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Abstract—This paper presents several iterative methods based 
on Stochastic Expectation-Maximization (EM) methodology in 
order to estimate parametric reliability models for randomly 
lifetime data. The methodology is related to Maximum Likelihood 
Estimates (MLE) in the case of missing data. A bathtub form of 
failure intensity formulation of a repairable system reliability is 
presented where the estimation of its parameters is considered 
through EM algorithm . Field of failures data from industrial site 
are used to fit the model. Finally, the interval estimation basing on 
large-sample in literature is discussed and the examination of the 
actual coverage probabilities of these confidence intervals is 
presented using Monte Carlo simulation method. 
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I. INTRODUCTION 
There is an ongoing effort in the industrial fields to reach 

more reliability and efficiency of their systems. The major risks 
in certainty are mainly safety, availability, costs and especially 
those of maintenance and lifetime. Near the industrial 
companies, we can go over these risks by the competitiveness 
and the safety which became a temptation responsible for the 
management of maintenance to improve the reliability 
objectives. The majority of the approaches of the maintenance 
are based on reliability such as Peña and al., 2007, Y. Dijoux 
(2009), L. Doyen (2012). However, the reliability of the 
industrial systems depend closely on the efficiency of these 
maintenance actions and the effective management of the 
maintenance policy wich requires a realistic modeling of their 
effects. on the other hand, when a maintenance program is 
chosen, its efficiency and its impact on the system operation are 
unkonwn. Then appears the idea in this paper to model the 
system lifespan and to quantify its degradation state or its 
failure to realize the impact of a maintenance action on system 
behavior. 

The most important characteristics is the evaluation of the 
system failure’s intensity, and the discovery of its degradation 
at the appropriate time. And in order to optimize the 
maintenance programs by reducing the costs we use the 
Maintenance Optimization by reliability (MOR) as presented in 
Dewan and Dijoux (2015). 

First of all stochastic models of failures process and repairs 
of various systems are builded. Secondly, the statistical 

methods are implemented to exploit the failures and 
maintenances data raised by experts to evaluate the 
performance of these systems. In this context, different 
methods as MLE, moment estimation, and EM algorithm are 
presented in Doyen (2012). Sethuraman and Hollander (2009) 
developed a non-parametric Bayes estimator for a general 
imperfect repair model including Brown-Proschan model. 
Doyen (2011) generalized this approach and considered the 
maximum likelihood estimation. The performance of the 
Brown-Proschan model when repair effects are unknown as 
resulting in the work of Krit and Rebai (2012) and Krit (2014). 
Babykina and Couallier (2012) used EM algorithm to estimate 
the parameters of a generalization of this model wich allows 
first-order dependency between two consecutive repair effects, 
they assumed that only some repair effects were unknown. Lim 
and Lie (2000) proposed another method based on Bayesian 
analysis: they assumed a prior beta distribution for parameter p. 
Langseth and Lindqvist (2003) generalized the 
Brown-Proschan model for imperfect preventive maintenance, 
and they proposed to estimate the parameters of the model with 
the likelihood function. Franco and al. (2011) study the 
classification of the aging properties of generalized mixtures of 
two or three weibull distributions in terms of the mixing 
weights, scale parameters and a common shape parameter, 
which extends the cases of exponential distributions. 

Formerly, some work has been done on the estimation of 
the three-parameter log-normal distribution based on complete 
and censored samples. Basak and al. (2009) developed 
inferential methods based on progressively censored samples 
from a three-parameter log-normal distribution. In particular, 
they use the EM algorithm as well as some other numerical 
methods to determine MLE of parameters. The asymptotic 
variances and covariances of the MLE from the EM algorithm 
are computed by using the missing information principle. 

The purpose of this paper is to formulate a genreal and 
realistic model, in order to identify the behavior evolution of 
reparable system during all its lifetime. 

The paper is organized as follows; Section 2 presents the 
characteristics of the failures process. Section 3 analysis the 
various models wit mixing corrective and preventive 
maintenance. An application to real data on the quality of the 
model parameters estimators is completed in section 4. Finally, 
conclusions are presented in section 5. 
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II. CARACTERISTICS OF THE FAILURE PROCESS 
In this section, the failure intensity in bathtub form is 

presented to formulate pace of such intensity on the three 
phases of the system life, Krit and Rebai (2013). Two forms are 
distinguished one from the other by a small change over the 
service life time. In the first form, as it indicates the hereafter 
form, the failures process is modeled by superposition of three 
Poisson processes; the first and the third non-homogeneous and 
the second is homogeneous, of which the intensity is selected in 
following way: 

It declines up one instant noted by 𝛾0 , according to the 
function of the form 1

𝜂0
+ 𝛽1

𝜂1
𝛽1 �𝑡

𝛽1−1 − 𝛾0
𝛽1−1�, translating the 

system improvement state in time course. After that, it’s 
constant on a level 1

𝜂0
 (there will not be an advance of system 

degradation in this phase) up to an instant 𝛾1 which is beyond 
the intensity increases in accordance with the form function 
1
𝜂0

+ 𝛽2
𝜂2
�𝑡−𝛾1

𝜂2
�
𝛽2−1

, realizing a degradation case. This idea is 
originally proposed by Mudholkar-Srivastava (1993) in the 
context of non-reparable system. It is proved that this 
degradation modeling comprises two terms ; one finded in 
Weibull process wich is proceeded by admitting the assumption 
of perfect corrective maintenance stated in Bertholon and al. 
(2004) like an alternative against Weibull law. The waiting 
duration of next failure can be written by the form 𝒳 = min 
(𝒴, 𝒵, 𝒲), where: 

• 𝒴  a random variable, independent of 𝒵  and 𝒲 , of 
Weibull law having as form the first expression, with a 
shift parameter equal to zero. 

• 𝒵  a random variable, independent of 𝒴  and 𝒲 , of 
exponential law with parameter 𝜂0, which corresponds 
to constant failure intensity equalizes to 1

𝜂0
. 

• 𝒲  a random variable of Weibull law having a shift 
parameter equal to 𝛾1. 

Our proposal, with the help of system behavior modeling, 
characterizes the failures process by intensity which is 
formulated as follows: 

𝜆(𝑡) =

⎩
⎪
⎨

⎪
⎧
1
𝜂0

+ 𝛽1
𝜂1
𝛽1 �𝑡

𝛽1−1 − 𝛾0
𝛽1−1�     if 0 <   𝑡 < 𝛾0

1
𝜂0

                                          if 𝛾0 ≤ 𝑡 ≤ 𝛾1    

1
𝜂0

+ 𝛽2
𝜂2
�𝑡−𝛾1
𝜂2
�
𝛽2−1

          if  𝑡 > 𝛾1

          (1) 

Knowing this intensity,  the implicitly of system reliability 
can be removed, by using the following relation: 

  ℛ(𝑡) = exp �−∫  𝑡0 𝜆(𝑢)𝑑𝑢�              (2) 

The failure number until the instant t, noted 𝒩𝑡 , follows 
formally a Poisson law with parameter Λ(𝑡) = ∫  𝑡0 𝜆(𝑢)𝑑𝑢. For 
the present model, 

Λ(𝑡) = �� 𝑡
𝜂1
�
𝛽1
− �𝛾0

𝜂1
�
𝛽1−1

𝑡� ⋅ 𝟏[0,𝛾0[(𝑡) + 1
𝜂0
𝑡 + �𝑡−𝛾1

𝜂2
�
𝛽2
⋅

                             𝟏[𝛾1,+∞(𝑡)                                                            (3) 

Let's announce first that all that times inter-failures are not 
independent. In this case, the function ℱ𝒯𝑛+1/𝒯1=𝑡1,…,𝒯𝑛=𝑡𝑛 have 
a conditional law of the next failure instant 𝒯𝑛+1 such as: 

      ℱ𝒯𝑛+1/𝒯1=𝑡1,…,𝒯𝑛=𝑡𝑛(𝑡) = 1 − exp{−[Λ(𝑡) −Λ(𝑡𝑛)]}   (4) 

III. ALGORITHME EM 

A. Basic Theory of the EM Algorithm 
The EM Algorithm, proposed by Dempster and al. (1977), 

is an algorithm largely used to find a solution of the likelihood 
equation in the situations of the incomplete data. A suitable 
formulation is needed to facilitate the application of EM 
algorithm in our context. We present initially the algorithm in 
its general information. 

We note 𝒯 the random vector corresponding to the data 
observed 𝑡 . The probability distribution of 𝒯  is 𝑓(𝑡; 𝜃) , 
where 𝜃  is the vectorial parameter of the statistical model. 
Moreover, 𝑡𝑐 the vector of complete data with the distribution 
function 𝑓𝑐(𝑡𝑐; 𝜃), and 𝑢 indicate the vector of the missing 
data, then 𝑡𝑐 = (𝑡,𝑢) . McLachlan and Krishnan (1997) 
presented an extension of EM algorithm so that the vector of 
data observed is foreseen according to complete data 𝑡𝑐 , of 
which a relation is resulted as follows: 

             𝑓(𝑡; 𝜃) = ∫  𝒳(𝑡) 𝑓
𝑐(𝑡𝑐;𝜃)𝑑𝑡𝑐              (5) 

When in two spaces 𝒳 and 𝑡, we examine the vector of 
incomplete data 𝑡 = 𝑡(𝑥) in 𝑡 instead of examining the vector 
of complete data 𝑡𝑐 in 𝒳. Moreover, there are several traces of 
𝒳 surrounding to 𝑡. We note: 

• ℒ(𝜃; 𝑡)  and 𝑙(𝜃; 𝑡) , respectively the likelihood and 
log-likelihood of data observed; 

• ℒ𝑐(𝜃; 𝑡𝑐) and 𝑙𝑐(𝜃; 𝑡𝑐), respectively the likelihood and 
log-likelihood of de complete data; 

• 𝑄(𝜃/𝜃(ℎ)) = 𝔼�𝑙𝑐(𝜃; 𝑡𝑐)/𝑡,𝜃(ℎ)� 

where 𝜃(ℎ) is the current estimate of the parameter. 

In the EM algorithm, the objective is not to maximize 
𝑙(𝜃; 𝑡) directly in seen to obtain the MLE. Nevertheless, we 
maximize repeatedly 𝑙𝑐(𝜃; 𝑡𝑐) in average on all the possible 
values of the missing data 𝑢. In fact, it is the objective function 
𝑄(𝜃/𝜃(ℎ)) which is to be maximized repeatedly. 

B. The use of the EM algorithm 
𝑛  instants of failure are considered on an obviously 

reparable system, noted = (𝑡1, … , 𝑡𝑛). In the example, certain 
observations can be censured on the right. The vector of the 
parameters 𝜃 of the model is (𝜂0, 𝜂1, 𝜂2,𝛽1,𝛽2), 𝛾0  and 𝛾1 
are fixed at two unspecified values, checking𝛾0 < 𝛾1. 

In order to simplify the formulas, we note: 

• 𝜆𝐻(𝑡) = 1
𝜂0

  the failure intensity of the Homogeneous 
Poisson Process (HPP); 

• 𝜆𝑁𝐻𝐼(𝑡) = 𝛽1
𝜂1
𝛽1 �𝑡

𝛽1−1 − 𝛾0
𝛽1−1� ⋅ 𝟏[0,𝛾0[(𝑡) the failure 

intensity of the Non-Homogeneous Poisson Process 
(NHPP) I; 
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• 𝜆𝑁𝐻𝐼𝐼(𝑡) = 𝛽2
𝜂2
�𝑡−𝛾1

𝜂2
�
𝛽2−1

⋅ 𝟏[𝛾1,+∞(𝑡)  the failure 
intensity of the NHPP II. 

In this case, the missing data are the indicators 𝑢𝑖 = (𝑢𝑖𝐻 , 
𝑢𝑖
𝑁𝐻𝐼 ,𝑢𝑖

𝑁𝐻𝐼𝐼) that a failure is accidental (𝑢𝑖𝐻 = 1), or it is due to 
degradation (𝑢𝑖

𝑁𝐻𝐼 = 1, 𝑢𝑖
𝑁𝐻𝐼𝐼 = 1), respectively either to the 

youth period, or to the marked degradation period. 

We note then that the data observed 𝑡𝑖 are achievements of 
the random variablemin(ℋ𝑖 ,𝒲𝑖

𝐼 ,𝒲𝑖
𝐼𝐼 ,𝒞𝑖), while the vector ℋ 

(respectively 𝒲𝐼,  𝒲𝐼𝐼) is a HPP (respectively two forms of 
Weibull) and 𝒞𝑖 is the censure instant of the 𝑖𝑡ℎ observation. 

Thus, the complete data are 𝑡𝑖𝑐 = (𝑡𝑖,𝑢𝑖). The complete 
log-likelihood is written: 

𝑙𝑐(𝜃; 𝑡𝑐 = ln ��  
𝑛

𝑖=1

�𝜆𝑁𝐻𝐼(𝑡𝑖)�
𝑢𝑖
𝑁𝐻𝐼

(𝜆𝐻(𝑡𝑖))𝑢𝑖𝐻�𝜆𝑁𝐻𝐼𝐼(𝑡𝑖)�
𝑢𝑖
𝑁𝐻𝐼𝐼

⋅ 𝑒−
1
𝜂0
𝑡𝑛−�

𝑡𝑛−𝛾1
𝜂2

�
𝛽2

� 

   𝑙𝑐(𝜃; 𝑡𝑐) = ∑  
𝑛

𝑖=1
�𝑢𝑖

𝑁𝐻𝐼ln�𝜆𝑁𝐻𝐼(𝑡𝑖)� + 𝑢𝑖𝐻ln(𝜆𝐻(𝑡𝑖)) +

                 𝑢𝑖
𝑁𝐻𝐼𝐼ln�𝜆𝑁𝐻𝐼𝐼(𝑡𝑖)�� − �𝛾0

𝜂1
�
𝛽1
− 1

𝜂0
𝑡𝑛 − �𝑡𝑛−𝛾1

𝜂2
�
𝛽2

 

Thereafter, we calculate the conditional expectation 
𝑄(𝜃/𝜃(ℎ)). 

𝑄(𝜃/𝜃(ℎ)) = 𝔼�𝑙𝑐(𝜃; 𝑡𝑐)/𝑡,𝜃(ℎ)�

    = ��  
𝑛

𝑖=1

𝔼�𝑢𝑖
𝑁𝐻𝐼/𝑡,𝜃(ℎ)�ln�𝜆𝑁𝐻𝐼(𝑡𝑖)� + 𝔼�𝑢𝑖𝐻/𝑡,𝜃(ℎ)�ln(𝜆𝐻(𝑡𝑖))

         +𝔼�𝑢𝑖
𝑁𝐻𝐼𝐼/𝑡,𝜃(ℎ)�ln�𝜆𝑁𝐻𝐼𝐼(𝑡𝑖)�� − �

𝛾0
𝜂1
�
𝛽1
−

1
𝜂0
𝑡𝑛 − �

𝑡𝑛 − 𝛾1
𝜂2

�
𝛽2

    =

⎣
⎢
⎢
⎢
⎡�  
𝑖=1

𝑛

𝜙� 𝑁𝐻𝐼
(𝑡𝑖)ln �𝜆𝑁𝐻𝐼(𝑡𝑖)� + 𝜙�𝐻(𝑡𝑖)ln�𝜆𝐻(𝑡𝑖)�+ 𝜙� 𝑁𝐻𝐼𝐼

(𝑡𝑖)

ln �𝜆 𝑁𝐻𝐼𝐼
(𝑡𝑖)� ⎦

⎥
⎥
⎥
⎤

                                −�
𝛾0
𝜂1
�
𝛽1
−

1
𝜂0
𝑡𝑛 − �

𝑡𝑛 − 𝛾1
𝜂2

�
𝛽2

             

with regard to 

𝜙�𝐻(𝑡𝑖) = 𝔼�𝑢𝑖𝐻/𝑡,𝜃(ℎ)�

  =

⎩
⎪
⎨

⎪
⎧0                                      if 𝑡𝑖  is a censure

Pr�𝑢𝑖𝐻 = 1/𝑡𝑖 ,𝜃(ℎ)� = Pr�ℋ𝑖 ≤ 𝒲𝑖
𝐼 ,ℋ𝑖 ≤ 𝒲𝑖

𝐼𝐼/𝑡𝑖 ,𝜃(ℎ)�

                                       =
𝜆𝐻(𝑡𝑖)

𝜆𝑁𝐻𝐼(𝑡𝑖) + 𝜆𝐻(𝑡𝑖) + 𝜆𝑁𝐻𝐼𝐼(𝑡𝑖)
    if not

 

It is similarly 

𝜙�𝑁𝐻(𝑡𝑖) = 𝔼�𝑢𝑖𝑁𝐻/𝑡,𝜃(ℎ)�

  =

⎩
⎨

⎧
0                                      if 𝑡𝑖  is a censure
Pr�𝑢𝑖

𝑁𝐻𝐼 = 1/𝑡𝑖 ,𝜃(ℎ)� = Pr�𝒲𝑖
𝐼 ≤ ℋ𝑖 ,𝒲𝑖

𝐼 ≤ 𝒲𝑖
𝐼𝐼/𝑡𝑖 ,𝜃(ℎ)�

                                          =
𝜆𝑁𝐻𝐼(𝑡𝑖)

𝜆𝑁𝐻𝐼(𝑡𝑖)+𝜆𝐻(𝑡𝑖)+𝜆𝑁𝐻𝐼𝐼(𝑡𝑖)
   if not

  

Subsequently, the stage of maximization is approved by the 
decomposition of 𝑄(𝜃/𝜃(ℎ)). Indeed, it was carried out while 
maximizing separately 𝑄𝐻(𝜃/𝜃(ℎ)) , 𝑄 𝑁𝐻𝐼

(𝜃/𝜃(ℎ))  and 

𝑄 𝑁𝐻𝐼𝐼
(𝜃/𝜃(ℎ)) , since the first component utilizes only the 

parameter 𝜂0. The second component, parameters 𝜂1,𝛽1, and 
the third component utilizes only the parameters 𝜂2, 𝛽2. 

Formally, the iteration ℎ + 1 of the EM algorithm requires 
the following calculations: 

1. 𝜂 0
(ℎ+1) = 𝑡𝑛

∑  𝑛
𝑖=1𝜙�𝐻(𝑡𝑖)

 

 

2. 𝛽1
(ℎ+1) =

∑  
𝑖∈Ω

𝜙�𝑁𝐻𝐼(𝑡𝑖)�ln� ∑  
𝑖∈Ω

𝜙�𝑁𝐻𝐼(𝑡𝑖)�−1�

2 ∑  
𝑖∈Ω

�𝜙�𝑁𝐻𝐼(𝑡𝑖)ln�
𝛾0
𝑡𝑖
��

 

 
3. 𝜂 1

(ℎ+1) = 𝛾0

� ∑  
𝑖∈Ω

𝜙�𝑁𝐻𝐼(𝑡𝑖)�

1

𝛽1
(ℎ+1)

  

 

4. 𝛽2
(ℎ+1) =

∑  
𝑖∈Φ

𝜙�𝑁𝐻𝐼𝐼(𝑡𝑖)

∑  
𝑖∈Φ

�𝜙�𝑁𝐻𝐼𝐼(𝑡𝑖)ln�
𝑡𝑛−𝛾1
𝑡𝑖−𝛾1

��
 

 
5. 𝜂 2

(ℎ+1) = 𝑡𝑛−𝛾1

� ∑  
𝑖∈Φ

𝜙�𝑁𝐻𝐼𝐼(𝑡𝑖)�

1

𝛽2
(ℎ+1)

  

IV. NUMERICAL EXAMPLES 
The data analysis is based on real example concerning 

reparable system (hydraulic pump) about nuclear sector of  
France which was used in Bertholon and al. (2004). The studied 
system retains a hydraulic pump on which the observation of 6 
successive failures are used (18 months, 30, 82, 113, 121, 126). 
The estimation of model’s parameters using the EM algorithm 
gives the following results: 

• 𝛾0 and 𝛾1, respective instants of improvement end and 
degradation beginning are estimated to 26.685 and 
101.412. 

• The reverse of accidental failure rate 𝜂0 is estimated by 
𝜂̂0 = 43.855. 

• The scale parameters 𝜂1  and 𝜂2  are estimated 
respectively by 𝜂̂1 = 4.409 and 𝜂̂2 = 4.361. 

• The shape parameters 𝛽1  and 𝛽2  are estimated 
respectively by 𝛽̂1 = 1.098 and 𝛽̂2 = 3.000. 

In order to obtain a solid numerical results, a Monte-Carlo 
simulation is employed, allowing to compare the estimation of 
our model by MLE and EM algorithms. Two different cases are 
presented as follow: 

• The first case retains 100 simulations of 50 size sample 
of our model with parameters 𝜂0 = 1 ,𝜂1 = 1 ,𝛽1 =
0.5,𝜂2 = 1,𝛽2 = 2,𝛾0 = 30, 𝛾1 = 100. 

• The second case retains 100 simulations of 50 size 
sample of our model with the same parameters except 
for 𝛽2 = 3. 

The results are stated in form of mean and a 95% 
confidence interval. The next table presents the estimation 
results: 
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TABLE I.  SIMULATION RESULTS 

 First case (𝛽2 = 2) Second case (𝛽2 = 3) 

 Mean C I Mean C I 

 𝜂̂0 1.705 [1.411, 1.998] 1.331 [1.096, 1.565] 

 𝜂̂1 0.850 [0.659, 1.041] 0.968 [0.810, 1.127] 

MLE 𝜂̂2 0.880 [0.656, 1.104] 1.117 [0.935, 1.299] 

 𝛾�0 30.454 [25.130, 35.778] 35.085 [49.625, 60.546] 

 𝛾�1 104.72 [99.153, 110.29] 109.695 [104.52, 114.863] 

 𝜂̂0 1.881 [1.527, 2.234] 1.156 [0.985, 1.326] 

 𝜂̂1 0.801 [0.592, 1.008] 0.999 [0.875, 1.123] 
 𝛽̂1 0.345 [0.184, 0.506] 0.454 [0.411, 0.496] 
EM 𝜂̂2 0.799 [0.559, 1.038] 1.094 [0.959, 1.230] 

 𝛽̂2 1.776 [1.464, 2.089] 2.783 [2.602, 2.963] 

 𝛾�0 31.645 [27.091, 36.198] 32.560 [27.493, 37.627] 

 𝛾�1 105.63 [100.03, 111.25] 109.229 [104.459, 113.998] 

V. DISCUSSION 
In the long run, following the results of preceding tests, the 

failures process is a NHPP. The empirical cumulative 
distribution function of real data is evolved in the same 
direction as the simulated one. This process is then managed by 
our reliability model. Consequently, the effects of estimation 
show the way that there is an improvement of the system until 
the second failure (during 2.2 years of operation) and 
degradation starts from the fourth failure (beyond 8.5 years of 
operation). Considering the same unit of data over the 
improvement period and of degradation, the scale parameters 
𝜂1 and 𝜂2 over these two periods do not have a significant 
difference. This can be easily guaranteed with skew of an 
averages difference traditional test. The estimate value of 𝛽2 is 
higher than 2, the failure intensity is increasing and convex 
announcing a marginal progress in degradation state. At the 
same time, 𝛽1 takes an estimate value very near to 1 indicates 
that the intensity is practically constant. as a result, the failures 
are rather accidental and cannot be due to youth diseases. This 
purified model of improvement period, which is presented in 
Bertholon and al. (2004), remains able independently to 
concretize the hydraulic pump behavior. In light of simulations, 
we state the following criticisms: 

• The 𝜂̂𝑗  (𝑗 = 0,1 ou 2) have the best behavior to one 
side for the first case where 𝜂̂0 appears to degrade. 

• The 𝛾�𝑗 (𝑗 = 0 ou 1) are all acceptable. 

• The variability of 𝛽̂𝑗  ( 𝑗 = 1  ou 2 ) is significant 
enough. 

As a final point , the EM procedures offer better estimators 
for the second case. The values of 𝛽2 are rather higher than 2, 
then the curve is convex over the degradation period as it is 
presented in our model. A potential limitation of our model is 
that it involves seven parameters. In fact, it is difficult to 
estimate these parameters for small-sized and/or censured 
samples. For this reason even, the MLE appear more reliable 
for industrial applications. 
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