
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

248 | P a g e

www.ijacsa.thesai.org

Issue Tracking System based on Ontology and

Semantic Similarity Computation

Habes Alkhraisat

Department of computer science

Al-Balqa Applied University

AL salt, Jordan

Abstract—A computer program is never truly finished;

changes are a constant feature of computer program

development, there are always something need to be added,

redone, or fixed. Therefore, issue-tracking systems are widely

used on the system development to keep track of reported issues.

This paper proposes a new architecture for automated issue

tracking system based on ontology and semantic similarity

measure. The proposed architecture integrates several natural

languages techniques including vector space model, domain

ontology, term-weighting, cosine similarity measure, and

synonyms for semantic expansion. The proposed system searches

for similar issue templates, which are characteristic of certain

fields, and identifies similar issues in an automated way, possible

experts and responses are extracted finally. The experimental

results demonstrated the accuracy of the new architecture, the

experiment result indicates that the accuracy reaches to 94%.

Keywords—issue tracking; ontology; similarity computation;

vector space model

I. INTRODUCTION

Issue tracking systems are implemented as a part of
integrated project management system. Software projects rely
on issue tracking systems to direct corrective maintenance
activity and to guide the maintenance activities of software
developers. Users report symptoms of the issue along with
related information, that include short or detailed textual
descriptions of the issue, product and component that are
affected by the issue, and how to reproduce. Developers then
verify and fix the reported issues. There are often many reports
that are received and thus developers would need to prioritize
which reports are more important than others.

Issue tracking systems looks like a natural language
information retrieval system that can be queried with natural
language and return knowledge. Therefore the use of semantic
knowledge in developing issue tracking systems improve its
ability to semantically infer the similar issues. With cumulative
information about issues collected by the issue tracking system
over a period and with integrated semantic techniques, it is
possible to build semantic issue tracking system that
semantically searches for similar issues and links the
knowledge for each issue.

This paper, proposes issue-tracking system with integrated
semantic techniques for transforming issues content
information into meaningful knowledge. The proposed system
searches the knowledge documented to inferred semantically

similar issues and recommended developers and the most
similar files related to the reported issue.

The motivation of this work, for inference of the
knowledge field and for recommendation of experts and files
related to the reported issue, knowledge document includes not
only the previously reported issues but also object-oriented
mapping ontology, programmer-readable annotation, and
developer experience. The main contribution of the paper is
that, it proposes an issue tracking system that predicts similar
issue in aa semantic way, possible experts, and possible
program files related to issue.

II. RELATED WORK

“Who Knows about That Bug? Automatic Bug Report
Assignment with a Vocabulary-Based Developer Expertise
Model” [1] uses source code vocabulary to find the most
applicable expert for a given bug tracking item. This approach
takes long time to make proper recommendations.

“Expertise Recommender: A Flexible Recommendation
System and Architecture” [2] uses the change history of source
code. It describes a general recommendation architecture that is
grounded in a field study of expertise locating.

“Expert Recommender Systems in Practice: Evaluating
Semi-automatic Profile Generation” [3] uses a client program
which examines the documents within a folder and subfolder
which was selected by the user and sends these examined word
statistics to the server and compares it with other statistics.

[1], [2], and [3] have the problem that they are not
sufficiently integrated into the task workflow a bug tracking
and project management system.

III. SYSTEM ARCHITECTURE

The semantic approach for issue tracking system, proposed
in this paper, consists of two main process: frontend process
for handling the users’ issues and backend system for
processing issues. Fig. 1 illustrates the main components for
issues tracking system proposed in this paper. Frontend system
handles the submitted issue and deal with the issue real-time
processing. The backend is the platform for frontend
processing, and mainly processes and maintains the issue
database.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

249 | P a g e

www.ijacsa.thesai.org

Fig. 1. Overview of issue tracking System Architecture

Fig. 2 shows the global architecture and necessary
components to build the proposed system and clarifies the
interaction between the system components. The system starts
by receiving issue from the user, and finishes by providing the
appropriate response for the reported issue, passing through the
different phases.

The first component handles the job of prepossessing of
issues, source code, and system documentations, which
includes tokenization, stemming and keyword extraction. In the
second component, the system applies the similarity
computation, the similarity computation includes the semantic
extension, feature vector generation and similarity measures.
In the third component, the response to the submitted issues are
extracted from the issues database, for response extraction the
following are applied: confidence computation, response
selection, and automatic return.

The scenario for an issue tracking system include the
following:

1) The user reports an issue to the issue tracking system.

2) Next, in the issue Processing Module, the issue is

rephrased by expanding the issue and passing it to the Issue

Extraction Module

3) The Information Retrieval component is used to

retrieve the relevant issues, response, files, and developers

based on the important keywords that appear in the issue.

IV. PREPROCESSING MODEL

Preprocessing model starts by tokenizing issues dataset,
internal and external system documentations. The tokenization
splits up the entire issues, user manual, and programmer
annotation into a bag of words. For improving the performance
of extracting module and to have exactly matching stems,
stemming algorithm has been applied to the bag of words
generated after the tokenization process [4]. As a final step, the
preprocessing model removes stop words from the bag of
words generated after the stemming process. English stop word

list which is available online
1
 is used for the removal of stop

words from the stem word.

Fig. 2. Global schema of system Architecture

To illustrate the preprocessing model, let’s study the
following issue:

Issue: There is a problem while uploading the staff
personal image.

Tokens: there, is, a, problem, while, uploading, the, staff,
personal, images.

Keywords: problem, uploading, staff, personal, image

Stem: problem, upload, staff, person, image

Each keyword is enhanced with the synonyms terms
extracted from the ontology. Therefore, our system adds takes
the benefits of the shared ontologies and enriches the keyword
senses with senses extracted from their synonyms. For
semantic extension and keyword enrichment, the synonyms of
keywords have been extracted from Macmillan Dictionary

2
. As

example, it is possible to enrich the keywords of issue by
extraction all synonyms of word “problem” and we get:
“problem, difficulty, trouble”, and by extraction all synonyms
of word “image”, and we get: “photo, picture, portrait”. The
outcome of preprocessing model is a bag of words. The bag of
words is then used to represent the issue numerically as vector.

V. ONTOLOGY MAPPING

Ontologies plays an important role in applications based on
the semantic technologies. It consists of concepts, relationships
between concepts, restrictions and is described in the
ontological languages like Web Ontology Language (OWL).

1 B. R. Porter M, "The English (Porter2) stemming algorithm," 09 2016.

[Online]. Available: http://snowballstem.org.
2 Princeton University, "WordNet," 09 2016. [Online]. Available:

http://www.macmillandictionary.com/.

http://snowballstem.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

250 | P a g e

www.ijacsa.thesai.org

OWL represents the rich and complex knowledge about things,
groups of things, and relations between things.

In some sense, object-oriented representation looks like the
ontological representation. In this paper, we used the Semantic
framework for mapping object-oriented model to semantic web
languages [5]. The relations between object-oriented elements
and ontologies are described in table 1.

TABLE I. OBJECT-ORIENTED PARADIGM AND ONTOLOGIES MAPPING

Ontology Object Oriented

Class ↔ Class

Instance object ↔ Object

Property ↔ Attribute

Predicate ↔ Attribute name

Object ↔ Attribute value

The following example illustrates the mapping process
between class written in PHP language and OWL.

PHP class OWL

class employee

{
private id;

private name;

private personal_image;
}

→

<owl:Class rdf:id=”staff”>

<owl:DataTypePropety rdf:id=”id”>
<rdfs:range rdf:resource=”integer”>

<rdfs:domain

rdf:resource=”employee”>
</owl:DataTypePropety >

<owl:DataTypePropety

rdf:id=”name”>
<rdfs:range rdf:resource=”string”>

<rdfs:domain

rdf:resource=”employee”>
</owl:DataTypePropety >

<owl:DataTypePropety

rdf:id=”personal_image”>
<rdfs:range rdf:resource=”string”>

<rdfs:domain

rdf:resource=”employee”>
</owl:DataTypePropety >

VI. SIMILARITY COMPUTATION

Computing the similarity between user’s issues with both
the issues and program annotations databases plays an
important role in the automated issue tracking system.

Issue similarity refers to the similarity between the
keyword set of given issue annotated by ontology and the
pattern keyword set of issues, and instance keywords have
been replaced with class keywords in the keyword set of
ontology.

There are many computational models for text similarity
such as, support vector machines (SVMs), neural network
(NN), machine learning, K-Nearest Neighbor (KNN), and so
on. In this paper, vector space model (VSM) has been applied
for implementing the propose issue tracking system. The VSM
was developed for the SMART information retrieval system
[6]. VSMs perform well on tasks that involve measuring the
similarity of meaning between words, phrases, and documents
[7].

The idea of the VSM is to represent large collection of
documents as a vector in a vector space. Using VSM the set of
issues and queries are represented as m-dimensional vectors of
identifiers in a common vector space, and the vectors are
organized into a matrix. The row vectors of the matrix
correspond to words and the column vectors correspond to

issues. Suppose the issue collection contains issues and
unique terms. The vector space will then have rows and
columns. The element in document vector space represents

a non-binary weight of the term in the issue . Let

the weight associated with a pair is positive and

non-binary, then the issue and query are represented as
vectors:

 ⃗⃗ ()

 ⃗ ()
where is the number of feature terms.

The relevance of an issue to a query is given by the
similarity of their vectors. The weight for terms in queries and
issues are used in the computing degree of similarity. The most
popular way to measure the similarity of two vectors is to
compute their cosine. The cosine of the angle between issue

vector ⃗⃗ and query vector ⃗ in vector space models can be
measured as follows:

 (⃗⃗ ⃗)
 ⃗⃗ ⃗

‖ ⃗⃗ ‖ ‖ ⃗ ‖

∑

∑

 ∑

 

 (⃗⃗ ⃗⃗ ⃗) varies from 0 to +1, the vector model ranks the

documents according to their degree of similarity to the query,
the = 1 when , and when
shares no terms with .

VII. TERM-WEIGHTING SCHEME

The success of vector space model lies in term-weighting
scheme. It assigns more weight to surprising events and less
weight to expected events. The term weighting for the vector
space model has entirely been based on single term statistics.
There are three main factors: term frequency factor, collection
frequency factor and length normalization factor. All three
factor are multiplied together to make the resulting term
weight.

In VSM a weight is assigned to each term in a document
depends on the number of occurrences of the term in the issue.
The frequency of a term inside a document referred to as

the term frequency factor and is given by:



 

Furthermore, the inverse of the frequency of a term
among the documents in the collection referred to as the
inverse document frequency . measures of rareness of a
term across all documents. Assume there are N documents in
the collection, and that term occurs in of them. Then
factor of term is essentially



  

Thus, the of a rare term is high, whereas the of a
frequent term is likely to be low. The and are combined,
to produce a composite weight schema for each term in each
document, the resulted weight schema is called a Term
frequency–inverse document frequency scheme

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

251 | P a g e

www.ijacsa.thesai.org

[7][8]. The weighting scheme assigns to term a
weight in document given by:

  

VIII. RESPONSE EXTRACTION AND UPDATING ISSUES

DATABASE

Once ontology classes and properties from keyword set are
well fixed, the appropriate SPARQL query to retrieve the
response from issue database is built

3
. The query is composed

from resources and ontology classes determined by the
keyword set. The class name in query pattern will be replaced
with corresponding instance name in user issue, based on the
query patterns and replace-pair in the most similar issue. The
response to the issue is parsed to get extracted the response
from the result of SPARQL statement.

Finally, the system updates the issues for constant learning
and answering new issues. All issues with a cosine similarity
measure higher than a defined cut-off threshold are considered
similar and added to the feature set, weighted by its similarity
value. On the other hand, if the a cosine similarity measure is
less than the predefined threshold, then there is no
corresponding query pattern in the issue database, and the issue
will be added to issue database after annotating. In this paper,
all issues with a cosine similarity value higher than 0.17, which
has a 76% accuracy, are considered similar and added to the
feature set, weighted by its similarity value.

IX. SYSTEM IMPLEMENTATION

Issue tracking system architecture described previously has
been implemented using PHP. It is semantic-based issue
response that returns similar issues and recommends experts
for the submitted issue.

X. EXPERIMENTS AND EVALUATION

For the evaluation purpose, the proposed issue tracking
system has been installed for employees working at IT
department of an Institute of Family Health (IFH)

4
. At the time

of system evaluation set of 240 issues have been evaluated
collected from 100 employees working at IFH and 5 experts
working at IT department have been given. The Ontology
database includes 20 classes and 100 properties.

For evaluation purpose, accuracy and Recall Rate has been
applied [9]. Accuracy and recall for the proposed issue tracking
system are shown in Table 2.

3 https://www.w3.org/TR/rdf-sparql-query/
4 The Institute for Family Health (IFH) is a regional model providing
comprehensive family healthcare services and training for professionals and

caretakers in the fields of family healthcare. http://www.ifh-

jo.org/index.php?language_id=1

XI. CONCLUCSION

The main contribution of this paper is that it proposes an
ontological semantic based issue tracking system. To achieve
the system goals, the proposed system combines the Vector
Space Models with domain ontology representing the issue and
code vocabulary. To improve the semantic similarity and
accuracy of system, each word is enhanced using the synonyms
terms extracted from the ontology pool and keywords
synonyms database. Therefore, the system takes advantage of
the shared ontologies available on the Web and semantically
enriches the keyword senses with senses extracted from their
synonyms.

The experimental results indicate that the system reaches an
accuracy of 94% based on test set of 240 issues and 5 experts.
In future extensions, the accuracy of the proposed system
would be compared with Jira bug tracking [10].

TABLE II. EXPERIMENT RESULT

 Issue

Response

File

recommender

Experts

recommender

Recall 95% 98% 92%

Accuracy 94% 96% 93.5%

REFERENCES

[1] M. Dominique , K. Adrian and N. Oscar, "Assigning Bug Reports using
a Vocabulary-Based Expertise Model of Developers," 6th IEEE
International Working Conference on Mining Software Repositories, pp.
131-140, 2009.

[2] M. W. David and A. S. Mark, "Expertise Recommender: A Flexible
Recommendation System and Architecture," in Proceedings of the 2000
ACM conference on Computer supported cooperative work, New York,
2000.

[3] T. Reichling and V. Wulf, "Expert recommender systems in practice:
evaluating semiautomatic profile generation," in SIGCHI Conference on
Human Factors in, New York, 2009.

[4] M. Porter, "An Algorithm for Suffix Stripping," Program electronic
library and information systems, vol. 14, no. 3, pp. 130-137, July 1980.

[5] M. R. Ježek P., Semantic framework for mapping object-oriented model
to semantic web languages., vol. 9, Front. Neuroinform, 2015.

[6] G. Salton, A. Wong and S. C. Yang, "A Vector Space Model for
Automatic Indexing," Communications of the ACM, vol. 18, no. 11, pp.
613-620, Nov. 1975.

[7] D. M. Christopher, R. Prabhakar and S. Hinrich, Introduction to
Information Retrieval, New York: Cambridge University Press, 2009.

[8] G. Salton and C. Buckley, "Term-weighting approaches in automatic
text retrieval," Information Processing and Management, vol. 24, no. 5,
pp. 513-523, 1988.

[9] S. Blair, "A Guide to Evaluating a Bug Tracking System.," 2004.

[10] V. Heyn and P. Adrian, "Semantic Jira - Semantic Expert Finder in the
Bug Tracking Tool Jira," in 9th International Workshop on Semantic
Web Enabled Software Engineering, Berlin, 2013.

