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Abstract—In this paper, an attempt has been made to solve 

the word tile puzzle with the help of Bee Colony Algorithm, in 

order to find maximum number of words by moving a tile up, 

down, right or left. Bee Colony Algorithm is a type of heuristic 

algorithms and is efficient and better than blind algorithms, in 

terms of running time and cost of search time. To examine the 

performance of the implemented algorithm, several experiments 

were performed with various combinations. The algorithm was 

evaluated with the help of statistical functions, such as average, 

maximum and minimum, for hundred and two-hundred 

iterations. Results show that an increasing number of agents can 

improve the average number of words found for both number of 

tested iterations. However, continuous increase in number of 

steps will not improve the results. Moreover, results of both 

iterations showed that the overall performance of the algorithm 

was not much improved by increasing the number of iterations. 
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I. INTRODUCTION 

The prime inspiration to design any optimization algorithm 
is to simulate natural processes. Lots of algorithms have 
proved their inspiration from natural process such as simulated 
annealing (SA), genetic algorithms (GA) [1], ant colony 
optimization (ACO) [2], particle swarm optimization (PSO) 
and other Swarm Intelligences (SI) [3]. Swarm Intelligence is 
based on the collective behaviour of individuals in various 
decentralized systems. These decentralized systems are 
composed of physical individuals that communicate, cooperate, 
collaborate, and exchange information and knowledge among 
themselves to perform some tasks in their environment [4]. A 
detailed survey to related work is discussed in Section II. 

The purpose of this paper is to develop a slide tile game. 
An attempt has been made to solve the word tile puzzle 
problem for the most optimum solution by taking an inspiration 
from natural processes. In the beginning, the board of the tile 
game is filled with random characters. The tile game is of size 
n x n, starting from 4 x4 (Figure 1), but in the end larger sizes 
should be solvable. By moving the tiles (up, down, right, left) a 
specific situation should be found, where the graph contains a 
maximum number of words (length 2 to n). 

 

Fig. 1. 15-puzzle slide tile game and 15-word tile puzzle 

This paper is organized as follows: Section I gives the brief 
introduction to the topic, Section II is about related work in the 
field of string matching, crossword and tile puzzles, Section III 
elaborates the implemented steps of bee colony algorithm, 
Section IV describes the statistical results, Section V is 
discussing the conclusion and finally section VI is future work. 

II. LITERATURE REVIEW 

Hua [5] implemented blind search and heuristic search 
algorithms to solve Eight-puzzle problem. In blind search 
Breadth-first and Depth-first and in heuristic search A* 
algorithm were implemented to find the optimal solution. The 
result showed that A* algorithm is more convenient, efficient 
and better in terms of running speed and cost of search time 
than blind search algorithms. Genetic algorithm and depth first 
algorithm was implemented to solve Japanese puzzles. 
Evaluation and comparisons of performance concluded that 
depth-first algorithm is faster for small size puzzles and genetic 
algorithm is better in large size puzzles. However, both 
methods are slow [6]. 

One of the recent optimizations algorithms replicating the 
intelligent natural behavior of honeybee’s swarm is artificial 
bee colony (ABC) [10]. The popularity of ABC increased 
significantly in last years, the algorithm has been implemented 
in different field for example in [11] used ABC to solve 
complex network, while [12] combined Fuzzy logic with ABC 
in the optimization of parameters for an autonomous mobile 
robot control. 
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Author in [7] used the natural behaviours of the real honey 
bee to develop the artificial bee colony algorithm and resolve 
numerical optimization problems. In the Artificial Bee Colony 
algorithm (ABC), there are three types of bees, scout bees, 
employed bees and onlooker bees. The half of the total bees are 
initially scout bees. For each scout bee, a new food source 
position is produced. After producing new food source 
position, these scout bees become employed bees. Then these 
employed bees try to improve food sources by interacting with 
each other. The onlooker bees wait for the food sources 
positions by the employed bees in the hive. Employed bees 
share position information about the food sources, each 
onlooker bee picks up one of the food source positions and 
tries to improve the food source position. 

Like ABC, the Bee Colony Optimization (BCO) algorithm, 
follows the way how honey bees in real-world nature look for 
food source, which makes this algorithm more effective, 
compared to lots of other stochastic random-search algorithms. 
So far, BCO is implemented in various real-life optimization 
problems, such as vehicle routing problem [8], the routing and 
wavelength assignment in all-optical networks, the traffic 
sensor location problems on highways, the static scheduling of 
independent tasks on homogeneous multiprocessor systems 
and disruption management in public transit [9]. 

III. METHODOLOGY 

This section elaborates the step by step approach to solve 
word tile puzzle by using bee colony algorithm [8]. 

A. Step 1: Initial Input 

The Bee Colony Algorithm starts with the initial inputs. 
These inputs are: 

1) Agents: an entity that performs the activity – Artificial 

bees. 

2) Number of Steps per Agents: number of shifts 

movements by each agents or distance covered during one 

trip. 

3) Number of Iterations: number of trips made by each 

agents. 
The number of agents, represent the number of employed 

artificial bees, looking for food source. In this case, the agents 
will look for the best state value of the board, which is the 
maximum number of words found in rows and columns. The 
number of steps implies how far the agents can go during one 
iteration (In Bee Colony Algorithm, the number of steps 
indicate, how far the bees can travel). The final input value is 
the number of iterations, which demonstrates the number of 
trips per each run of the program (The number of trips that 
each employed bee will perform in an assigned working 
period). It has to be taken into account that the output value of 
implemented program will highly depend on our initial inputs. 

B. Step 2: Defining Initial State 

In this step, the dimensions of the board are defined and 
initial position of the blank tile (starting point for agents/bees) 
is marked (tile in the last row and the last column in this case); 
random letters (alphabets) are assigned to the initial state of the 
board. The value of the initial state is calculated, by using the 
fitness function. Fitness Function counts the number of all 

existing words in the board by matching the input string to the 
imported dictionary. Word could be two letter long or 
maximum to the dimension of the board. Fitness function is 
calculated after each movement of the agent in the board. It is 
allowed, that more than one word is found in a row or a 
column and there can be a word inside another word. Word 
matching is from left to right and top to bottom (diagonal 
matching is not allowed). 

In order to reduce the computational cost and improve 
performance, two constraints are applied to the dictionary. The 
first constraint is to eliminate the words longer than the 
dimension of the board and the second constraint omits the 
words which were not the part of randomly generated board in 
the initial state. 

C. Step 3: Agents movement and state update 

In this step, the movement of agents is assigned randomly 
and new state per each agent is generated. 

Agents can move up, down, right and left inside the board. 
The last movement of the agents and their directions are stored 
to avoid a backward movement. The idea behind not letting 
agents to move backwards is to avoid unnecessary movements 
which will be not only time consuming, but they will also take 
some memory computation. Agent cannot move diagonally and 
beyond the walls of the board. 

After defining initial input, states and keeping constraints in 
consideration, agents are ready to move and start searching for 
higher value state. After each step of each agent, the value state 
is calculated (using fitness function). If an agent reaches higher 
value of Fitness Function (number of words) than value of 
existing best state/states will be stored by updating archive of 
best states and previous best state/states will be deleted. If an 
agent reach equivalent value of Fitness Function as value of 
existing best solution or solutions its state will be added to 
other states with the same value in the archive. 

D. Step 5: Agents’ Loyalty Function 

In this step, agent’s loyalty is determined by using 
probability. The idea of considering loyalty comes from the 
natural processes inspiration. Studying the behaviour of bees 
for finding nectar, it has been observed that the successful bees 
in finding food sources will go back to the hive, performing the 
“Waggle dance”, in order to convince other bees to get the 
same route as them and go for the same food source. 

This behaviour in this algorithm, has been defined by 
loyalty function. After each step of each agent per each 
iteration, the state value of that specific agent will be calculated 
and compared to the state values of other agents. Certainly, 
there will be agents with higher state values, and the loyalty 
function will make other agents to decide, if they want to keep 
on their own route or they would rather change their routes, 
which show that there might be higher possibility of finding 
better state values. 

1) Loyalty of Agent: To compute the loyalty of agents, 

following probability functions have been used [9]. 

              
 *(       )  ⁄ + (1) 

Pn: Probability of agent n to stay loyal  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 11, 2016 

231 | P a g e  

www.ijacsa.thesai.org 

Omax: MAX (On) =1 , Omax is maximal normalized value of 
fitness functions of all agents 

On: (Cn – Cmin)/(Cmax - Cmin) 
 Cn is normalized value of fitness function for agent n 
 Cmin is minimum value of all fitness functions 
 Cmax is maximum value of all fitness functions 

k: number of current step in current iteration 

The methodology is based on the roulette game; a number, 
which is between 0 and 1, should randomly be chosen and if 
the value of this random number is less than Pn, then agent n is 
considered as loyal, otherwise, it is counted as disloyal and 
change its route for the agents with better state values. 

Assigning new state to disloyal agents: The next step, will 
be for disloyal agents to choose a state of all possible loyal 
agents’ states. However, there is the possibility that there might 
be more than one loyal agent, whose state, is a nominee of 
being chosen as the higher value state. Or there can be more 
than one disloyal agent, which can make a choice out of 
different states of nominate loyal agents. In this algorithm, 
probability functions in (2) has been implemented that compute 
the probability of being chosen as the higher state value agent 
by disloyal agents: 

   
  

∑   
 
   

 (2) 

PA Probability of loyal agents to be chosen by disloyal 
agent 

r: Loyal agent 
R: Total number of Loyal Agents 

Or : Normalized Fitness Function value of loyal agent  

∑  

 

   

  

 
Sum of normalize Fitness Function values of all loyal 
agents 
 

In this formula, the normalized fitness function value of 
each loyal agent is divided by the sum of fitness function 
values of all loyal agents. Finally, to each disloyal agent, a state 
of a loyal agent would be assigned, based on the outcomes of 
the probability functions. 

E. Step 6: Best Value State (Optimal Solution) 

After the last iteration is done, the best value state is printed 
from archive of the best state or states that is/are archived 
during the whole search process, and the existing words in the 
board will be presented. 

IV. RESULTS 

In order to shape our results, number of experiments were 
performed. Implemented solution is tested for number of steps, 
number of agents and number of iteration. To determine the 
effect of each variable, they were tested separately. To achieve 
this, variables other than test variables were kept constant and 
results were calculated, using fitness function, by changing the 
value of test variables. 

A. Evaluation measurements 

Basic functions of statistics such as average, maximum and 
minimum are used to calculate the results. 

1) Average: average number of words found per 30 

testing experiments for defined number of agents (2, 4, 8, 12, 

16, 20, 30) and number of steps (10, 20, 30, 40) with fixed 

number of iteration. 

2) Maximum: the highest value of the state of the board 

per 30 testing experiments with fixed number of iterations. 

3) Minimum: the lowest value of the state of the board per 

30 testing experiments with fixed number of iterations. 
The main dictionary consisting of 22,353 words was used 

for testing, however it is reduced to 1,359 words after passing 
through the dictionary reduction function. 2, 640 experiments 
were performed including 100 and 200 iterations, 2, 4, 8, 12, 
16, 20 and 30 agents and 10, 20, 30 and 40 steps. Detailed 
results are presented below. 

B. Results for 100 iterations 

1) Varying number of steps for 100 iterations 
To examine the effect of the number of steps, 660 

experiments were executed, in which the number of steps were 
changed while keeping the number of agents and the number of 
iterations constant. The number of steps started from 10 
extending to 20, 30 and 40. 

Table I shows the test results for 100 iterations, varying 
number of steps, starting from 10 and then 20, 30 and 40 for 2,  
4, 8, 12 and 16 agents. 

TABLE I. VARYING NUMBER OF STEPS FOR 100 ITERATIONS 

Varying number of steps for 

100 iterations 

Number of steps 

10 20 30 40 

2 Agents 

Average number 
of words 

27.57 28.5 28.57 28.93 

Maximum 

number of words 
33.00 32.00 32.00 32.00 

Minimum 

number of words 
23.00 24.00 25.00 25.00 

4 Agents 

Average number 

of words 
27.7 29.93 30.30 30.23 

Maximum 

number of words 
31.00 34.00 36.00 36.00 

Minimum 

number of words 
24.00 26.00 26.00 25.00 

8 Agents 

Average number 
of words 

29.13 30.97 30.50 30.47 

Maximum 

number of words 
33.00 34.00 35.00 35.00 

Minimum 

number of words 
25.00 28.00 27.00 27.00 

12 Agents 

Average number 

of words 
28.53 31.17 31.43 31.90 

Maximum 

number of words 
35.00 35.00 38.00 36.00 

Minimum 

number of words 
23.00 27.00 27.00 27.00 

16 Agents 

Average number 

of words 
29.27 32.13 32.57 32.10 

Maximum 

number of words 
34.00 36.00 36.00 40.00 

Minimum 

number of words 
26.00 28.00 29.00 27.00 

There is an observable increase in average, maximum and 
minimum number of words when increasing number of steps 
from 10 to 20. However, after first 20 steps, there is no 
noticeable improvement and minimum number of words found, 
did not progress. 

Fig. 2, shows the graphical overview of results obtained by 
varying number of steps for 100 iterations. 
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Fig. 2. Varying number of steps for 100 iterations 

2) Varying number of Agents for 100 iterations 
To examine the effect of the number of agents, 660 

experiments were executed, in which the number of agents 
were changed while keeping the number of steps and the 
number of iterations constant. The number of agents started 
from 2, extending to 4, 8, 12, and 16. 

Table II, shows the test results for 100 iterations, varying 
number of agents, starting from 2, 4, 8, 12 and 16 for 10, 20, 
30 and 40 steps. 

It was noticed that increasing the number of agents 
improves the average number of words. However, the 
maximum and the minimum number of words were not much 
effected. 

TABLE II. VARYING NUMBER OF AGENT FOR 100 ITERATION 

Varying number of Agent 

for 100 iteration 

Number of Agents 

2 4 8 12 

10 Steps 

 

Average number 

of words 
27.57 28.5 28.57 28.93 

Maximum 

number of words 
33.00 32.00 32.00 32.00 

Minimum 

number of words 
23.00 24.00 25.00 25.00 

20 Steps 

 

Average number 

of words 
27.7 29.93 30.30 30.23 

Maximum 

number of words 
31.00 34.00 36.00 36.00 

Minimum 
number of words 

24.00 26.00 26.00 25.00 

30 Steps 

 

Average number 

of words 
29.13 30.97 30.50 30.47 

Maximum 

number of words 
33.00 34.00 35.00 35.00 

Minimum 

number of words 
25.00 28.00 27.00 27.00 

40 Steps 

Average number 

of words 
28.53 31.17 31.43 31.90 

Maximum 

number of words 
35.00 35.00 38.00 36.00 

Minimum 

number of words 
23.00 27.00 27.00 27.00 

Fig. 3, shows the graphical overview of results obtained by 
varying number of Agents for 100 iterations. 

 
Fig. 3. Varying number of agents for 100 iterations 

C. Results for 200 iterations 

1) Varying number of steps for 200 iterations 
Table III shows the varying number of steps for 200 

iterations by keeping agents constant. The number of steps 
started from 10, extending to 20, 30 and 40. 

TABLE III. VARYING NUMBER OF STEPS FOR 200 ITERATIONS 

Varying number of Steps for 

200 iterations 

Number of steps 

10 20 30 40 

2 Agents 

Average number 
of words 

28.30 29.50 29.90 30.40 

Maximum 

number of words 
34.00 35.00 35.00 34.00 

Minimum 

number of words 
23.00 26.00 26.00 27.00 

4 Agents 

Average number 

of words 
28.50 31.10 30.80 31.60 

Maximum 

number of words 
32.00 35.00 35.00 36.00 

Minimum 

number of words 
25.00 27.00 27.00 28.00 

8 Agents 

Average number 

of words 
30.20 31.40 32.00 32.20 

Maximum 

number of words 
34.00 35.00 36.00 36.00 

Minimum 

number of words 
26.00 26.00 29.00 29.00 

12 Agents 

Average number 

of words 
30.40 31.90 32.30 32.60 

Maximum 

number of words 
36.00 36.00 37.00 37.00 

Minimum 
number of words 

25.00 29.00 27.00 29.00 

16 Agents 

Average number 

of words 
29.80 32.40 33.50 33.20 

Maximum 

number of words 
36.00 36.00 37.00 37.00 

Minimum 

number of words 
25.00 27.00 27.00 30.00 

Like 100 iterations, with 200 iterations, an observable 
increase in average number of words was found, when 
increasing number of steps from 10 to 20. Afterwards, there is 
no noticeable improvement for average number of words. 
However, for maximum and minimum number of words, there 
is a variation in results as compared to 100 iterations. 
Minimum number of words improved, when moving from 30 
to 40 steps which was not the case in 100 iterations. 
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Fig. 4, shows the graphical overview of results obtained by 
varying number of steps for 200 iterations. 

 
Fig. 4. Varying number of steps for 200 iterations 

2) Varying number of Agents for 200 iterations 
Table IV is presenting the results for varying number of 

agents for 200 iterations by keeping steps constant. The 
number of agents started from 2, extending to 4, 8, 12, and 16. 

TABLE IV. VARYING NUMBER OF AGENT FOR 200 ITERATION 

Varying number of Agent 

for 200 iteration 

Number of Agents 

2 4 8 12 

10 Steps 

 

Average number 

of words 
28.30 28.50 30.20 30.40 

Maximum 

number of words 
34.00 32.00 34.00 36.00 

Minimum 

number of words 
23.00 25.00 26.00 25.00 

20 Steps 
 

Average number 

of words 
29.50 31.10 31.40 31.90 

Maximum 
number of words 

35.00 35.00 35.00 36.00 

Minimum 

number of words 
26.00 27.00 26.00 29.00 

30 Steps 

 

Average number 

of words 
29.90 30.80 32.00 32.30 

Maximum 

number of words 
35.00 35.00 36.00 37.00 

Minimum 

number of words 
26.00 27.00 29.00 27.00 

40 Steps 

Average number 

of words 
30.40 31.60 32.20 32.60 

Maximum 
number of words 

34.00 36.00 36.00 37.00 

Minimum 

number of words 
27.00 28.00 29.00 29.00 

Here again, like 100 iterations, with 200 iterations, 
increasing the number of agents, improve the average number 
of words and increase in maximum number of words. 
However, the behaviour of minimum number of words is 
mixed. 

Fig. 5, shows the graphical overview of results obtained by 
varying number of Agents for 200 iterations. 

 
Fig. 5. Varying number of agents for 200 iterations 

V. DISCUSSION/ANALYSIS 

The performance of Artificial Bee Colony Algorithm is 
measured by executing larger number of experiments with 
multiple combinations. A huge variation in results was 
witnessed due to random behaviour of agents (bees). Average, 
maximum and minimum number of words found increased, 
while increasing number of steps from 10 to 20 for both 100 
and 200 iterations. However, there is no significant change 
noticed by increasing steps from 20 to 30 or onwards. 
Experiments with 20 and 30 agents were also performed, due 
to high insignificance, those results are not presented in this 
paper. For 100 iterations, best result is found for 16 agents and 
30 steps (average number of words=32.57), following with 20 
steps and 16 agents (average number of words=32.13), whereas 
for 200 iterations best result found was for 16 agents and 30 
steps (average number of words=33.50) followed by 16 agents 
and 40 steps (average number of words=33.20). 

By comparing results for 100 and 200 iterations, it is 
observed that overall performance of the algorithm is not much 
improved by increasing number of iterations. However, the 
behaviour of algorithm for 100 and 200 iterations is almost the 
same for average number of words, whereas for maximum and 
minimum number of words, it is diverse. 

Fig. 6, shows the overall improvements of best result for 
100 iterations. 100% of improvements are achieved in 96 
iterations. The graph shows that for first 16 iterations, there is 
almost 70% improvement in results and the remaining 30% 
improvement covers 80 iterations. 

 
Fig. 6. Cumulative improvement for best result of 100 iterations 
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Fig.7, shows the overall improvements of best result for 
200 iterations. 100% of improvements are achieved in 194 
iterations. The graph shows that for first 16 iterations there is 
almost 61% improvement in results and the remaining 39% 
improvement covers 178 iterations. 

 
Fig. 7. Cumulative improvement for best result of 200 iterations 

Furthermore, in this experiment the time needed to achieve 
the solution was not taken into consideration as nowadays 
modern computer have different computing power, and the 
goal was to achieve the best result regardless of time. 
Although, the computation time for best results (only) were 
calculated and it is analysed that time to compute results for 
200 iterations is much higher as compared to 100 iterations. 
Moreover, the improvement in overall results for 200 iterations 
are not that high. Table V, shows the exact time for best 
results. 

TABLE V. TIME CONSUMPTION 

Time Consumption 
Number of steps 

20 30 40 

16 Agents 
100 Iteration 1:43 2:24 3:04 

200 Iterations 3:56 5:01 6:29 

Fig. 8, shows the bar chart for time consumption for best 
results. 

 

Fig. 8. Cumulative improvement for best result of 200 iterations 

VI. CONCLUSION 

A wide range of algorithms are inspired by natural 
processes proved to be successful in solving complicated 
optimization problems. Bee colony is considered as a class of 

swarm intelligence technique, where the corporation between 
different gents increase the efficiency and increase the 
probability of achieving better results, which cannot be 
achieved by individual agents. In this paper, word tile puzzle 
has been analysed using one of the heuristic algorithm named 
as Bee Colony Algorithm because of the way that artificial 
bees can communicate with each other and exchange 
information, making this method, not only fast, but also 
statistically optimal. Results showed that best solution could be 
achieved by increasing number of agents, nevertheless results 
are not improving with increasing number of iterations and 
steps continually. Furthermore, huge amount of time is 
required to run high number of iterations and results which has 
very nominal effect on results. 

VII. FUTURE WORK 

In future, other heuristic and blind algorithms can be 
implemented together for the word tile puzzle to compare the 
efficiency of each algorithm. 
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