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Abstract—In the present paper, the resolution method for a
linguistic propositional logic with truth value in a logical algebra
- refined hedge algebra, is focused. The preliminaries of refined
hedge algebra are given first. Then the syntax and semantic
of linguistic propositional are defined. Finally, a resolution
method which based on resolution principle in two-valued logic
is established. Accordingly, the research in this paper will be
helpful support for the application of intelligent reasoning system
based on linguistic-valued logic which includes incomparable
information.
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I. INTRODUCTION

Resolution-based automated reasoning theory is an impor-
tant and active research field in artificial intelligence. Since
1965, automated reasoning based on Robinson’s resolution
rule [1] has been extensively studied in the context of finding
natural and efficient proof systems to support computational
tasks. However, the resolution rule only applied in two-valued
logic, so it cannot handle uncertain information, especially
linguistic information. Many researchers have attent to find
resolution principles in non-classical logics as effective as the
resolution principles in two-valued logic.

The resolution rule, initially designed for two-valued logics
by Robinson in 1965 [1], is the heart of many kinds of deduc-
tive systems such as theorem proving and logic programming.
But resolution two-valued logics suffers from a drawback,
it cannot handle uncertain or fuzzy information. Zadeh [2]
introduced the fuzzy set theory and fuzzy logic to deal with
uncertain reasoning. In fuzzy logic, a truth value domain is not
the classical set {False,True} or {0, 1}, but a set of linguistic
truth values [3] or the whole unit interval [0,1]. Moreover,
in fuzzy logic, linguistic hedges play an essential role in the
generation of the values of a linguistic variable and in the
modification of fuzzy predicates [4]. Substantial works have
been done for finding resolution methods in fuzzy logic as
effective as the resolution principle in two-valued logic [5],
[6],[7],[8],[9].

The theory of hedge algebras (HAs), introduced in Nguyen
and Wechler [10], forms an algebraic approach to a natural
qualitative semantics of linguistic terms in a term domain.
Hedge algebra is an algebraic approach to linguistic hedges
in Zadeh’s fuzzy logic [11], [12]. The hedge-algebra-based
semantics of linguistic terms is qualitative, relative and de-
pendent on the order-based structure of the term domain.
HAs have been shown to have a rich algebraic structure
to represent linguistic domains [11], and the theory can be

effectively applied to problems such as linguistic reasoning
[11] and fuzzy control [13]. Le et al. [14] introduced the
fuzzy linguistic logic programming whose truth value domain
is based on monotone symmetrical finite hedge algebras, then
gave a procedural semantics based on many-valued modus
ponens. Nguyen et al. [17],[18] presented linguistic logics
with truth-valued domain based on linear symmetrical hedge
algebra. Lai and Xu [15] presented a linguistic truth-valued
lattice-valued propositional logic system, called lP(X)P(X),
whose truth value domain is a lattice implication algebra. Liu
et al. [16] proposed an automated reasoning algorithm based
on the linguistic valued Lukasiewicz propositional logic with
truth-value in Łukasiewicz linguistic valued algebras.

Hedge algebra structure is a complete lattice but not
distributive [10], and hence composed linguistic terms are not
able to be expressed in the disjunction and conjunction normal
forms. In addition, the structure of such algebras is rather
rough. For example, let us consider the set of all possible
truth values T = {true, false, very true, very false, approx-
imately true, possibly true, approximately true or possibly
true, approximately true and possibly true, etc.}. It can be
shown from [19] that the linguistic term “approximately true
OR possibly true” will be expressed by “approximately true”
∪ “possibly true” and it equals to “true” in the structure of
extended hedge algebra of the linguistic truth variable, where
∪ is the join operation of this algebra. This is clearly unsuitable
in nature. To overcome this problem, the so-called refined
hedge algebras have been developed, based on an extension
of the axiomatic system of the hedge algebras. The results in
[12] showed that refined hedge algebra (RHA) of a linguistic
variable with a chain of the primary terms is a distributive
lattice. The lattice operations join and meet can model the
semantics of the logical disjunction and conjunction. RHAs
with two antonymous primary terms are called symmetrical
refined hedge algebras have a rich enough algebraic structure
in order to be used as a truth value domain for logical systems.
Starting from this observation, we have studied a linguistic
proposition logic whose the truth value domain is generated
by symmetrical refined hedge algebras.

In this work, we integrate resolution rule and RHAs to
construct a logical system that facilitates the representation and
reasoning on knowledge expressed in natural languages. In our
logical system, the set of truth values is that of linguistic ones
taken from an RHA of a linguistic truth variable. Furthermore,
people use finitely many degrees of quality or quantity to de-
scribe real world applications which are granulated [20], so we
consider only finitely many truth values. Since the truth value
domain of the logic is generated by symmetrical refined hedge
algebra we can express every logical formula in the disjunction
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and conjunction normal forms [12]. A resolution procedure
is presented, simultaneously its soundness and completeness
are proved. In addition, we introduce the notion of reliability
to capture the approximate nature of resolution inference.
A reliability of the conclusion of a resolution inference is
a semantics value that is not greater than the reliability of
premises of the resolution inference.

The paper is structured as follows: the next section gives
some concepts and results about refined hedge algebra. Sec-
tion III presents syntax and semantics of linguistic-valued
propositional logic. Section IV presents the resolution rule and
resolution procedure along with soundness and completeness
results. The paper is concluded in Section V.

II. PRELIMINARIES

In this section, we will present some elementary concepts,
the details can be found in the Ref [10] and [12].

Let AX = (X,G,LH,≤) be an abstract algebra where
X is the term set, G is the set of generators, H is the set of
hedges or modifiers, and ≤ is partial order on X .

We assume that the set LH is decomposed into two subsets
LH+, LH− such that LH+ + I and LH− + I are finite
lattices with zero-element I . Then X and LH are said to be
semantically consistent [12] if the following conditions hold:

1. X is generated from the generators in G by means of hedges
in LH , i.e. elements of X are of the form hn . . . h1a for
hi ∈ LH , i = 1, . . . , n, and a ∈ G.

2. For any h, k ∈ LH+ + I (respectively LH− + I , h < k
in LH+ + I (respectively LH− + I) iff ∀ x ∈ X((hx > x
or kx > x implies hx < kx) and (hx < x or kx < x
implies hx > kx)). And h, k are incomparable in LH++I
(respectively LH− + I) iff ∀ x ∈ X)(hx 6= x or kx 6= x)
implies hx and kx are incomparable.

Example II.1. Let AX = (X,G,LH,≤) be an
abstract algebra where G = {True,False}, H =
{V ery,More,Approximately, Possibly, Less, Little} is a
set of linguistic hedges. Then, the poset of values of the
linguistic variable Truth X is represented in Fig. 1. In-
tuitively, it can be seen that H+ = {V ery,More} and
H− = {Less,Approximate, Possible, Little}; H+ + I and
H−+I are lattices given in Fig. 2. The result of applying any
operation h to an element x can be understood as follows:
hTrue and hFalse are defined to be the elements given in
Fig. 1; and khx=hx; for all h, k ∈ H and x ∈ X . It can easily
be seen that X and H are semantically consistent.

AX is called a refined hedge algebra (RHA) [12], if X and
LH are semantically consistent and the following conditions
hold (where h, k ∈ LH):

(1) Every operation in LH− is converse to each operation in
LH+.

(2) The unit operation V of H+ + I is either positive or
negative w.r.t. any operation in H . In addition, H should
satisfy the PN-homogeneous property.

(3) (Semantic independent property) If u and v are indepen-
dent, i.e. u /∈ LH(v) and v /∈ LH(u), then x /∈ LH(v)
for any x ∈ LH(u) and vice versa. If x 6= hx then

Fig. 1: A poset of values of the linguistic variable Truth.

Fig. 2: Lattices of hedges.

x /∈ LH(hx). Further, if hx 6= kx then kx and hx are
independent.

(4) (Semantic inheritance) If hx and kx are incomparable,
then same for elements u ∈ LH(hx) and v ∈ LH(kx).
Especially, if a, b ∈ G and a < b then LH(a) < LH(b).
And if hx < kx then

i) In the case that h, k ∈ LHc
i , for some i ∈ SIc the

following statements hold:
• δhx < δkx, for any δ ∈ LH∗.
• δhx and y are incomparable, for any ∀y ∈
LH(kx) such that y � δkx.

• δkx and z are incomparable, for any ∀y ∈
LH(hx) such that z � δhx.

ii) Otherwise, h, k /∈ LHc
i , then h′hx ≤ k′kx, for every

h′, k′ ∈ UOS.
(5) (Linear order between the graded classes) Assume that

u ∈ LH(x) and u /∈ LH(LHc
i [x]), for any i ∈ Ic. If exist

v ∈ LH(hx), for h ∈ LHc
i such that u ≥ v (or u ≤ v),

then u ≥ h′v (or u ≤ h′v) for any h′ ∈ UOS.

In [12] show that if AX = (X,G,LH,≤) is an RHA
where G is a totally ordered set, then AX is a distributive lat-
tice. The condition that G is a totally ordered set is reasonable
because on linguistic domain the sets of generators are often
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simple sets where all element are comparable (e.g. G includes
two elements True,False). Operations of meet and join on AX
lattice are determined recursively, based on the corresponding
operations on hedge lattice LH .

Denote LH[x] = {hx : h ∈ LH + I}, where x ∈ X . It
is proved that LH[x] is a distributive sub-lattice of AX and
operations of meet and join on it is defined as follows:

hx ∨ kx =

{
(h ∪ k)x if hx ≥ x,
(h ∩ k)x if hx ≤ x

and hx ∧ kx =

{
(h ∩ k)x if hx ≥ x,
(h ∪ k)x if hx ≤ x

where ∪,∩ are the join and meet operators of LH , and ∨,∧
are the join and meet operators of X .

In natural languages, there are many linguistic variables,
which have only two distinct primary terms. These terms have
intuitive contradictory meaning such as “true” and “false”,
“old” and “young”, “tall” and “short”, etc. Therefore, we
consider hedge algebras have exactly two primary generators,
one of which is called positive generator, and the other is
called negative generator. It seems reasonable to consider
“true”, “old”, and “tall” as positive generators and “false”,
“young”, and “short” as negative ones. Note that the set of
generators may contain special constants such as ⊥,>, and
W which are different from the primary terms and understood
as “absolutely false”, “absolutely true” and the “neutral”,
respectively. These constants can be characterized by the
conditions that hc = c for all h ∈ LH, c ∈ {⊥,W,>} and
⊥ < W < >. In this paper, we shall be working with RHA
AX = {X,G,LH,≤}, where G = {⊥,True,W,False,>}.

Let x be an element of the RHA AX , x = hn...h1a
is called the canonical representation of x where a ∈
{True,False}. The contradictory element of x, denoted by x, is
an element y such that y = hn...h1a

′ where a′ ∈ {True,False}
and a′ 6= a. The contradictory element of > is ⊥ and,
conversely, the contradictory element of ⊥ is >. In the case
where x =W , we define the contradictory element of W to be
just itself. For example, x = “VeryVeryFalse” is a contradictory
element of x = “VeryVeryTrue”; y = “VeryLittleBad” is a con-
tradictory element of u=“VeryLittleGood”. By the definition, it
is obvious that the positive generator is a contradictory element
of the negative one and vice versa and if y is a contradictory
element of x then x is a contradictory element of y.

Let AX = (X,G,LH,≤) be an RHA where G =
{⊥,False,W,True,>}. Then, AX is said to be a symmetrical
RHA provided every element x ∈ X has a unique contradictory
element in X .

It is useful to limit the set of values X only consists of
finite length elements. This is entirely suitable with the prac-
tical application in natural language, which does not consider
an infinite number of hedge of string. Denote LHp[G] =
{hn...h1a : hi ∈ LH + I, a ∈ G,n ≤ p}. A symmetrical
RHA AX = (LHp[G], G, LH,≤) is a complete distributive
lattice.

From now on, we consider a symmetrical RHA
AX = (LHp[G], G, LH,≤,¬,∨,∧,→), where G =
{⊥,False,W,True,>}, ⊥,> are fixed points, W is the neutral

element, and ⊥ < False <W < True < >.

Let x and y be two elements of the symmetrical RHA AX ,
then

• the negation operator is an unary operator, which is
defined by ¬x = x, where x is the contradictory element
of x,
• the implication operator is a binary operator, which is

defined through negative and join operators: x → y =
¬x ∨ y.

Theorem II.1. [12] Let AX = (LHp[G], G, LH,≤) be a
symmetrical RHA. Then, for all x, y ∈ LHp[G], for all h, k ∈
LH , we have:

1) ¬(hx) = h¬x.

2) ¬(¬x) = x.

3) ¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y.

4) x ∧ ¬x ≤ y ∨ ¬y.

5) x ∧ ¬x ≤W ≤ x ∨ ¬x.

6) ¬> = ⊥,¬⊥ = > and ¬W = W.

7) x > y iff ¬x < ¬y.

8) x→ y = ¬y → ¬x.

9) x→ (y → z) = y → (x→ z).

10) x→ y ≤ x′ → y′ if x ≤ x′ and y ≥ y′.
11) x→ y = > iff x = ⊥ or y = >.

12) > → x = x and x → > = >; ⊥ → x = > and
x→ ⊥ = ¬x.

13) x → y ≥ W iff x ≤ W or y ≥ W, and x → y ≤ W iff
x ≥W or y ≤W.

III. LINGUISTIC PROPOSITIONAL LOGIC

In this section, we shall define the syntax and semantics of
the linguistic propositional logic.

Definition III.1. An alphabet of linguistic propositional logic
consists of:

• constant symbols: ⊥,>,MoreTrue,VeryFalse, ...,

• propositional variables: A,B,C, ...,

• logical connectives: ∨,∧,→,¬,≡, and

• auxiliary symbols: 2, (, ), ...

Definition III.2. An atom is either a propositional variable or
a constant symbol.

Definition III.3. Let A be an atom and α be a constant
symbol. Then Aα is called a literal.

Definition III.4. Formulas are defined recursively as follows:

• either a literal or a constant symbol is a formula,

• if P is a formula, then ¬P is a formula, and

• if P,Q are formulas, then P ∨Q, P ∧Q and P → Q are
formulas.
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Definition III.5. A clause is a finite disjunction of literals,
which is written as l1 ∨ l2 ∨ . . .∨ ln, where the symbol li is a
literal. The empty clause is denoted by 2.

Definition III.6. A formula F is said to be in conjunctive
normal form if it is a conjunction of clauses.

Definition III.7. An interpretation consists of the followings:

• a linguistic truth domain, which is a symmetrical RHA,

• for each constant in the alphabet, the assignment of an
element in LHp[G],

• for each formula, the assignment of a mapping from
LHp[G]

n to LHp[G].

Definition III.8. Let I be an interpretation and A be an atom
such that I(A) = α1. Then the truth value of a literal Aα
under the interpretation I is determined uniquely as follows:

• I(Aα2) = α1 ∧ α2 if α1, α2 >W,

• I(Aα2) = ¬(α1 ∨ α2) if α1, α2 ≤W,

• I(Aα2) = (¬α1) ∨ α2 if α1 >W, α2 ≤W, and

• I(Aα2) = α1 ∨ (¬α2) if α1 ≤W, α2 >W.

Definition III.9. The truth value of formulas under an inter-
pretation is determined recursively as follows:

• I(P ∨Q) = I(P ) ∨ I(Q),

• I(P ∧Q) = I(P ) ∧ I(Q),

• I(¬P ) = ¬I(P ),
• I(P → Q) = I(P )→ I(Q)

The following result follows from the properties of the ∧
and ∨ operators.

Theorem III.1. Let A, B and C are formulas, and I be an
arbitrary interpretation. Then,

• Commutative:

◦ I(A ∨B) = I(B ∨A)
◦ I(A ∧B) = I(B ∧A)

• Associative:

◦ I((A ∨B) ∨ C) = I(A ∨ (B ∨ C))
◦ I((A ∧B) ∧ C) = I(A ∧ (B ∧ C))

• Distributive:

◦ I(A ∨ (B ∧ C)) = I((A ∧B) ∨ (A ∧ C))
◦ I(A ∧ (B ∨ C)) = I((A ∨B) ∧ (A ∨ C))

Proof: The proof of the Theorem is straightforward.

Definition III.10. Let F be a formula and I be an interpre-
tation. Then

• F is said to be true under interpretation I iff I(F ) >W, I
is also said to satisfy formula F , F is said to be satisfiable
iff there is an interpretation I such that I satisfies F , F is
said to be tautology iff it is satisfied by all interpretations;

• F is said to be false under interpretation I iff I(F ) <
W, I is also said to falsify formula F , F is said to be
unsatisfiable iff it is falsified by all interpretations.

According to the definition, if I(F ) = W then I both
satisfies and falsifies F . Further, not satisfying is different from
falsifying and not falsifying is different from satisfying.

Definition III.11. Formula B is said to be a logical con-
sequence of formula A, denoted by A |= B, if for all
interpretation I , I(A) >W implies that I(B) >W.

Theorem III.2. Let A and B be formulas. Then, A |= B iff
|= (A→ B).

Proof: Assume that A |= B, for any interpretation I ,
then if I(A) < W, I(¬A) > W; otherwise if I(A) > W,
we recall that A |= B, so I(B) > W. Hence, I(A → B) =
¬I(A)∨I(B) >W. In other words, |= (A→ B). Conversely,
by a similar way, we can also show that |= (A→ B) implies
A |= B.

Definition III.12. Two formulas A and B are logically equiv-
alent, denoted by A ≡ B, if and only if A |= B and B |= A.

The following theorem follows from the properties of the
∧ and ∨ operators and Definition III.12.

Theorem III.3. Let A,B and C be formulas. Then the
following properties hold

1) Idempotency:

• A ∨A ≡ A

• A ∧A ≡ A

2) Implication:

• A→ B ≡ (¬A) ∨B

• (A ≡ B) ≡ (A→ B) ∧ (B → A)

3) Double negation:

• ¬¬A ≡ A

4) De Morgan:

• ¬(A ∨B) ≡ (¬A) ∧ (¬B)

• ¬(A ∧B) ≡ (¬A) ∨ (¬B)

5) Commutativity:

• A ∨B ≡ B ∨A

• A ∧B ≡ B ∧A

6) Associativity:

• A ∨ (B ∨ C) ≡ (A ∨B) ∨ C

• A ∧ (B ∧ C) ≡ (A ∧B) ∧ C

7) Distributivity:

• A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

• A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 1, 2016 

675 | P a g e
www.ijacsa.thesai.org 



Proof: The proof is straightforward.

As mentioned previously, we will be working with resolu-
tion as the inference system of our logic. Therefore formulas
need to be converted into conjunctive normal form. The fol-
lowing theorem, which follows from the equivalence properties
in Theorem III.3, ensures that the transformation is always
feasible.

Theorem III.4. Let F be a formula of arbitrary form. Then
F can be converted into an equivalent formula in conjunctive
normal form.

Proof: It is easy to prove this theorem based on the
properties in the Theorem III.3

Let S be a set containing exactly n atoms A1, A2, . . . , An.
A semantic tree of S is an n-level complete binary tree, each
level corresponds to an atom. The left edge of each node at
the level i is assigned the label Ai ≤ W, and the right edge
of each node at the level i is assigned the label Ai > W (cf.
Fig 3).

A1 ≤ W A1 > W

A2 ≤ W A2 > W A2 ≤ W A2 > W

Fig. 3: Semantic tree

A set of clauses S is failed at the node t of a semantic
tree T iff there exist an interpretation I corresponding to a
branch in T which contains t, such that S is false under I . A
node t is called a failure node of S iff S fails at t and does
not fail at any node above t. A node t in a semantic tree T
is called an inference node iff both successor nodes of t are
failure nodes. If there are failure nodes for S on every branch
of the corresponding semantic tree T , removing all child nodes
of each failure node, we receive a failure tree FT .

It is important to underline that if a set of clauses S is
unsatisfiable then S has a corresponding failure tree.

Lemma III.1. There always exists an inference node on the
failure tree.

Proof: Assume that we have a failure tree FT . Because
FT has a finite level, so there exists one (or more) leaf node
on FT at the highest level, let say this node is called j. Let i
be the parent node of j. By definition of failure tree, i cannot
be failure node. Therefore, i has another child node, named k
(Figure 4). If k is a failure node then i is inference node, the
theorem is proved. If k is not a failure node then it has two
child nodes: l,m. Clearly l,m are at higher level than j. This
contradicts with the assumption that j is at the highest level.

Therefore, k is a failure node and i is an inference node. This
completes the proof of the lemma.

i

k j

l m

Fig. 4: Inference node on failure tree

Let FT1 (respectively FT2) be a failure tree of the set of
clauses S1 (respectively S2). We denote FT1 ⊃ FT2 iff there
exists an inference node i of FT1 such that removing two
successor nodes of i on FT1 we receive FT2.

IV. RESOLUTION METHOD

We shall introduce resolution rule for automated reasoning
in our linguistic propositional logic. Firstly, we recall basic
notions inference rules.

An inference has the form:

C1, C2 . . . , Cn
C

where the clauses C1, C2 . . . , Cn are the premises and C is
the conclusion.

In two-valued logic, when we have a set of formulas
{A,¬A} (written as {ATrue, AFalse} in our logic) then the set
is said to be contradictory. However, in our logic, the degree of
contradiction can vary because the truth domain contains more
than two elements. Let us consider the two sets of formulas
{AVeryTrue, AVeryFalse} and {ALittleTrue, ALittleFalse}. It is obvi-
ous that the first set of formulas is “more contradictory” than
the second one. The notion of reliability is hence introduced
to capture the fuzziness of resolution inferences.

Let α be an element of X such that α > W, and C be a
clause. The a clause C with reliability α is the pair (C,α).
The same clauses with different reliabilities are called variants.
That is (C,α) and (C,α′) are called a variant of each other.

If S = {C1, C2, ..., Cn} is a set of clauses, then the
reliability α of S is defined as: α = α1 ∧α2 ∧ ...∧αn, where
αi is the reliability of the clause Ci (for i = 1, 2, . . . , n).

An inference rule R that works with clauses with reliability
is represented as:

(C1, α1), (C2, α2), . . . , (Cn, αn)

(C,α)

We call α the reliability of R, provided that α ≤ αi for
i = 1..n.
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Definition IV.1. Define the fuzzy linguistic resolution rule as
follows:

(Aa ∨Bb1 , α1), (B
b2 ∨ Cc, α2)

(Aa ∨ Cc, α3)

where b1, b2 and α3 satisfy the following conditions:{
b1 ∧ b2 ≤W,
b1 ∨ b2 >W,
α3 = f(α1, α2, b1, b2)

with f is a function ensuring that α3 ≤ α1 and α3 ≤ α2.

In Definition IV.1 α3 is defined so as to be smaller or equal
to both α1 and α2. This makes sure that the more inferences
we need to deduce a clause the less reliable the obtained clause
is. There are different ways to define α3. Below we define α3

in three ways based on ∧ and ∨ operators.

The reliability of the resolution rule IV.1 based on ∧
operator is given by:

α3 = f(α1, α2, b1, b2) = α1 ∧ α2 ∧ ¬(b1 ∧ b2) (1)

The reliability of the resolution rule IV.1 based on ∨
operator is given by:

α3 = f(α1, α2, b1, b2) = α1 ∧ α2 ∧ (b1 ∨ b2) (2)

The reliability of the resolution rule IV.1 based on the
combination of ∧ and ∨ operators is given by:

α3 = f(α1, α2, b1, b2) = α1 ∧ α2 ∧ (¬(b1 ∧ b2)) ∧ (b1 ∨ b2)
(3)

Proposition IV.1. The reliability based on ∧ operator (respec-
tively ∨ operator or the combination of ∧ and ∨ operators)
satisfies the conditions on α3 in Definition IV.1.

Proof: It is clear that that α3 ≤ α1 and α3 ≤ α2, as well
as α3 depends on b1, b2. Additionally, it is clear that α1, α2 ∈
X+. Moreover, b1 ∧ b2 ≤ W implies ¬(b1 ∧ b2) > W. Then,
by Formula (1), we have α3 >W.

The proof for ∨ operator is similar.

For the combination of ∧ and ∨ operators, we have

α3 = α1 ∧ α2 ∧ (¬(b1 ∧ b2)) ∧ (b1 ∨ b2)
= (α1 ∧ α2 ∧ ¬(b1 ∧ b2)) ∧ (α1 ∧ α2 ∧ (b1 ∨ b2))

Then applying the results of ∧ operator and ∨ operator we
have α3 >W.

Theorem IV.1. The fuzzy linguistic resolution rule IV.1 is
sound.

Proof: We need to prove that for any interpretation I , if
I((Aa ∨Bb1)∧ (Bb2 ∨Cc)) >W then I(Aa ∨Cc) >W. We
have that

I((Aa ∨Bb1) ∧ (Bb2 ∨ Cc))
= I((Aa ∧Bb2) ∨ (Aa ∧ Cc) ∨ (Bb1 ∧Bb2) ∨ (Bb1 ∧ Cc))
= I(Aa ∧Bb2) ∨ I(Aa ∧ Cc) ∨ I(Bb1 ∧Bb2) ∨ I(Bb1 ∧ Cc)

It is easy to show that:

- I(Aa ∧Bb2) ≤ I(Aa) ≤ I(Aa ∨ Cc),
- I(Aa ∧ Cc) ≤ I(Aa ∨ Cc),
- I(Bb1 ∧ Cc) ≤ I(Cc) ≤ I(Aa ∨ Cc), and
- I(Bb1 ∧Bb2) ≤W

So, if I(Aa ∨ Cc) ≤W then we must have that

I(Aa∧Bb2)∨ I(Aa∧Cc)∨ I(Bb1 ∧Bb2)∨ I(Bb1 ∧Cc) ≤W

which contradicts with the initial assumption. This completes
the proof of the theorem.

Definition IV.2. A linguistic resolution derivation as a se-
quence of the form S0, . . . , Si, . . ., where

• each Si is a set of clauses with reliability, and

• Si+1 is obtained by adding the conclusion of a fuzzy
linguistic resolution inference with premises from Si, that
is Si+1 = Si ∪ {(C,α)}, where (C,α) is the conclusion
of the fuzzy linguistic resolution

(C1, α1), (C2, α2)

(C,α)

and (C1, α1), (C2, α2) ∈ Si.

The following theorem shows that the resolution procedure
in the Def.IV.2 is sound and complete.

Theorem IV.2. Let S0, . . . , Si, . . . be a fuzzy linguistic res-
olution derivation. Sn contains the empty clause (for some
n = 0, 1, . . .) iff S0 is unsatisfiable.

Proof: (⇒) If Sn contains the empty clause, then Sn
is false under any interpretation. By Theorem IV.1, we
have Sn−1 is false under any interpretation, too. Similarly,
Sn−1, . . . , S1, S0 are also false under any interpretation.

(⇐)Because S0 is unsatisfiable, there is a corresponding
failure tree FT . By Lemma III.1, there exists an inference node
i on FT with two child nodes j, k. Assuming that the label of
edge i − j is A ≤ W and the label of edge i − k is A > W.
The interpretation corresponding to the branch contains the
edge i− j and terminating at j makes S0 satisfiable. So, there
is at least one clause in S0 containing the literal Aα1 where
α1 ≤W, let say C1. Similarly, there exists at least one clause
in S0 containing the literal Aα2 where α2 > W, we name it
C2. Applying the resolution rule in the Def. IV.1:

C1, C2

C3

C3 does not contain atom A, so that C3 is false under all
interpretations containing A. Thus, failure tree FT1 of the
clause set S1 = S0∪C3 does not contain node j, k, this means
FT ⊃ FT1.

By applying resolution procedure, there exist failure trees
FT2, FT3, . . . of the sets of clauses S2, S3, . . . such that FT ⊃
FT1 ⊃ FT2 ⊃ FT3 ⊃ . . .. Because there are only a finite
number of nodes in FT , then exists some n satisfying: FTn =
2 (i.e. FT ⊃ FT1 ⊃ FT2 ⊃ FT3 ⊃ . . . ⊃ FTn = 2). Only
the empty clause is false under the empty interpretation. This
means that the set of clauses Sn (Sn corresponds to FTn)
contains the empty clause.
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A resolution proof is of a clause C from a set of clauses S
consists of repeated application of the resolution rule to derive
the clause C from the set S. If C is the empty clause then
the proof is called a resolution refutation. We will represent
resolution proofs as resolution trees. Each tree node is labeled
with a clause. There must be a single node that has no child
node, labeled with the conclusion clause, we call it the root
node. All nodes with no parent node are labeled with clauses
from the initial set S. All other nodes must have two parents
and are labeled with a clause C such that

C1, C2

C

C where C1, C2 are the labels of the two parent nodes. If
RT is a resolution tree representing the proof of a clause with
reliability (C,α), then we say that RT has the reliability α.

Example IV.1. Let AX = (LHp[G], G, LH,≤,¬,∨,∧,→)
be a symmetrical RHA, where

• LH+ = {Very,More},

LH− = {Approximately, Little},

• G = {⊥,False,W,True,>},

• ⊥,> are the smallest and biggest elements, W is the
neutral element, and ⊥ < False <W < True < >.

Assume that we have the set of clauses:

1) AApproximatelyTrue ∨BMoreTrue

2) AFalse

3) BVeryFalse ∨ CTrue

4) CLittleFalse

At the beginning, we shall assign each clause to the highest
reliability >. We consider the reliability based on ∨ operator.
The resolution refutation is found as following:

(AApproximatelyTrue ∨BMoreTrue,>) (AFalse,>)

(BVeryTrue,ApproximatelyTrue) (BVeryFalse ∨ CTrue,>)

(CTrue,ApproximatelyTrue) (CLittleFalse,>)

(2,ApproximatelyTrue)

V. CONCLUSION

We have presented the resolution method in linguistic truth-
valued propositional logic based on linguistic truth-valued
symmetrical RHA. The syntax and semantics of our logic
are defined. The resolution rule with the reliability is given.
The soundness and completeness are proved. The presented
work provided a key theoretical support for a resolution-based
automated reasoning approaches in linguistic truth-valued logic
based on RHA. Accordingly, this research work supports
linguistic information processing which can directly focus
on linguistic values. Further research can be carried out on
the practical implementation of the proposed resolution-based
automated reasoning procedure as well as its application in
intelligent reasoning and decisions making.
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