
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 9, 2015 

76 | P a g e  

www.ijacsa.thesai.org 

The Apsidal Precession for Low Earth Sun 

Synchronized Orbits

Shkelzen Cakaj 

Faculty of Electrical and Computing Engineering, 

University of Prishtina,  

Prishtina, Kosovo
 

Bexhet Kamo, Algenti Lala,
 
Ilir Shinko, Elson Agastra

 

Faculty of Information Technology, 

Polytechnic University of Tirana, 

Tirana, Albania 

 

 

Abstract—By nodal regression and apsidal precession, the 

Earth flattering at satellite low Earth orbits (LEO) is manifested.  

Nodal regression refers to the shift of the orbit’s line of nodes 

over time as Earth revolves around the Sun. Nodal regression is 

orbit feature utilized for circular orbits to be Sun synchronized. 

A sun-synchronized orbit lies in a plane that maintains a fixed 

angle with respect to the Earth-Sun direction. In the low Earth 

Sun synchronized circular orbits are suited the satellites that 

accomplish their photo imagery missions. Nodal regression 

depends on orbital altitude and orbital inclination angle. For the 

respective orbital altitudes the inclination window for the Sun 

synchronization to be attained is determined. The apsidal 

precession represents major axis shift, respectively the argument 

of perigee deviation. The apsidal precession simulation, for 

inclination window of sun synchronized orbital altitudes, is 

provided through this paper. 
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I. INTRODUCTION 

Orbital perturbation analyzes consider the satellite’s orbit 
behavior under real space-ambient circumstances compared 
with ideal orbit mathematical model defined by Kepler 
parameters. Due to the gravitational forces of the Sun, other 
celestial bodies and also due to the Earth’s flattering at both 
poles the perturbations are caused. Based on geopotential 
model the effect of the Earth flattering is determined as a sum 
of spherical harmonics, where the most dominated term is ―J2-
term‖ [1].  

The Earth flattering is manifested by the nodal regression 
and apsidal precession. The apsidal precession is too early 
considered by Newton for celestial bodies, and lately the 
apsidal theorem is further more analytically considered, 
among them by authors under [2]. For satellites orbiting the 
Earth, the laws of celestial bodies’ movement are applied. 
This concept is applied for the apsidal precession analysis of 
the Sun synchronized low Earth orbiting (LEO) satellites. 

Under the second section, the nodal regression is 
considered and followed by terms the orbit Sun 
synchronization to be accomplished.  Considering different 
initial low Earth orbit altitudes the inclination window for 
orbit Sun synchronization is determined. For the determined 
inclination window, the apsidal precession is simulated. 

II. NODAL REGRESSION 

The Earth rotates eastward. An orbit where the satellite 
moves in the same direction as the Earth’s rotation is known 

as prograde or direct orbit. The inclination of a prograde orbit 
lies between 0º and 90º. Most satellites are launched in a 
prograde orbit because the Earth’s rotational velocity provides 
part of the orbital velocity with a consequent saving in launch 
energy. An orbit where the satellite moves in opposite 
direction to the Earth rotation is called retrograde orbit. The 
inclination of a retrograde orbit always lies between 90º and 
180º [3], [4]. 

The Earth is not the spherical homogeneous body. Earth is 
characterized with a bulge at the equator, and a slight 
flattening at the both poles. The terrestrial potential at a point 
in space (in our case the point indicates a satellite) depends 
not only on the distance r to the Earth’s centre but also on the 
longitude and latitude of the point and the time. This happens 
due to irregularities of Earth’s rotation and not homogenous 
Earth’s mass distribution. This terrestrial potential depends 
much more on latitude than longitude, and it through 
geopotential coefficients

nJ is expressed. The 
2J term due to 

flattering of the Earth (about 20km) dominate all other terms. 
The values of these coefficients are given by different models. 
Based on GEM4 model it is [1]: 

3

2 100827.1 J                                 (1) 

To a first approximation, the orbital plane is fixed in space 
as the satellite orbits around the Earth.  But, the potential 
generated by the non-spherical Earth causes variations of the 
orbital elements. Most effected orbital elements are the right 
ascension and the argument of perigee, as presented in 
Figure.1 [3], [4].  The right ascension of the ascending node 
(Ω) defines the location of the ascending and descending 
orbital crossing nodes (these two nodes make a line of nodes) 
with respect to a fixed direction in space. The fixed direction 
is Vernal Equinox. The Vernal Equinox is the direction of the 
line joining the Earth’s center and the Sun on the first day of 
spring. The argument of perigee (ω) is the angle taken 
positively from 0º to 360º in the direction of the satellite’s 
motion, between the direction of the ascending node and the 
perigee direction [3], [4].  

Under the effect of terrestrial potential variation, the right 
ascension of the ascending node Ω, shifts its position, so, the 
line of nodes which is in equatorial plane rotates about the 
center of the Earth, consequently shifting the orbital plane. 
Nodal regression refers to the shift of the orbital plane over 
time as Earth revolves around the Sun.  Nodal regression is a 
very useful feature that is especially utilized for Low   Earth 
circular orbits providing to them the Sun synchronization. 
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Fig. 1. Space orbital parameters 

An approximate expression for the nodal rate regression of 
Ω due to time is expressed as [1]: 
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Where: 
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6378ER km is Earth’s radius, e is orbital eccentricity, i 

is  the inclination, a  is a semimajor axis of satellite’s orbit 

and 0n  is mean movement of the satellite, as: 

T
n

2
0                                          (4) 

Where T is the orbital period. For circular orbits it is 

0e  and ra  , where r  is orbital radius of circular orbit. 

Orbital period for circular orbits is expressed as: 




3

2
r

T                                     (5) 

where 510986005.3  km
3

/s
2

 is Earth’s geocentric 

gravitational constant.  For circular orbit yields: 

2

2

r

R
A E                                        (6)                   

Substituting Eqn. (4), Eqn. (5), and Eqn. (6) at Eqn. (2) 
and then considering values of 

ER ,   and 
2J , finally stems 

nodal regression expressed by inclination i and orbital radius 

r . The nodal regression expressed in (º/day) is [5]: 

27

14 cos
1006474.2

r

i
    [º/day]          (7) 

The nodal regression for circular orbits depends upon orbit 
inclination and orbital altitude (radius).  The nodal regression 
is zero in the case of the inclination angle being 90°. 

When the orbit inclination angle is 90i than deviation is 

negative, so according to Eqn. 2 the satellite orbital plane 
rotates in a direction opposite to the direction of the Earth’s 

rotation.  When the orbit inclination angle is 90i , then 

deviation is positive, so the satellite orbital plane rotates in the 
same direction as the direction of the Earth’s rotation. From 
this stems that if the orbit is prograde the nodes slide 
westward, and if it is retrograde, the nodes slide eastward. 
This means that nodes (line of nodes) because of this effect 
move in opposite direction to the direction of satellite motion, 
hence the term nodal regression. 

III. ORBITAL SUN SYNCHRONIZATION 

LEO (Low Earth Orbiting) satellites have very wide 
applications, from astronomical purposes, remote sensing of 
oceans, Earth’s climate changes or Earth’s imagery with high 
resolution [6]. For photo imagery missions from satellites, in 
order the observed area to be treated under the same lighting 
(illumination) conditions, the observed area’s position related 
to the Sun it is too important [7]. For these purposes the 
satellites are suited in LEO sun synchronized orbits [8]. 

A sun–synchronous orbit is one that lies in a plane that 
maintains a fixed angle with respect to the Earth-Sun 
direction. In other words, the orbital plane has a fixed 
orientation with respect to the Earth-Sun direction. 
Consequently, the angle between normal orbital plane vector 
and normal Sun vector is always kept constant throughout the 
year, as shown in Figure 2 [8]. 

 
Fig. 2. Orbital Sun synchronization concept 

As a result of this property, sun-synchronous orbits ensure 
that the satellite passes over a given location on Earth every 
time at the same local solar time, thereby guaranteeing almost 
the same illumination conditions, varying only with seasons. 
The satellite in sun-synchronized orbit ensures coverage of the 
whole surface of the Earth, since the appropriate orbit is quasi-
polar in nature [9].  The shift control method to keep the local 
time shift within an allowance range is given by [10]. 

The nodal regression effect is typical for LEO orbits. The 
further goal of this paper is to conclude about the   inclination 
window of the nodal regression for different LEO orbit 
altitudes ensuring to be attained the orbital Sun 
synchronization. For simulation purposes are considered low 
Earth orbit altitudes from 600km up to 1200km. LEOs have 

too low eccentricity which one can be considered 0e and 

then .ra   Thus, for altitudes from 600km up to 1200km 

and considering Earth’s radius as 6400ER km yields out the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 9, 2015 

78 | P a g e  

www.ijacsa.thesai.org 

orbits’ radius range from 7000km up to 7600km.  Considering 
Eqn. 7, for this orbits’ radius range it is calculated the nodal 

regression [º/day] for different inclination angles i . Results 

confirm that nodal regression for altitudes form 600km up to 
1200km may range from 0º up to 6.7º as a function of 
inclination angle.  Lower inclination causes higher deviation. 
For inclination of 90 º there is no nodal deviation [11]. 

The further step is inclination window determination for 
Sun synchronized feature. An orbital plane fixed with respect 
to the Earth effectively makes a 360º rotation in space in a 
year (about 365.25 days) since the Earth itself rotates by 360º 
around the Sun. This rate is equivalent to a rotation of the 
orbital plane of about 0.986 [º/day]. By choosing a pair of 
particular values of  i and r,  it is possible to obtain an orbit for 
which the nodal regression  varies each day by a quantity 
equal to the rotation of the Earth around the Sun [8].  
Mathematically this is expressed as: 

day
dt

d
/9856.0 


                          (8) 

27

14 cos
1006474.2

r

i
   = 0.9856 º/day    (9) 

The angle between line of nodes of the orbits and the mean 
direction of the Sun obtained in this way remains constant 
throughout the year as presented in Figure 3. 

 

Fig. 3. Sun synchronization throughout seasons 

So, the orbit normal vector and Sun vector keep the same 
angularity during the year. These orbits are known as Sun 
synchronized orbits. 

Sun-synchronous orbits are a function of altitude, 
eccentricity and inclination. By solving the Eqn, 9 for orbital 

altitude of 600km consequently for 7000 ra km under no 

eccentricity ( 0e ) will get inclination for sun 

synchronization as: 

9.971 i º                                   (10) 

and for orbital attitude of 1200km consequently for 

7600 ra km under no eccentricity ( 0e ) will get 

inclination for sun synchronization as: 

5.1002 i º                                  (11) 

Considering these values of inclination, and  the range for 
lower and higher orbital attitudes, the nodal regression for the 
inclination range from 97º up to 101 º it is presented in Table 
1 and Figure 4 [11].  For the range of low Earth altitudes from 

600km up to 1200km the inclination window for the orbital 
Sun synchronization is: 

                                         (12) 

 

Fig. 4. Inclination window 

IV. APSIDAL PRECESSION 

The position of the orbit major axis is defined by the 
argument of perigee. This parameter like the right ascension of 
the ascending node also undergoes natural perturbation due to 
equatorial bulge of Earth. The phenomenon is known as 
apsidal precession. 

An approximate expression for the apsidal precession of 
perigee’s argument (ω) over the time is expressed as [1]: 

)1cos5()
4

3
( 2

20  iAJn
dt

d
               (13) 

where all parameters on the right side of Eqn. (11)  have 
the same meaning as for nodal regression expressed through  
Eqn. (1) up to Eqn. (6). 

The aim of this paper is to conclude about the apsidal 
range which corresponds to inclination window for orbit Sun 
synchronization. This calculation leads toward the thrust 
vector to be applied in order to keep argument of perigee 
under in advance defined value, consequently keeping the 
health of the appropriate satellite link. Considering Eqn. (13), 
there is no apsidal precession if the orbital inclination fulfills 
the feature expressed as follows, 

                                          (14) 
This happens under the inclination of 63°43'. This is 

exactly the inclination applied for Molnya elliptic orbit. The 
rotation of the perigee occurs in the direction opposite to the 
satellite motion if the inclination is greater than 63°43' and in 
the same direction as the satellite motion if the inclination 
angle is less than 63°43' [9]. 
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Substituting Eqn. (4), Eqn. (5), and Eqn. (6) at Eqn. (11) 
and then considering values of 

ER ,   and 
2J , finally stems 

the apsidal precession expressed by inclination i and orbital 

radius r . The apsidal precession expressed in (º/day) is: 

 
27

2
14 1cos5

1003237.1
r

i 
 [º/day]      (15) 

The apsidal precession for circular orbits depends upon 
orbit inclination and orbit altitude (radius). The closer the 
satellite to Earth center, it is the larger apsidal precession. The 
apsidal precession is zero in the case of the inclination angle 
being 63°43'. Considering Eqn. (13), and orbits’ radius range 
from 7000km up to 7600km,   it is calculated the apsidal 
precession  [º/day] for inclination window which ensures low 
Earth Sun- synchronization. These results are given in Table I 
and Figure 5. 

TABLE I.  APSIDAL PRECESSION [ º/DAY ] 

 

Fig. 5. Apsidal precession 

V. CONCLUSIONS 

Satellites dedicated for photo imagery missions are suited 
in low Earth Sun synchronized circular orbits. Nodal 
regression is the typical feature of low Earth circular orbits 
which enables orbital Sun synchronization. Sun synchronized 
orbits are retrograde orbits. Sun synchronization is achieved 
only for inclination within inclination window. 

The apsidal precession for circular orbits depends upon 
orbit inclination and orbit altitude. The closer the satellite to 
the Earth center, it is the larger apsidal precession. For the Sun 
synchronization inclination window for altitudes from 600km 
to 1200km, the low Earth circular orbits are faced with apsidal 
precession in the range of 2.2º - 3.3º. 
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      [°/day] 

Apsidal  Precession  

Inclination 

[ º ] 

Orbital radius [km] 

7000 7200 7400 7600 

97 3.329 3.014 2.738 2.494 

98 3.248 2.943 2.673 2.435 

99 3.156 2.858 2.596 2.365 

100 3.054 2.766 2.513 2.289 

101 2.942 2.662 2.419 2.203 
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