(n)(X1, X2, . . . ,

Xk). This theorem will be proved by induction. For n =
1, the statement is satisfied according to Theorem 2. Let
suppose that the statement is satisfied for n = r, i.e.,
(Y

(r)
t+1, Y

(r)
t+2 . . . Y

(r)
t+m) ∼ U({1, 2, . . . , a}m) for each 1 ≤ m ≤

r and each t ≥ 0. Now, let n = r+ 1. We consider the distri-
bution of (Y (r+1)

t+1 , Y
(r+1)
t+2 . . . Y

(r+1)
t+m ) for each 1 ≤ m ≤ r+1

and arbitrary t.

P{Y (r+1)
t+1 = y

(r+1)
t+1 , Y

(r+1)
t+2 = y

(r+1)
t+2 , . . . , Y

(r+1)
t+m = y

(r+1)
t+m }

= P{Y (r+1)
t+1 = y

(r+1)
t+1 , fst+2(Y

(r+1)
t+1 , Y

(r)
t+2) = y

(r+1)
t+2 , . . .

. . . , fst+m(Y
(r+1)
t+m−1, Y

(r)
t+m) = y

(r+1)
t+m },
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where fsj is the parastrophe operation applied in the step j
and f ′

sj is its inverse transformation, j = t + 2, . . . , t + m.
Now,

P{Y (r+1)
t+1 = y

(r+1)
t+1 , Y

(r+1)
t+2 = y

(r+1)
t+2 , . . . , Y

(r+1)
t+m = y

(r+1)
t+m }

= P{Y (r+1)
t+1 = y

(r+1)
t+1 , fst+2(y

(r+1)
t+1 , Y

(r)
t+2) = y

(r+1)
t+2 , . . .

. . . , fst+m(y
(r+1)
t+m−1, Y

(r)
t+m) = y

(r+1)
t+m }

= P{Y (r+1)
t+1 = y

(r+1)
t+1 , Y

(r)
t+2 = f ′

st+2
(y

(r+1)
t+1 , y

(r+1)
t+2 ), . . .

. . . , Y
(r)
t+m = f ′

st+m
(y

(r+1)
t+m−1, y

(r+1)
t+m )}

= P{Y (r+1)
t+1 = y

(r+1)
t+1 }P{Y (r)

t+2 = f ′
st+2

(y
(r+1)
t+1 , y

(r+1)
t+2 ), . . .

. . . , Y
(r)
t+m = f ′

st+m
(y

(r+1)
t+m−1, y

(r+1)
t+m )}.

The last equality is obtained by using the fact that
Y

(r+1)
t+1 is independent of the vector (Y

(r)
t+2, . . . , Y

(r)
t+m), since

Y
(r)
t+2, . . . , Y

(r)
t+m are not used for obtaining Y

(r+1)
t+1 .

Using the inductive hypothesis (Y
(r)
t+2, . . . , Y

(r)
t+m) ∼

U({1, 2, . . . , a}m−1), Y
(r+1)
t+1 ∼ U({1, 2, . . . , a}) and from

previous expression we obtain that

P{Y (r+1)
t+1 = y

(r+1)
t+1 , Y

(r+1)
t+2 = y

(r+1)
t+2 , . . . , Y

(r+1)
t+m = y

(r+1)
t+m }

=
1

a
· 1

am−1
=

1

am
.

So, we have proved that (Y
(n)
t+1, Y

(n)
t+2 . . . Y

(n)
t+m) ∼

U({1, 2, . . . , a}m) for each m ≤ n and each t ≥ 0.

IV. EXPERIMENTAL RESULTS

We made many experiments in order to illustrate our the-
oretical results. Here an example is given. We have randomly
chosen a message M with 1,000,000 letters of the alphabet
A = {1, 2, 3, 4} with the distribution of letters given in the
Table II .

TABLE II: The distribution of the letters in the input message

1 2 3 4
0.70 0.15 0.10 0.05

The quasigroup (5) and its parastrophes are used.

∗ 1 2 3 4
1 1 2 4 3
2 3 4 2 1
3 4 3 1 2
4 2 1 3 4

(5)

After applying PE(3) on M , the encrypted message C =
PE(3)(M) is obtained. In each PE-transformation, we chose
the length of the first block d1 = 3 and the initial leader l1 = 4.

The distribution of letters in the output C is given in the
Table III.

TABLE III: The distribution of the letters in the output message

1 2 3 4
0.2501 0.2393 0.2576 0.2530

It is obvious that the distribution of letters in the output
message C is uniform.

The distribution of pairs, triplets and 4-tuples of letters in C
are given on the Figure 2, Figure 3 and Figure 4. On the Figure
2, the pairs are presented on the x-axis in the lexicographic
order (′11′ → 1, ′12′ → 2, . . . , ′44′ → 16). On the similar
way, the triplets and 4-tuples are presented on Figure 3 and
Figure 4.

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

input output

Fig. 2: The distribution of the pairs in the input message and
the output message

10 20 30 40 50 60

0.05

0.1

0.15

0.2

0.25

input output

Fig. 3: The distribution of the triplets in the input message and
the output message

One can see on Figure 2 and Figure 3 that after three
applications of PE-transformations, the pairs and triplets are
also uniformly distributed as we proved in Theorem 3. Also,
the distribution of the 4-tuples in C is not uniform, but
that distribution is closer to the uniform distribution than the
distribution of 4-tuples in the input message (see Figure 4).

Next, we check whether Theorem 2 in [1] is satisfied when
PE-transformation is applied. The distribution of pairs after
one application of PE-transformation is presented on Figure 5.
On Figure 6, the distribution of pairs after one application of
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50 100 150 200 250

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

input output

Fig. 4: The distribution of the 4-tuples in the input message
and the output message

E-transformation is given. From Figure 6 it can be noticed
that probabilities of pairs are divided in 4 classes, as the
Theorem 2 in [1] claims. But we cannot distinguish any classes
for probabilities on Figure 5. This means that the algorithm
for cryptanalysis proposed in [1] cannot be applied when an
input message is encrypted by PE-transformation. Therefore
encryption by PE-transformation is more resistant to statistical
kind of attacks.

2 4 6 8 10 12 14 16

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Fig. 5: The distributions of the pairs in output messages
obtained by PE-transformation

2 4 6 8 10 12 14 16

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Fig. 6: The distributions of the pairs in output messages
obtained by E-transformation

Note that for relevant statistical analyses, it is important to
have enough large input message. Namely, in experiments, the
probabilities of n-tuples are computed as relative frequencies.
So, a relative frequency of an event tends to probability only if
we have enough large sample. The relevant statistical analyses
cannot be done for shorter message. Therefore, statistical kind
of attack is impossible on not enough large input message.

Note that if an intruder catches and concatenates a lot of short
messages encrypted by the same PE(n)-transformation, it will
obtain a long message and it can apply a statistical attack. But,
the attack will be impossible if quasigroups used in encryption
PE(n)-transformation is changed more often.

V. CONCLUSION

In this paper we proved that after n applications of PE-
transformation on an arbitrary message the distribution of m-
tuples (m = 1, . . . , n) is uniform and we cannot distinguish
classes of probabilities in the distribution of (n + 1)-tuples.
This means that if PE-transformation is used as encryption
function the obtained cipher messages are resistant to statistical
kind of attacks when the number n of applications of PE-
transformation is enough large.

In [5], the authors concluded that E-transformation can
be applied in cryptography as encryption function since the
number of quasigroups is huge one (there are more than
1058000 quasigroups when |A| = 256) and the brute force
attack is not reasonable.

If PE-transformation is used in encryption algorithm then
the secret key will be a triplet (∗, l, d1). In that case, the brute
force attack also is not possible since except the quasigroup
operation ∗ and leader l, the key contains the length of the
first block d1 which has influence of the dynamic of changing
of parastrophes.

At the end, in [3] authors proved that PE-transformation
has better cryptographic properties than E-transformation for
quasigroups of order 4. Namely, some of fractal quasigroups of
order 4 become parastrophic non-fractal and they can be used
for designing of cryptographic primitives. An investigation for
quasigroups of larger order cannot be done in real time since
their number is very large.

Finally, from all results we can conclude that PE-
transformation is better for design of an encryption function
than E-transformation.
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