
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

A Leveled Dag Critical Task Firstschedule Algorithm
in Distributed Computing Systems

Amal EL-NATTAT
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt

Nirmeen A. El-Bahnasawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt

Ayman EL-SAYED, IEEE Senior
Mem.

Computer Science & Eng. Dept
Faculty of Electronic Eng.

Menouf 32952, Egypt

Abstract—In distributed computing environment, efficient
task scheduling is essential to obtain high performance. A vital
role of designing and development of task scheduling algorithms
is to achieve better makes pan. Several task scheduling
algorithms have been developed for homogeneous and
heterogeneous distributed computing systems. In this paper, a
new static task scheduling algorithm is proposed namely; Leveled
DAG Critical Task First (LDCTF) that optimizes the
performance of Leveled DAG Prioritized Task (LDPT) algorithm
to efficiently schedule tasks on homogeneous distributed
computing systems. LDPT was compared to B-level algorithm
which is the most famous algorithm in homogeneous distributed
systems and it provided better results. LDCTF is a list based
scheduling algorithm which depends on sorting tasks into a list
according to their priority then scheduling one by one on the
suitable processor. LDCTF aims to improve the performance of
the system by minimizing the schedule length than LDPT and B-
level algorithms.

Keywords—Task scheduling; Homogeneous distributed
computing systems; Precedence constrained parallel applications;
Directed Acyclic Graph; Critical path

I. INTRODUCTION
Distributed systems have emerged as powerful platforms

for executing parallel applications. A distributed system can be
defined as a collection of computing systems that appears to its
users as a single system, these systems collaborate over a
network to achieve a common goal [1]. There are two types of
distributed systems; homogeneous (in which processors are
identical in capabilities and functionality) and heterogeneous
(in which processors are different).

In distributed computing environment, an application is
usually decomposed into several independent and/or
interdependent sets of cooperating tasks. Dependent tasks are
represented by a Directed Acyclic Graph (DAG). DAG can be
defined as a graph consists of a set of vertices or nodes and a
set of edges G(V, E) in which each node represents a task and
each edge represents a communication between two tasks (the
two tasks are dependent on each other). The computation cost
of the task is represented by a weight associated with each
node and the communication cost between two tasks is
represented by a weight associated with each edge. The
communication cost between two dependent tasks is
considered to equal zero if they are executed on the same
processor. Figure 1 shows an example of a simple task graph
(DAG). In the Figure, t0 is called predecessor (or parent) of t2

and t2 is called successor (or child) of t0. The edge between t0
and t2 means that t2 can start execution only after t0 finishes its
execution. Efficient task scheduling of application tasks is
essential to achieve high performance in parallel and
distributed systems. The basic function of task scheduling is to
determine the allocation of tasks to processors and their
execution order in order to satisfy the precedence requirements
and obtain minimum schedule length (or make span) [2].Task-
scheduling algorithms are broadly classified into two basic
classes: static and dynamic. In static scheduling, the
characteristics of an application, such as execution time of
tasks and data dependencies between tasks are known in
advance (during compile time before running the application).
In dynamic scheduling, some information about tasks and their
relations may be undeterminable until run-time [3].

Fig. 1. Example of a DAG

Over the past few decades, researchers have focused on
designing task scheduling algorithms for homogenous and
heterogeneous systems with the objective of reducing the
overall execution time of the tasks. Topcuoglu et al. [2] have
presented HEFT and CPOP scheduling algorithms for
heterogonous processors. Luiz et al. [4] have developed
lookahead-HEFT algorithm, which look ahead in the schedule
to make scheduling decisions. Eswari, R. and Nickolas, S. [5]
have proposed PHTS algorithm to efficiently schedule tasks on
the heterogeneous distributed computing systems. Rajak and
Ranjit [6] have presented a queue based scheduling algorithm
called TSB to schedule tasks on homogeneous parallel
multiprocessor system. Ahmed, S.G.; Munir, E.U.; and Nisar,
W. [7] have developed genetic algorithm called PEGA that
provide low time complexity than standard genetic algorithm
(SGA). Xiaoyong Tang; Kenli Li; Renfa Li; and Guiping Liao
[8] have presented a list-scheduling algorithm called HEFD for

274 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

heterogeneous computing systems. Nasri, W. and Nafti, W. [9]
have developed a new DAG scheduling algorithm for
heterogeneous systems that provide better performance than
some well-known existing task scheduling algorithms.

In homogeneous distributed systems, researchers have
developed many heuristic task-scheduling algorithms such as
ISH [10], ETF [11], DLS [12], MH [13],B-level [14] and some
heuristics that depend on the critical path such as MCP [15],
FCP [16], and CNPT [17]. Among these algorithms, B-level
provides the best performance in terms of schedule length,
speedup, and efficiency. LDPT (Leveled DAG Prioritized
Task) algorithm [18]was compared to B-level algorithm which
is the most famous algorithm in homogeneous distributed
systems and it provided better results.

In this paper, the problem of scheduling precedence
constrained parallel tasks on homogeneous physical machines
(PMs) is addressed. A new static scheduling algorithm called
LDCTF is proposed. The goal of LDCTF is to optimize the
performance of LDPT [18] algorithm in order to provide better
system performance. LDCTF is a list scheduling algorithm. It
depends on dividing the DAG into levels then sorting tasks in
each level into a list according to their priority and finally,
picking tasks from the list one by one to schedule it on the
suitable processor. LDCTF is compared to LDPT and B-level
algorithms and it provided better results in terms of schedule
length, speedup, and efficiency.

The remainder of this paper is organized as follows.
Section II provides an overview of the related work algorithm.
The proposed algorithm is discussed in section III. Section IV
presents performance evaluation results of the proposed
algorithm. Finally, conclusion and future work is reviewed in
section V.

II. LDPT ALGORITHM
LDPT is a list based scheduling algorithm. It depends on

dividing the DAG into levels with considering the dependency
conditions among tasks in the DAG. The algorithm has two
phases: (1) Task prioritization phase, (2) Processor selection
phase. LDPT algorithm depends on giving a priority to each
task as shown in Figure 2 then; scheduling each task on one
processor with taking into consideration the insertion-based
policy. Figure 2 shows the pseudo code of LDPT algorithm.

III. LEVELED DAG CRITICAL TASK FIRST (LDCTF)
ALGORITHM

LDCTF is a theoretical task scheduling algorithm. LDCTF,
LDPT, and B-level algorithms are applied on Standard Task
Graph STG [19] as a bench mark, and it was found that
LDCTF algorithm is more efficient than LDPT and B-level
algorithms.

LDCTF is a list based scheduling algorithm. It depends on
dividing the DAG into levels with considering the dependency
conditions among tasks in the DAG then, applying the Min-
min method [20] which means calculating the minimum
completion time (MCT) for each task on all processors then
selecting the task with the lowest MCT to schedule. The
algorithm has two phases: (1) Task prioritization phase, (2)
Processor selection phase.

Generate the DAG
Divide the DAG into levels according to their
communicated dependency
Sort the constructed levels according to dependency
ordering
Sort tasks according to [their computation costs then their
direct communication of its next level] in descending order
While there are unscheduled levels do
 While there are unscheduled tasks do
 For each level do
 Find the task with the highest computation cost
 If there are tasks have equal computation cost
 Then
Choose the task with the highest communication cost with

its Childs in next level
 End if
 Find the processor that minimizes the Earliest

Start Time of the selected task
 Assign the task to the selected processor
 Remove the selected task from the list
 Repeat
 Until all tasks are scheduled
End for each
End while

Fig. 2. LDPT algorithm [18]

A. Task prioritization phase:
In this phase, the critical path [2] is calculated for the DAG

(critical path is the longest path from the entry task to the exit
task in the graph) then, the DAG is divided into levels and the
tasks in each level will be sorted into a list based on their
priority. The priority for each task is given as follow:

1) First, the critical task (task located on the critical path)
in each level will have the highest priority.

2) Then, the expected Earliest Finish Time (EFT) is
calculated for the other tasks in the same level and the task
with the lowest EFT will have the highest priority. If tow tasks
have equal EFT value then, the task with the lowest task
number will have the highest priority. EFT of a task tion
processor pj is computed as follow:

EFT (ti, Pj) = wi, j + EST (ti, Pj)----------------- (1)

3) Finally, tasks in each level are sorted into the list in
ascending order according to their EFT value.

B. Processor Selection Phase:
In this phase, the tasks are picked from the list one by one

and assigned to the processor that will minimize the earliest
start time of the task, with taking into consideration the
insertion-based policy. The insertion policy means that if there
is an idle time slot on the processor between two already
scheduled tasks and it was enough for executing the task, then
the task is assigned on that processor in this idle slot without
violating precedence constraints. In other words, a task can be
scheduled earlier if there is a period of time between two tasks
already scheduled on processor (P), where P runs idle.If two
processors provide the same start time for the task then, the
task is assigned to the first processor that will minimize the
EST of it.The Earliest Start Time of a task 𝑛𝑖on a processor
𝑃𝑗is defined as:

275 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

EST(𝒏𝒙,𝑷𝒎)=max[TAvailable(𝑷𝒎),max{AFT(𝒏𝒊)+𝒄𝒙,𝒊}] (2)

Where TAvailable(𝑃𝑚) is the earliest time at which
processor 𝑃𝑚is ready. AFT(𝑛𝑖) is the Actual Finish Time of a
task 𝑛𝑖 (the parent of task nx) on the processor𝑃𝑚. 𝑐𝑛,𝑖is the
communication cost from task 𝑛𝑖 to task 𝑛𝑥,𝑐𝑘,𝑖 equal zero if
the predecessor task 𝑡𝑘is assigned to processor 𝑃𝑚. For the
entry task,EST(𝑛𝑒𝑛𝑡𝑟𝑦, 𝑃𝑚)= 0. Figure 3shows the pseudo code
of LDCTF algorithm.

C. Case Study
Consider the DAG shown in Figure 4; assume the system

has two processors (P0, P1). The critical path for the DAG in
Figure 4 is (t0, t1, t3, t6, t8). Table 1 shows the computation
cost for each task. Both LDPT and LDCTF algorithms generate
a list of tasks that shows the execution order of them. Table 2
shows the lists generated by LDPT and LDCTF algorithms.
For LDCTF algorithm the critical task in each level will be
scheduled first as shown in table 2. Figure (5.a, 5.b) shows the
Gantt chart generated by LDPT and LDCTF algorithms
respectively. Both algorithms assign the selected task to the
processor that minimizes the start time (EST) of it. For
example, in Figure 5.a, the EST for task t2 on p0 is 5 and the
EST for t2 on p1 is 4, so the task t2 is scheduled on p1.In
Figure 5.b, the same manner if followed with taking into
consideration the insertion-based policy. From Figure 5, it is
shown that the schedule length (the finish time of the last task
scheduled from the DAG) resulted from LDPT and LDCTF
algorithms is 25, and 23 unit of time respectively.

Generate the DAG
Calculate the critical path for the DAG
Divide the DAG into levels according to their communicated
dependency
Sort the constructed levels according to dependency ordering
Determine the critical task for each level
While there are unscheduled levels do
 While there are unscheduled tasks do
 For each level do
 For each task in level
 Calculate the expected EFT of selected task
 End for
 Sort level tasks in Tasks Ordered List according to
 1-Critical task
 2-Expected EFT in ascending order
 If there are tasks have equal Earliest Finish Time
 Then
 Choose the task with the lowest task number
 End if

For each task in Tasks Ordered List
 Find the processor that minimizes the Earliest Start Time

of the selected task
 Assign the task to the selected processor
 Remove the selected task from the list
 Repeat
 Until all tasks are scheduled
End for each
End while

Fig. 3. Leveled DAG Critical Task First algorithm

Fig. 4. Sample DAG

TABLE I. COMPUTATION COST

Task Computation Cost
t0 2
t1 3
t2 1
t3 4
t4 3
t5 5
t6 2
t7 4
t8 6

Figure 5 depicts the Gantt chart generated by LDPT and
LDCTF algorithms. From the Figure, it is shown that the
schedule length generated from LDPT algorithms is 25 unit
time while the schedule length generated from LDCTF
algorithm is 23 unit time. In case of LDCTF, we observe that
there is less periods in which processors are idle than LDPT.
According to this result, the overall running time of the
application will be decreased and the efficiency of the system
will be improved.

TABLE II. TASK LISTS FOR LDPT AND LDCTF ALGORITHMS

Execution LDPT LDCTF

1 t 0 t 0
2 t 1 t 1
3 t 2 t 2
4 t 5 t 3
5 t 3 t 5
6 t 4 t 4
7 t 7 t 6
8 t 6 t 7
9 t 8 t 8

276 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 5. The schedules generated by (a) LDPT algorithm (b) LDCTF
algorithm for sample DAG

IV. RESULTS AND PERFORMANCE EVALUATION

A. Simulation Environment
To evaluate the performance of LDCTF algorithm, a

simulator had been built using visual C# .NET 4.0 on machine
with: Intel(R) Core(TM) i3 CPU M 350 @2.27GHz, RAM of
4.00 GB, and the operating system is window 7, 64-bit.To test
the performance of LDPT and LDCTF algorithms, a set of
randomly generated graphs is created by varying a set of
parameters that determines the characteristics of the generated
DAGs. These parameters are described as follows: DAG size
(n: the number of tasks in DAG).Density (d: the probability of
existence edge between ni in levelj and nx in the next level
levelj+1 for DAG. Where, i, x=1,2,…, N, and N is the number
of tasks, j=1, 2,…, T, and T is the number of levels
inDAG).With six different numbers of processors varying from
2, 4, 8, 16, 32 and 64 processors. For each number of
processors, six different DAG sizes have been used varying
from 10, 20,40,60,80 and 100 nodes.

B. Evaluation Metricsa
The most important metrics for evaluating performance of

scheduling algorithms are schedule length, speed up, and
efficiency. Schedule length is the maximum finish time of the
last task (exit task) scheduled from the DAG.

Schedule length= Max(AFT(nexit)) ----------------------------(3)

Where AFT(nexit) is the actual finish time of the exit task.
Speedup is defined as the ratio of the schedule length generated
from executing the application on one processor to the
schedule length generated from executing the application on
multiple parallel processors.

Speed up=
[∑ 𝒘(𝒊,𝒋)𝒏𝒊𝝐𝑽]𝒑𝒋𝝐𝑷

𝑴𝒊𝒏

𝑺𝑳
--(4)

Where 𝑤(𝑖, 𝑗)means the weight of task ni on processor
pjand SL means the schedule length. Efficiency is the inverse
of speed up.

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 = 𝒔𝒑𝒆𝒆𝒅𝒖𝒑
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔

--------------------------(5)

C. Experimental Results
The schedule length generated byLDPT and LDCTF

algorithms is shown in Figure 6, 7, 8, 9, 10, 11 for 10, 20, 40,
60, 80, 100 tasks respectively and the results are recorded in
table 3. According to the results, the schedule length is
decreased that will minimize the running time of the
application. The improvement ratio in schedule length is
(2.75%). Figure 12, 13, 14, 15, 16, 17 show a comparative
study of the speed up of LDPT and LDCTF algorithms in case
of 2, 4, 8, 16, 32, 64 processors respectively. Table 4 shows the
speedup results of LDPT and LDCTF algorithms. From the
results, we can see that the improving ratio in speed up is
(3.2%). Table 5 shows the efficiency results of LDPT and
LDCTF algorithms. From Figure 18, 19, 20, 21, 22, 23 we can
see that LDCTF is more efficient than LDPT algorithms with
improving ratio (1.9%). The schedule length generated by B-
level, LDPT, and LDCTF algorithms is shown in Figure 24,
25, 26, 27, 28, 29. Figure 30, 31, 32, 33, 34, 35 shows a
comparative study of the speed up of B-level, LDPT, and
LDCTF algorithms. The efficiency results of B-level, LDPT,
and LDCTF algorithms are shown in Figure 36, 37, 38, 39, 40,
41.

Fig. 6. Schedule length for 10 tasks

Fig. 7. Schedule length for 20 tasks

Figure6, 7, 8, 9, 10, 11 depict the schedule length versus
number of tasks with varying number of processors 2, 4, 8, 16,
and 32 processors. It is shown that the schedule length in case
of applying LDCTF algorithm is less than LDPT algorithm.
This is because the periods in which processors are idle in case
of LDCTF are less than LDPT algorithm.

277 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 8. Schedule length for 40 task

Fig. 9. Schedule length for 60 task

Fig. 10. Schedule length for 80 task

Fig. 11. Schedule length for 100 task

Fig. 12. Speedup on 2 processors

Fig. 13. Speedup on 4 processors

Fig. 14. Speedup on 8 processors

Fig. 15. Speedup on 16 processors

278 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

TABLE III. SCHEDULE LENGTH RESULTED FROM LDPT AND LDCTF ALGORITHMS

Number
of tasks

2 processor 4 processor 8 processor 16 processor 32 processor 64 processor
LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF

10 598 619 438 481 503 501 390 377 516 508 718 701
20 1070 1091 784 763 615 629 504 490 856 838 733 720
40 2319 2265 1304 1236 827 818 691 637 1348 1325 1151 1117
60 3427 3430 2141 2055 1114 1053 765 783 1557 1544 1469 1441
80 4408 4204 2403 2349 1330 1261 1072 955 1442 1403 1690 1642
100 5734 5551 2821 2724 1654 1604 1218 1124 1858 1806 1755 1666

TABLE IV. SPEEDUP RESULTED FROM LDPT AND LDCTF ALGORITHMS

Number
of
processo
rs

10 tasks 20 tasks 40 tasks 60 tasks 80 tasks 100 tasks

LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F

2 1.5971
01

1.6040
76

1.6469
14

1.7102
56

1.8893
04

1.8840
24

1.8610
15

1.9253
34

1.9419
21

1.9385
53

1.9512
1

1.9576
03

4 1.9265
73

2.3298
1

2.6259
84

2.7224
49

3.0162
6

3.0592
2

3.5092
59

3.5670
59

3.2618
36

3.3303
91

3.6481
07

3.6589
73

8 2.3397
03

2.4219
78

3.4263
7

3.4263
7

4.0710
71

4.2586
39

4.7182
1

4.9189
85

5.4388
54

5.6113
92

5.4669
6

5.6153
85

16 1.9653
85

2.0157
79

3.1266
03

3.1723
58

5.5702
13

5.7496
34

5.6490
07

5.8885
6

5.6715
01

6.0300
69

7.6720
43

7.7075
61

32 1.9653
85

2.0157
79

4.3638
34

4.4021
98

4.7180
67

4.8926
01

5.6724
81

5.8834
17

7.4985
76

7.6959
07

7.6335
7

7.9859
85

64 2.0669
37

2.0881
15

2.7823
61 3 4.6014

07
4.7749
39

5.3621
33

5.5298
58

6.1674
53

6.2910
99

6.7556
31

7.0241
31

TABLE V. EFFICIENCY RESULTED FROM LDPT AND LDCTF ALGORITHMS

Number
of
processo
rs

10 tasks 20 tasks 40 tasks 60 tasks 80 tasks 100 tasks

LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F

2 61.596
24

63.943
66

55.795
77

56.945
72

52.517
07

53.225
4

52.229
63

53.032
63

51.058
13

51.529
83

51.248
17

51.629
96

4 38.207
55 40 34.657

4
34.955
31

30.534
75

30.586
41

28.247
12

28.198
47

26.869
57

26.906
83

27.489
18

27.439
98

8 40.216
32

40.216
32

23.462
53

24.341
09

17.451
32

17.845
7

15.934
51

16.258
71

14.761
2

15.021
03

14.978
16

15.227
79

16 32.630
62

32.630
62

20.134
23

23.231
8

12.440
79

13.064
07

10.424
2

10.835
25

8.1819
33

8.5122
6

8.9742
3

9.2369
88

32 35.926
77

35.926
77

14.667
99

14.667
99

10.179
64

11.002
99

7.3950
91

7.8543
15

7.1481
39

7.3946
27

5.8211
22

6.1243
05

64 37.264
62

37.264
62

18.537
59

18.537
59

8.3720
93

8.3720
93

5.6114
34

5.5937
89

4.3856
28

5.1400
07

4.3117
91

4.6669
96

Fig. 16. Speedup on 32 processors

Fig. 17. Speedup on 64 processors

279 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Figure 12, 13, 14, 15, 16, 17 depict speedup versus number
of processors with varying number of tasks (20, 40, 60, 80,
100). It is shown that LDCTF algorithm provides better speed
up than LDPT algorithm. This is because in case of LDCTF
algorithm, all processors have finished the execution of tasks earlier
than LDPT algorithm.

Fig. 18. Efficiency on 2 processors

Fig. 19. Efficiency on 4 processors

Figure 18, 19, 20, 21, 22, 23 depict efficiency versus
number of processors with varying number of tasks (20, 40, 60,
80, 100). It is shown that LDCTF algorithm is more efficient
and provides better performance than LDPT algorithm. Most of
processor elements have been perfect utilized in our algorithm
because of the communication among tasks is not affected in
algorithm breadth procedures.

Figure 24, 25, 26, 27, 28, 29 depicts the schedule length
versus number of tasks with varying number of processors 2, 4,
8, 16, 32, and 64 processors. It is shown that the schedule
length in case of applying LDCTF algorithm is less than LDPT
and B-level algorithms.

Figure 30, 31, 32, 33, 34, 35 depicts speedup versus
number of processors with varying number of tasks (10, 20, 40,
60, 80, 100). It is shown that LDCTF algorithm provides better
speed up than LDPT and B-level algorithms. This is because in
case of LDCTF algorithm, all processors have finished the
execution of tasks earlier than LDPT and B-level algorithms.

Fig. 20. Efficiency on 8 processors

Fig. 21. Efficiency on 16 processors

Fig. 22. Efficiency on 32 processors

Fig. 23. Efficiency on 64 processors

280 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 24. Schedule length for 10 tasks

Fig. 25. Schedule length for 20 tasks

Fig. 26. Schedule length for 40 tasks

Fig. 27. Schedule length for 60 tasks

Fig. 28. Schedule length for 80 tasks

Fig. 29. Schedule length for 100tasks

Fig. 30. Speedup on 2 processors

Fig. 31. Speedup on 4 processors

281 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 32. Speedup on 8 processors

Fig. 33. Speedup on 16 processors

Fig. 34. Speedup on 32 processors

Fig. 35. Speedup on 64 processors

Fig. 36. Efficiency on 2 processors

Fig. 37. Efficiency on 4 processors

Fig. 38. Efficiency on 8 processors

Fig. 39. Efficiency on 16 processors

282 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 40. Efficiency on 32 processors

Fig. 41. Efficiency on 64 processors

Figure 36, 37, 38, 39, 40, 41 depicts efficiency versus
number of processors with varying number of tasks (20, 40, 60,
80, 100). It is shown that LDCTF algorithm is more efficient
and provides better performance than LDPT and B-level
algorithms.

D. Discussion of Results
First, LDCTF algorithm is compared to LDPT algorithm

and it provided better results in terms of schedule length, speed
up, and efficiency. This is because in case of LDCTF, the
critical path is taken into account and the critical task will be
scheduled first in each level. This means that the task with the
highest computation and communication cost will be scheduled
first resulting in minimum schedule length, higher speed up,
and higher efficiency.

Finally, LDCTF is compared to B-level algorithm and it
provided better results in terms of schedule length, speed up,
and efficiency. This is because B-level algorithm depends on
paths idea and this will increase the communication overhead
during assigning tasks on processors. On the other side,
LDCTF algorithm depends on levels idea that will minimize
the communication overhead during assigning tasks on
processors. Another reason is that B-level algorithm must
calculate the b-level value for each task before scheduling so
that, the arithmetic calculation in LDCTF is less than B-level
algorithm which leads to minimize the complexity factor.

V. CONCLUSION AND FUTURE WORK
In this paper, a new static scheduling algorithm (LDCTF) is

developed for homogeneous distributed computing systems.
The performance of LDCTF algorithm is compared with LDPT
algorithm. LDCTF is evaluated for different DAGs and found
to be giving better results than LDPT algorithm in terms of
schedule length, speed up, and efficiency with improving ratio
2.75%, 3.2%, and 1.9% respectively.

The performance of LDCTF is also compared with B-level
and LDPT algorithms and found to be giving better results in
terms of schedule length, speed up, and efficiency. LDCTF,
LDPT, and B-level algorithms are applied on Standard Task
Graph STG as a bench mark, and it was found that LDCTF
algorithm is more efficient than LDPT and B-level
algorithms.The future scope of the idea can be as follows:

• In this paper LDCTF algorithm is applied on Directed
Acyclic Graph (DAG). In the future it can be applied on
Directed Cyclic Graph (DCG).

• LDCTF can be applied on Heterogeneous Distributed
Computing Systems (HDCS).

• LDCTF can be applied in a dynamic strategy instead of
static strategy.

• Finally, duplication technique can be applied with
LDCTF algorithm to minimize the communication
overhead.

REFERENCES
[1] Journal of Theoretical and Applied Information Technology. (2011,

April 9). [Online]. Available: http://www.jatit.org/distributed-
computing/grid-vs-distributed.htm.

[2] H.Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing,”
IEEE Trans. Parallel and Distributed Systems, Vol. 13, No.3, pp. 260-
274, March 2002.

[3] Solomon Raju Kota, Chandra Shekhar, Archana Kokkula, Durga
Toshniwal, M. V. Kartikeyan And R. C. Joshi, "Parameterized Module
Scheduling Algorithm For Reconfigurable Computing Systems" In 15th
International Conference On Advanced Computing And
Communications, PP 473-478, 2007.

[4] Luiz F. Bittencourt, RizosSakellariou. "DAG Scheduling Using a Look
ahead Variant of the Heterogeneous Earliest Finish Time Algorithm",
18th Euromicro International Conference onParallel, Distributed and
Network-BasedProcessing(PDP), pp. 27-34, 2010.

[5] Eswari, R. and Nickolas, S. "Path-Based Heuristic Task Scheduling
Algorithm for Heterogeneous Distributed Computing
Systems".Advances in Recent Technologies in Communication and
Computing (ARTCom), International Conference on 2010. P: 30-34.

[6] Rajak and Ranjit. "A Novel Approach for Task Scheduling in
Multiprocessor System".International Journal of Computer Applications
(IJCA), Vol.44, No. 11, pp. 12-16.April 2012.

[7] Ahmad, S.G.; Munir, E.U. and Nisar, W. PEGA "A Performance
Effective Genetic Algorithm for Task Scheduling in Heterogeneous
Systems".High Performance Computing and Communication& 2012
IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), IEEE 14th International Conference on 2012. Pp. 1082-
1087.

[8] Tang, X., et al., "List scheduling with duplication for heterogeneous
computing systems", Journal of Parallel and Distributed Computing
(JPDC), Vol. 70, No.4,pp. 323-329.2010.

283 | P a g e
www.ijacsa.thesai.org

http://www.jatit.org/distributed-computing/grid-vs-distributed.htm
http://www.jatit.org/distributed-computing/grid-vs-distributed.htm

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

[9] Nasri,W. and Nafti, W. "A new DAG scheduling algorithm for
heterogeneous platforms". Parallel Distributed and Grid Computing
(PDGC), second IEEE International Conference on 2012. Pp. 114-119.

[10] B. Kruatrachue and T. Lewis, "Grain size determination for parallel
processing," IEEE Software, vol. 5, no. 1, pp. 23-32, May 1988.

[11] J. J. Hwang. Y.C. Chow. F. D. Anger and C.-Y. Lee. "Scheduling
precedence graphs In systems with interprocessor communication
times." SLAM Journal of Computing, vol. 18, no. 2. pp. 244-257. 1989.

[12] G.C. Slh and E. A. Lee. "A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures."
IEEE Transactions on Parallel and Distributed Systems, vol. 4. no. 2,
pp. 75-87. Feb. 1997.

[13] H. El-Rewini and T.G .Lewis, " Scheduling parallel programs onto
arbitrary target machines." Journal of Parallel and Distributed
Computing, vol. 9. no. 2, pp. 138-153, June 1990.

[14] Panos M. Pardalos, SanguthevarRajasekaran, José D. P. Rolim, "
Randomization Methods in Algorithm Design: DIMACS Workshop",
vol. 43, pp. 12-14, December 1997.

[15] M. Y. Wu and D. D. Gajski, "Hypercool: a programming aid for
message passing systems," IEEE Transactions on Parallel and
Distributed Systems, vol. 1, no. 3 pp. 330-343, July 1990.

[16] A. Radulesu, J. C. Arjan and V. Gemund. "Low-cost task scheduling
fordistributed-memory machines," IEEE Transactions on Parallel
andDistributed Systems. vol. 13.no. 6. pp. 648-658. June 2002.

[17] T. Hagras and J. Janecek. "A high performance, low complexity
algorithmfor compile-timejobscheduling in homogeneous computing
environments."Proceedings of the International Conference on Parallel
ProcessingWorkshops (ICPPW'03), pp 149.155. Oct. 2003.

[18] Amal EL-Nattat, Nirmeen A. El-Bahnasawy, Ayman EL-Sayed, "A new
task scheduling algorithm for maximizing the distributed systems
efficiency"; International Journal of Computer Applications, vol.110. no.
9, January 2015.

[19] http://www.kasahara.elec.waseda.ac.jp/schedule/index.html.
[20] F. Xhafa, L. Barolli and A. Durresi, “Batch Mode Schedulers for Grid

Systems.International Journal of Web andGrid Services”, Vol. 3, No. 1,
pp.19-37, 2007.

284 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. LDPT Algorithm
	III. Leveled Dag Critical Task First (Ldctf) Algorithm
	A. Task prioritization phase:
	1) First, the critical task (task located on the critical path) in each level will have the highest priority.
	2) Then, the expected Earliest Finish Time (EFT) is calculated for the other tasks in the same level and the task with the lowest EFT will have the highest priority. If tow tasks have equal EFT value then, the task with the lowest task number will have the�
	3) Finally, tasks in each level are sorted into the list in ascending order according to their EFT value.

	B. Processor Selection Phase:
	C. Case Study

	IV. Results and Performance Evaluation
	A. Simulation Environment
	B. Evaluation Metricsa
	C. Experimental Results
	D. Discussion of Results

	V. Conclusion and Future Work
	References

