
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Dynamic Inertia Weight Particle Swarm Optimization
for Solving Nonogram Puzzles

Habes Alkhraisat
Department of computer science

Al-Balqa Applied University
AL salt, Jordan

Hasan Rashaideh
Department of computer science

Al-Balqa Applied University
Al Salt, Jordan

Abstract—Particle swarm optimization (PSO) has shown to be
a robust and efficient optimization algorithm therefore PSO has
received increased attention in many research fields. This paper
demonstrates the feasibility of applying the Dynamic Inertia
Weight Particle Swarm Optimization to solve a Non-Polynomial
(NP) Complete puzzle. This paper presents a new approach to
solve the Nonograms Puzzle using Dynamic Inertia Weight
Particle Swarm Optimization (DIW-PSO). We propose the DIW-
PSO to optimize a problem of finding a solution for Nonograms
Puzzle. The experimental results demonstrate the suitability of
DIW-PSO approach for solving Nonograms puzzles. The
outcome results show that the proposed DIW-PSO approach is a
good promising DIW-PSO for NP-Complete puzzles.

Keywords—Non-Polynomial Complete problem; Nonograms
puzzle; Swarm theory; Particle swarms; Optimization; Dynamic
Inertia Weigh

I. INTRODUCTION
Most of optimization problems including NP-complete

problem, such as Nonograms puzzle, have complex
characteristics with heavy constraints. Nonograms are
deceptively simple logic puzzles, which is considered as an
image reconstruction problem, starting with a blank N × M
grid, Fig. 1.a shows an example for 5 x 5 Nonograms puzzle.

The solution of the puzzle is an image grid that satisfies
certain row and column constraints. The constraints take the
form of series of numbers at the head of each line (row or
column) indicating the size of blocks of contiguous filled cells
found on that line.

The puzzle solvers need to figure out which square will be
left blank (white) and which will be colored (black), based on
the numbers at the side of the grid. The resulting pattern of
colored or left blank squares makes up a hidden picture, which
is the solution to the puzzle.

The resulting picture must obey all the following three
conditions:

1) Each picture cell must be either colored or blanked i.e.
black or white.

2) The s1, s2, . . . , sk numbers at the side of the row or
column: indicated that there are groups of s1, s2, and sk filled
squares, with at least one blank square between consecutive
groups.

3) Between two consecutive black there must be at least
one empty cell.

 1
1

1
2 3 1

2
1
1

3
1 1 1

3
1 1
1 1

(a) 5 × 5 Nonograms puzzle

 1
1

1
2 3 1

2
1
1

3
1 1 1

3
1 1
1 1

(b) 5 × 5 Nonograms solution

Fig. 1. (a) 5 × 5 Nonograms puzzle (b) its solution

For example, in the first row the "3" tells that, somewhere
in the row, there are three sequential blocks filled in. Those
will be the only blocks filled in, and the amount of space
before/after them are not defined. The possible solution for the
first row are:

Solution 1

Solution 2

Solution 3

3

3

3

The "1 2" in the second columns tells that, somewhere in
the column, there is one block filled in, followed by 2
sequential blocks filled in, and also those will be the only
blocks filled in, and the amount of space before/after them are
not defined. The possible solutions for the second column are:

Solution 1 Solution 2 Solution 3
1
2

1
2

1
2

277 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

A puzzle is complete when all rows and columns are filled,
and meet their definitions, without any contradictions. Fig. 1
shows an example of a Nonograms and its solution.

Several algorithms have applied to find a solution for the
Nonograms problem such as an evolutionary algorithm, a
heuristic algorithm, and a reasoning framework [2, 3, 4, and 5].

In this paper, a Dynamic Inertia Weight Particle Swarm
Optimization (DIW-PSO) algorithm is proposed for solving
Nonograms puzzles. In this work, we demonstrate that DIW-
PSO can be specified to NP-Complete puzzle.

II. DYNAMIC INERTIA WEIGHT PARTICLE SWARM
OPTIMIZATION

Particle swarm optimization (PSO) is a population based
stochastic optimization method, which is an efficient and
effective global optimizer in the discrete search domain [6].
PSO has been successfully applied to a wide variety of
problems in mechanical engineering, communication, pattern
recognition and diverse fields of science.

In PSO, a multiple random candidate solutions, so-called
particles, are maintain in the problem search space, where each
particle represents a solution to an optimization problem. Each
particle is assessed by fitness function to figure out whether a
particle is the problem “best” solution or not. A particle then
fly through the problem search space with a randomized
velocity by combining the current and best potential solution
locations.

Let 𝐷 be the size of the swarm, each particle 𝑖 is composed
of the following D-dimensional vectors: (1) the current
position 𝑥𝚤���⃗ , (2) velocity 𝑣𝚤���⃗ , and (3) best value 𝑝𝚤����⃗ .

The PSO algorithm consists of adjusting the velocity and
position of each particle toward new current best and global
best locations. At each time step, current position 𝑥𝚤���⃗ is updated
by velocity and evaluated as a problem solution, in case the
particle finds a pattern that is better than any it has found
previously, it is recorded in the vector 𝑝𝚤���⃗ . And also the best
fitness result value is recorded in 𝑃𝑏𝑒𝑠𝑡𝑖 , for comparison on
the next iterations. The PSO keeps finding better positions and
updating both 𝑝𝚤���⃗ and pbest𝑖 .

Position of individual particles 𝑥𝑖 at 𝑘 + 1 iteration is
modified according to the following [7]:

 𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 𝑣𝑖𝑘+1𝑘+1 (1)
The particle position is adjusted using the particle velocity

which is calculated using the following equation [8, 9]:

𝑣𝑖𝑘+1 = 𝑤 × 𝑣𝑖𝑘 + 𝑐1 × 𝑟1�𝑃𝑏𝑒𝑠𝑡𝑖𝑘 − 𝑥𝑖𝑘� + 𝑐2 ×
𝑟2�𝐺𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖𝑘� (2)

where,

- 𝑖 = 1, 2,⋯ ,𝑛;
- 𝑘 : iteration index,
- 𝑣𝑖𝑘 , and 𝑥𝑖𝑘 : velocity and position of particle 𝑖 at

iteration 𝑘,
- 𝑃𝑏𝑒𝑠𝑡𝑖𝑘 : best position of particle 𝑖 at iteration 𝑘
- 𝐺𝑏𝑒𝑠𝑡𝑘: global best position in the whole swarm until

iteration 𝑘,

- 𝑐1: cognitive parameter coefficient,
- 𝑐2: social parameter coefficient,
- 𝑟1 and 𝑟2: predefined random values in rang [0, 1],
- 𝜔 : inertia weight factor controlling the dynamics of

flying,
- 𝑛: number of particles in the group
The inertia weight factor dynamically adjusts the velocity

of particle and therefore it controls the exploration and
exploitation of the search space. The nonlinearly decreasing
inertia weight w is set as follow [10]:

 𝜔 = 𝜔𝑚𝑖𝑛 + �𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟
𝐼𝑡𝑒𝑟𝑚𝑎𝑥

�
𝑛

 × (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) (3)

where,
- 𝜔𝑚𝑖𝑛, and 𝜔𝑚𝑎𝑥: lower and upper limit value of inertia

weights,

- 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 : maximum number of iteration,

- 𝐼𝑡𝑒𝑟 : current iteration,

In each iteration, ω inertia weight will decrease nonlinearly
from 𝜔𝑚𝑎𝑥 to 𝜔𝑚𝑖𝑛 and 𝑛 is the nonlinear modulation index.

Fig. 2 illustrates PSO search mechanism according to “(1)”
and “(2)”.

Fig. 2. The search mechanism of the particle swarm optimization

The process of PSO algorithm for solving Nonograms
puzzles can be summarized as follows:

1) Initialization a population with random positions and
velocities of a group of particles in 𝑑 dimensional problem
space while Nonograms puzzles constraints.

2) Position updating
3) Memory updating 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡.
4) if stopping criteria is satisfied then stop PSO, else go to

Step 2.

III. DIW-PSO FOR SOLVING NONOGRAMS PUZZLES
In this section, the DWI- PSO in solving Nonograms puzzle

is described. The fitness function has a major role in the DWI-
PSO algorithm, since it is the only standard of judging whether
a particle is “best” or not. The fitness function for Nonograms
puzzles is calculated as follow:

𝑓𝑘𝑖(xki) = ∑ �𝑟𝑖,𝑝 − 𝑥𝑖𝑝� + ∑ �𝑐𝑝,𝑖 − 𝑥𝑝,𝑖�𝑚
𝑝=0

𝑛
𝑝=0 (4)

where

278 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

- 𝜒𝑖,𝑟 is the total number of colored pixels at row r of
individual 𝑖,

- 𝑄𝑟 is the total number of colored pixels at row r of the
puzzle,

- 𝑌𝑖,𝑟 is the total number of colored pixels at column r of
individual 𝑖,

- P𝑟 is the total number of colored pixels at column r of
the puzzle.

The fitness value 𝑓𝑘𝑖(xki) gives an indication how much the
individual 𝜒𝑖,𝑛 far from the optimal solution. Compare current
particles fitness value 𝑓(xki) with best particles fitness value
𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘� . If 𝑓(xki) is better than 𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘� then set fbesti
value to 𝑓𝑘𝑖(xki) and the 𝑃𝑏𝑒𝑠ki location to the location 𝑥𝑘𝑖 .
Then compare 𝑓(𝑥𝑘𝑖) with the population’s global best
𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) . If the 𝑓(xki) is better than 𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) then reset
 fbest
g to the current particle 𝑓�𝑥𝑖𝑘�, and the 𝐺𝑏𝑒𝑠𝑡𝑘 location to

the location xki . To illustrate the fitness function, consider the
figure 2. The fitness function for figure 2 (b), (c) and (d) is
calculated as follow:

𝑓(𝑃𝑏𝑒𝑠𝑡𝑖𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |2 − 1| + |3 − 2|
+ |0 − 2| = 4

𝑓(𝑥𝑖𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |2 − 1| + |2 − 2|
+ |1 − 2| = 2

𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |3 − 1| + |2 − 2|
+ |2 − 0| = 4

Since �𝑥𝑖𝑘� < 𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘� , the current 𝑥𝑖𝑘 is better than
𝑃𝑏𝑒𝑠𝑡𝑖𝑘 , then set fbesti = 2, and 𝑃𝑏𝑒𝑠ki = xki . And also since
the 𝑓�𝑥𝑖𝑘� < 𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) , which indicates that current 𝑥𝑖𝑘 is
better than 𝐺𝑏𝑒𝑠𝑡𝑘, then set fbest

g = 𝑓�𝑥𝑖𝑘�, and 𝐺𝑏𝑒𝑠𝑡𝑘 = xki .

 1 2 2
2
2
1

 3 2 0
2 1 1 0
2 1 1 0
1 1 0 0

 2 3 0
2
2
1

 2 2 1
2
2
1

(a) Nonograms
puzzle

(b) 𝐺𝑏𝑒𝑠𝑡𝑘 (c)𝑃𝑏𝑒𝑠𝑡𝑖𝑘 (d) 𝑥𝑖𝑘

Fig. 3. An example to illustrate the Nonograms fitness function

At each iteration step, velocities of all particles are
modified using “(2)”, so the velocity of particle 𝑖 at iteration 𝑘
(Fig. 3) according to “(1)” is:

𝑣𝑖𝑘+1 = ⌈ 1 × 0 + 2 × 0.2 × (0) + 2 × 0.8 × (4)⌉ 𝑚𝑜𝑑 𝑉𝑚𝑎𝑥
= ⌈6.4⌉ 𝑚𝑜𝑑 3 = 7 𝑚𝑜𝑑𝑒 3 = 1

where = 1 , 𝑐1 = 𝑐2 = 2, 𝑣𝑖𝑘 = 0, 𝑟1 = 0.2, 𝑉𝑚𝑎𝑥 = 3, and
𝑟2 = 0.8

After calculating the velocity, and between successive
iterations, the modification of the particle position is controlled
by the new calculated velocity. The modified position of 𝑥𝑖𝑘 is

done by adding the 𝑣𝑖𝑘+1 to the 𝑥𝑖𝑘, as defined in “(2)”:

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 1

The result of the above equation means that the current
particle 𝑥𝑖𝑘 must be shifted one cell to right. Fig. 4 illustrates
the result of shifting 𝑥𝑖𝑘.

 2 2 1
2
2
1

→
 1 2 2
2
2
1

(a) 𝑥𝑖𝑘 (b) 𝑥𝑖𝑘+1

Fig. 4. Particle Position modification

Generally, the procedure for the proposed algorithm
consists of the following steps:

Step 1: Initialization

1.1. Constant variables 𝑐1, 𝑐2 and 𝑘𝑚𝑎𝑥.

1.2. Positions of a group of particles 𝑥𝑖𝑘.

1.3. Velocities of a group of particles 𝑣𝑖𝑘 .

Step 2: Optimization

2.1. For each particle, evaluate fitness fki using (4).

2.2. Compare the fitness of each individual with each
𝑃𝑏𝑒𝑠𝑡i.

If 𝑓𝑘𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡𝑖 , then the new position of 𝑖𝑡ℎ particle is
better than 𝑃𝑏𝑒𝑠𝑡𝑖 , then set 𝑓𝑏𝑒𝑠𝑡𝑖 = 𝑓𝑘𝑖, 𝑃𝑏𝑒𝑠𝑘𝑖 = 𝑥𝑘𝑖

2.3. Compare the fitness of each individual with 𝐺𝑏𝑒𝑠𝑡𝑘.

If 𝑓𝑘𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡
𝑔 , the new position of 𝑖𝑡ℎ particle is better

than 𝐺𝑏𝑒𝑠𝑡𝑘, then set fbest
g = fki , 𝐺𝑏𝑒𝑠𝑡𝑘 = xki

2.4. Calculate the inertia weight using (3).

2.5. Update all particle velocities according to (2).

2.6. Update all particle positions according to (1).

2.7. Increment k.

2.8. repeat steps 2.1 – 2.4 until a sufficient good fitness or
a maximum number of iterations are reached.

Step 3: Terminate

DWI-PSO parameters are as in Table 1. To solve the
Nonograms puzzle we set the population size equal to the
number of rows times number of columns in the Nonograms
puzzle, maximum Number of iterations are considered as 10,
20, 50,100 and 1000, respectively, 𝑐1 = 𝑐2 = 2 , and
𝑉𝑎𝑟𝑚𝑎𝑥and 𝑉𝑎𝑟𝑚𝑖𝑛 are equal to the length of the search space
[6, 11]. In addition, the inertia weight starts with 1.4 and
decreases nonlinearly to 0.4 [12].

279 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

TABLE I. PARAMETERS FOR DWI-PSO

Population Size (Swarm Size) nPop
Maximum Number of Iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 10, 20, 50, and 100
Intertia Coefficient 𝜔 1.0
Intertia Coefficient maximum value 𝜔𝑚𝑎𝑥 1.4
Intertia Coefficient minimum value 𝜔𝑚𝑖𝑛 0.4
Personal Acceleration Coefficient 𝑐1 2
Social Acceleration Coefficient 𝑐2 2
Decision Variables maximum value 𝑉𝑎𝑟𝑚𝑎𝑥 1
Decision Variables minimum value 𝑉𝑎𝑟𝑚𝑖𝑛 0

IV. EXPERIMENTAL RESULTS
To clarify the efficiency of the DIW-PSO algorithm on

Nonograms puzzle, several experiments as carried out. The
experiment involved three puzzles of each of the following
difficulties: “ 5 × 5 ”, “ 10 × 10 ”, “ 15 × 15 ”, “ 20 × 20 ”,
“25 × 25”, “30 × 30”, “35 × 35”, “40 × 40”, and 45 × 45.
All puzzles were selected from http://www.nonograms.org.

Table 2 shows the success DIW-PSO in solving
Nonograms puzzle. Success rate represents the number of runs
out of the maximum number of iterations.

TABLE II. SUCCESS RATE OF VARIOUS METHODS

Problem size number of runs / maximum number of iterations
 Puzzle 1 Puzzle 2 Puzzle 3
5 × 5 5/10 6/10 8/10
10 × 10 45/50 40/50 30/50
15 × 15 44/50 32/50 34/50
20 × 20 89/100 70/100 77/100
25 × 25 85/100 87/100 94/100
30 × 30 200/1000 205/1000 194/1000
35 × 35 195/1000 222/1000 275/1000
40 × 40 215/1000 245/1000 320/1000
45 × 45 200/1000 250/1000 310/1000

V. CONCLUSION
In this paper, we presented a new algorithm for solving

Nonograms. The process of PSO algorithm in finding optimal
values follows the social behavior of bird flocks and fish
schools which has no leader. Particle swarm optimization
consists of a swarm of particles, where particle represent a
potential solution. Particle will move through a
multidimensional search space to find the best position in that
space. Particle swarm optimization (PSO) is a promising
scheme for solving NP-complete problems due to its fast
convergence, fewer parameter settings and ability to fit
dynamic environmental characteristics.

The Nonograms problem is known to be NP-hard. The
challenge is to fill a grid with black and white pixels in such a
way that a given description for each row and column,

indicating the lengths of consecutive segments of black pixels,
is adhered to.

Firstly, this paper investigates the principles Nonograms
puzzle and the general procedure for finding the puzzle
solution. Moreover, the principles and optimization steps of
Dynamic Inertia Weight Particle Swarm Optimization DWI-
PSO and the influence of different parameters on algorithm
optimization has been introduced in details.

In this paper, DWI-PSO has been applied for solving
Nonograms puzzle. A dynamic inertia weight introduced to
increase the convergence speed and accuracy of the PSO while
searching for the best solution from Nonograms puzzle. The
excremental results demonstrate the effectiveness, efficiency
and robustness of the proposed algorithms for solving large
size Nonograms puzzles.

In summary, we presented a DWI -PSO algorithm that has
been successfully applied to NP-Complete puzzles. For future
work, we will consider DWI-PSO for more challenging NP-
Complete puzzles such as the Cross Sum, Cryptarithms, and
Corral Puzzle.

REFERENCES
[1] J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence, Morgan

Kaufmann Publishers, San Francisco, 2001.
[2] K.J. Batenburg and W. A. Kosters. A discrete tomography approach to

Japanese puzzles. In Proceedings of the 16th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC), pages 243-250, 2004.

[3] S. Salcedo-Sanz, E.G. Ortiz-Garcia, A.M. Perez-Bellido, J.A. Portilla-
Figueras, and X. Yao. Solving Japanese puzzles with heuristics. In
Proceedings IEEE Symposium on Computational Intelligence and Games
(CIG), pages 224-231, 2007.

[4] K.J. Batenburg and W.A. Kosters. Solving Nonograms by combining
relaxations. Pattern Recognition, 42:1672-1683, 2009.

[5] N. Ueda and T. Nagao. NP-completeness results for Nonogram via
parsimonious reductions, preprint, 1996.

[6] J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings,
IEEE International Conference on Neural Networks, 4:1942–1948, 1995.

[7] A. P. Engel Brecht, Fundamental of Computational Swarm Intelligent,
First Ed. The atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England: John Wiley & Sons Ltd, 2005.

[8] Eberhart R C, Shi Y. (1998). Comparison between genetic algorithms
and Particle Swarm Optimization. Porto V W,Saravanan N,Waagen D, et
al.Evolutionary Programming VII.[S.l.]:Springer,1998:611-616.

[9] Eberhart R C, Shi Y. (2000). Comparing inertia weights and constriction
factors in Particle Swarm Optimization. Proceedin gs of the Congress on
Evolutionary Computating, 2000: 84-88.

[10] A. Chatterjee and P. Siarry, Nonlinear inertia weight variation for
dynamic adaptation in particle swarm optimization, Computers and
Operation Researches, vol.33, no.3, pp.859-871, 2006.

[11] J. Chen, Z. Qin, Y. Liu and J. Lu, Particle swarm optimization with local
search, Proc. of the IEEE Int. Conf. Neural Networks and Brain, pp.481-
484, 2005.

[12] Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, Proc. of
the IEEE Conf. Evolutionary Computation, pp.69-73, 1998.

280 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	1) Each picture cell must be either colored or blanked i.e. black or white.
	2) The ,s-1., ,s-2.,...,,s-k. numbers at the side of the row or column: indicated that there are groups of ,s-1., ,s-2., and ,s-k. filled squares, with at least one blank square between consecutive groups.
	3) Between two consecutive black there must be at least one empty cell.

	II. Dynamic Inertia Weight Particle Swarm Optimization
	1) Initialization a population with random positions and velocities of a group of particles in 𝑑 dimensional problem space while Nonograms puzzles constraints.
	2) Position updating
	3) Memory updating 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡.
	4) if stopping criteria is satisfied then stop PSO, else go to Step 2.

	III. DIW-PSO for Solving Nonograms Puzzles
	IV. Experimental Results
	V. Conclusion
	References

