
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

279 | P a g e

www.ijacsa.thesai.org

Automatic Cloud Resource Scaling Algorithm based

on Long Short-Term Memory Recurrent Neural

Network

Ashraf A. Shahin
1,2

1
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University,

Cairo, Egypt

Abstract—Scalability is an important characteristic of cloud

computing. With scalability, cost is minimized by provisioning

and releasing resources according to demand. Most of current

Infrastructure as a Service (IaaS) providers deliver threshold-

based auto-scaling techniques. However, setting up thresholds

with right values that minimize cost and achieve Service Level

Agreement is not an easy task, especially with variant and

sudden workload changes. This paper has proposed dynamic

threshold based auto-scaling algorithms that predict required

resources using Long Short-Term Memory Recurrent Neural

Network and auto-scale virtual resources based on predicted

values. The proposed algorithms have been evaluated and

compared with some of existing algorithms. Experimental results

show that the proposed algorithms outperform other algorithms.

Keywords—auto-scaling; cloud computing; cloud resource

scaling; recurrent neural networks; resource provisioning;

virtualized resources

I. INTRODUCTION

One of the important features provided by cloud
computing is Scalability, which is the ability to scale allocated
computational resources on-demand [1]. Scalability feature
allows users to run their applications in an elastic manner, use
only computational resources they need, and pay only for what
they use. However, the process of instantiating new virtual
machines takes 5-15 minutes [2]. Therefore, predicting future
demand might be required to deal with variable demands and
being able to scale in advance. In the current literature, many
diverse auto-scaling techniques have been proposed to scale
computational resources according to predicted workload [3, 4,
5, 6].

However, one of the most famous problems that face
current auto-scaling techniques is Slashdot problem; where
auto-scaling technique might not be able to scale in case of
sudden influx of valid traffic. Slashdot is unpredictable flash-
crowd workload. Flash-crowd workload reduces cloud service
providers’ revenue by violating Service Level Agreement.

Slashdot effects can be reduced by detecting Slashdot
situations at earlier stages and performing appropriate scaling
actions. However, detecting Slashdot situations at earlier

stages is not an easy task. Even if Slashdot is detected, finding
suitable scaling action is a very hard task. Recently, several
machine-learning techniques (e.g. Support Vector Machine,
Neural Networks, and Linear Regression) have been used to
predict cloud workload [7, 8, 9]. However, most of currently
used techniques cannot remember events if there are very long
and variant time lags between events, as in Slashdot.

To improve memorization of standard feed forward neural
network, Jeff Elman has proposed recurrent neural network
(RNN), which extends standard feed forward neural network
by adding internal memory [10]. RNNs can learn when the
gap between relevant events is small (less than 10-step time
lags). Unfortunately, conventional RNNs still unable to learn
when gap between relevant events grows [1]. In 1997,
Hochreiter & Schmidhuber have proposed a special type of
RNN, called Long Short-Term Memory network (LSTM),
with ability to recognize and learn long-term dependencies (up
to 1000-step time lags between relevant events)[1].

This paper tries to answer the question: can we reduce
Slashdot effects by using LSTM-RNN? To answer this
question, this paper has proposed two auto-scaling algorithms.
The first algorithm avoids long and variant time lags between
Slashdot situations by using two different LSTM-RNNs. The
first LSTM-RNN is employed to deal with normal workload
while the second LSTM-RNN is exploited to deal with
Slashdot workload. The second algorithm investigates
applicability of using one LSTM-RNN to deal with both
normal and Slashdot workloads. Performance of the proposed
algorithms have been evaluated and compared with some of
existing algorithms using CloudSim with real traces.
Experimental results show that the first auto-scaling algorithm,
which uses two LSTM-RNNs, outperforms other algorithms.

The rest of this paper is structured as follows. Section 2
gives a brief background on Long Short-Term Memory
recurrent neural network (LSTM-RNN). Section 3 overviews
related work in the area of automatic cloud resources scaling.
Section 4 briefly describes the proposed algorithms. Following
this, Section 5 evaluates performance of the proposed
algorithms using CloudSim simulator with real workloads and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

280 | P a g e

www.ijacsa.thesai.org

compares their performance with some of existing algorithms.
Finally, Section 6 concludes.

II. LSTM-RNN

Feed forward neural network is a set of connected neurons
that try to capture and represent underlying relationships in a
set of data [10]. One of the major limitations of feed forward
neural network is that it does not consider order in time and
only remember few moments of training from their recent past.
Therefore, feed forward neural network cannot recognize or
learn sequential or time-varying patterns [10].

Alternatively, recurrent neural networks (RNN) determine
new response by using feedback loops, which combine current
inputs with outputs of the previous moment. Feedback loops
allow sequential information to persist and allow recurrent
networks to perform tasks that cannot be performed by feed
forward neural networks [1].

Figure 1 shows simple recurrent neural network design,
which was proposed by Elman. New layer (called context
layer) has been added to standard feed forward neural network.
Context units receive inputs from, and return their results to
hidden units. Context units allow RNN to memorize its
previous state [10].

Unfortunately, regular RNN still loses its memory very
fast. In 1997, Hochreiter & Schmidhuber have proposed a
special type of RNN, called Long Short-Term Memory
network (LSTM), with ability to recognize and learn long-
term dependencies. Long Short-Term Memory blocks have
been added to the hidden layers of RNN [11]. As shown in Fig.
2, each memory block contains memory cell to store internal
state and contains three different types of gates (input, output
and forget gates) to manage cell state and output using
activation function (usually sigmoid). The input gate decides
what information to store in the memory cell. The output gate
decides when to read information from the memory cell. The
forget gate decides how long to store information in the
memory cell. In 2002, Schmidhuber et al. have enhanced
memory block by adding peephole connections from its
internal cell to its gates. Peephole connections allow LSTM to
learn precise timing between relevant events [1].

III. RELATED WORK

Recently, several auto-scaling techniques have been
proposed. In [12], Gandhi et al. have proposed auto-scaling
approach, called Dependable Compute Cloud, to scale
infrastructure automatically without accessing application-
level and without offline application profiling. The proposed
approach proactively scales application deployment based on
monitoring information from resource-level and based on
performance requirements that are specified by users. Multi-
tier cloud application is approximated using product-form
queueing-network model. Kalman filtering technique is
employed to predict required parameters without accessing
user’s application. However, the proposed approach has not
considered Slashdot and has assumed that incoming requests
have Poisson arrivals.

Fig. 1. Simple Recurrent Neural Network Design

Fig. 2. Long Short-Term Memory block [11]

In [13], Moore et al. proposed a hybrid elasticity controller
that coordinates between reactive and predictive scalability
controllers to enhance cloud applications scalability. Both
controllers act concurrently. Cloud applications’
administrators configure scaling rules, which are monitored by
reactive controller. After some condition has already been met,
reactive controller submits scaling requests to centralized
decision manager. If the predictive controller is certain of
what action to take then it submits scaling requests to
centralized decision manager. Otherwise, the predictive
controller continues to learn. Decision manager receives,
validates, and executes all triggered scaling requests.
Although, performance of the proposed elasticity controller
has been evaluated using two real traces (ClarkNet web server
trace logs and FIFA 1998 World Cup Access logs), none of
these traces has Slashdot. Therefore, performance of the
proposed elasticity controller has not been evaluated with
Slashdot.

Lin et al. [3, 6] proposed auto-scaling system, which
monitors incoming requests and HTTP response time to
recognize cloud applications’ performance. Auto-scaling
algorithm was proposed based on recognized performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

281 | P a g e

www.ijacsa.thesai.org

Furthermore, Lin et al. proposed an algorithm to analyze the
workload trend to reduce the number of peaks in response
time caused by the variability of workload. Although, the
authors have mentioned that the proposed scaling strategy can
respond to variant and sudden workload changes in short time,
the proposed strategy has not been evaluated using sudden
workload changes and only evaluated using short workload
(200 minutes) with predictable seasonality.

Kanagala and Sekaran [14] have proposed Threshold-
based auto-scaling approach, which minimizes violation of
service level agreement by considering virtual machine
turnaround time and virtual machine stabilization time during
adapting thresholds. Thresholds are dynamically specified by
using double exponential smoothing. To set upper threshold,
double exponential smoothing is used to predict at which time
the system will reach max load and specify point before this
time to be used as upper threshold. To scale down, double
exponential smoothing is used to predict point before reaching
the minimum system load and use it as lower threshold.
However, weights that are assigned to observations by double
exponential smoothing method are decreased exponentially
while observations get older. Therefore, double exponential
smoothing method does not able to remember Slashdot when
there are long time lags.

Mao et al. [4, 5, 15] proposed auto-scaling mechanism,
which considers both user performance requirements and cost
concerns. Performance requirements are specified by
assigning soft deadline for each job. The proposed auto-
scaling mechanism allocates/deallocates virtual machines and
schedules tasks on virtual machines to finish each job within
its deadline with minimum cost. However, instantiating new
VMs requires at least 10 minutes. Thus, probability of
violating Service Level Agreement is increased.

Nikravesh et al. [16] proposed a proactive auto-scaling
system based on Hidden Markov Model. Their experiments
shown that scaling decisions that are generated using Hidden
Markov Model are more accurate than scaling decisions that
are generated using support vector machine, neural networks,
and linear regression. In [7, 8, 9], Bankole and Ajila have
applied three machine-learning techniques: Support Vector
Machine, Neural Networks, and Linear Regression to
proactively scale provisioned cloud resources for multitier
web applications. Their results show that Support Vector
Machine outperforms other techniques in predicting future
resource demands. Although, several auto-scaling techniques
have been proposed during the last few years, most of them do
not consider Slashdot.

IV. PROPOSED ALGORITHMS

As shown in Algorithm 1, inputs are as following. The first
input, , is the history of total required CPU. Total
required CPU at time , , is calculated as sum of all

required CPU for coming requests at time .

To enhance prediction accuracy of the proposed
algorithms, sliding window technique is utilized. Sliding
window has been used in many areas to improve prediction
accuracy [2]. The input specifies size of sliding

window that will be used during prediction.

The input represents delay of starting up new VM.

 and are history of previously predicted CPU
by using first and second LSTM-RNN respectively.
 and represent prediction
accuracy of first and second LSTM-RNN respectively.
Prediction accuracy is calculated as Mean Absolute
Percentage Error (MAPE).

The first auto-scaling algorithm uses two different LSTM-
RNNs for forecasting future demand. The first LSTM-RNN is
trained by normal workload without Slashdot and the second
LSTM-RNN is trained with Slashdot workload only.
 and are continuously updated
using predicted and observed CPU. Required CPU after
 step-ahead is forecasted by using LSTM-RNN with

lowest MAPE. Predicted CPU is sent to Scaling Decision
Maker algorithm to decide appropriate scaling action. Number
of VMs to scale up or down is specified according to the
difference between predicted and provisioned resources after
 step-ahead.

Algorithm 2 shows steps of the second auto-scaling
algorithm, which uses only one LSTM-RNN to predict
required CPU with normal and Slashdot workloads.

ALGORITHM 1: Auto-scaling with two LSTM-RNN

INPUTS:

𝐶𝑃𝑈𝐻: history of total required CPU

 : sliding window length

 : VM startup delay

𝐶𝑃𝑈𝑃𝐻 : history of predicted CPU using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙

𝐶𝑃𝑈𝑃𝐻 : history of predicted CPU using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡
 𝑁𝑜𝑟𝑚𝑎𝑙: prediction accuracy of 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙

 𝑆𝑙𝑎𝑠 𝑑𝑜𝑡: prediction accuracy of 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡
OUTPUTS:

Scaling decision

Begin

1: 𝑤𝑡 = Get sliding window from 𝐶𝑃𝑈𝐻 with length

2: 𝐶𝑃𝑈𝑃𝐻 𝑡 = Predict required CPU after step-

ahead using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙 𝑤𝑡)

3: 𝐶𝑃𝑈𝑃𝐻 𝑡 = Predict required CPU after step-

ahead using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡 𝑤𝑡)

4: Update 𝑁𝑜𝑟𝑚𝑎𝑙 and 𝑆𝑙𝑎𝑠 𝑑𝑜𝑡
5: if 𝑁𝑜𝑟𝑚𝑎𝑙 < 𝑆𝑙𝑎𝑠 𝑑𝑜𝑡
6: Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻 𝑡
7: else

8: Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻 𝑡
9: endif

10: return scaling decision

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

282 | P a g e

www.ijacsa.thesai.org

Scaling decision maker algorithm is shown in Algorithm 3.

Scaling decision maker algorithm uses three thresholds: upper
threshold ThrU, lower threshold ThrL, and ThrbU, which is
slightly below the upper threshold ThrU. If required CPU
crosses above ThrU, virtual resources are considered over
utilized and have to be scaled up. If required CPU crosses
above ThrbU and does not cross above ThrU for a pre-
specified number of times, virtual resources are considered
over utilized and virtual resources have to be scaled up. In
another hand, if required CPU crosses below ThrL for a pre-
specified number of times, virtual resources are considered
underutilized and some virtual resources have to be released.

Thresholds are initialized by the same values for all
applications. However, due to variation nature of workloads,
setting the same values for all applications increases the
probability of violating service level agreements. Therefore,
all thresholds are periodically and automatically adapted using
Median Absolute Deviation of required CPU history for each
application.

 = –

 = –

 =

wher < < and
 is median of absolute deviations from median of
required CPU. Using , we can adapt the safety of
the proposed algorithm. For example, lower values for
 decrease the cost, but increase the probability of
violating service level agreements.

V. PERFORMANCE EVALUATION

Proposed algorithms have been implemented using
Cloudsim simulator with deep-learning library called
Deeplearning4j [20]. Performances of the proposed algorithms
have been compared with two auto-scaling approaches, which
are proposed by Kanagala et al. [14], and Hasan et al. [17].
The following subsections describe evaluation environment
settings and discuss simulations’ results.

A. Evaluation environment settings

The proposed algorithms have been evaluated using
CloudSim simulator with real trace called NASA Log [18].

NASA Log contains two month's HTTP requests to the NASA
Kennedy Space Center WWW server, which is located in
Florida. This log was collected from 00:00:00 July 1, 1995 to
23:59:59 July 31, 1995 and from 00:00:00 August 1, 1995 to
23:59:59 August 31, 1995. Fig. 3 shows number of requests
that are generated according to NASA Log from August 1 to
August 31.

Slashdot has been added to NASA Log from [19], which
contains number of hits for July 26 2000; the day the
AUUG/LinuxSA InstallFest story hit Slashdot (Fig. 4 shows
number of requests versus time). Fig. 5 shows NASA Log
after adding Slashdot.

Fig. 3. Generated requests according NASA Log from August 1 to August

31

ALGORITHM 2: Auto-scaling with one LSTM-RNN

INPUTS:

𝐶𝑃𝑈𝐻: history of total required CPU

 : sliding window length

 : VM startup delay

𝐶𝑃𝑈𝑃𝐻: history of predicted CPU
OUTPUTS:

Scaling decision

Begin

1: 𝑤𝑡 = Get sliding window from 𝐶𝑃𝑈𝐻 with length

2: 𝐶𝑃𝑈𝑃𝐻 𝑡 = Predict required CPU after step-ahead

3: Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻 𝑡
4: return scaling decision

End

ALGORITHM 3: Scaling Decision Maker

INPUTS:

𝐶𝑃𝑈𝐻: history of total required CPU

𝐶𝑃𝑈𝑃 𝑡 : predicted CPU at time 𝑡
𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦: duration before scaling

OUTPUTS:
Scaling Action

Begin

1: 𝑀𝐴𝐷 = Get Median Absolute Deviation of 𝐶𝑃𝑈𝐻

2: 𝑇 𝑟𝑈 = 𝑐 ∗ 𝑀𝐴𝐷

3: 𝑇 𝑟𝑏𝑈 = 𝑐 ∗ 𝑀𝐴𝐷
4: 𝑇 𝑟𝐿 = 𝑐 ∗ 𝑀𝐴𝐷
5: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0

6: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0

7: if 𝐶𝑃𝑈𝑃 𝑡 > 𝑇 𝑟𝑈
8: 𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑐𝑎𝑙𝑒_𝑈𝑝

9: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0
10: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0
11: else

12: if 𝐶𝑃𝑈𝑃 𝑡 > 𝑇 𝑟𝑏𝑈
13: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0
14: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 + +

15: if 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 > 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦

16: 𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑐𝑎𝑙𝑒_𝑈𝑝

17: endif
18: else

19: if 𝐶𝑃𝑈𝑃 𝑡 < 𝑇 𝑟𝐿
20: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0

21: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 + +
22: if 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 > 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦

23: 𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑐𝑎𝑙𝑒_𝐷𝑜𝑤𝑛
24: endif
25: else

26: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0

27: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0
28: endif
29: endif
30: endif

31: return Scaling_Action
End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

283 | P a g e

www.ijacsa.thesai.org

Fig. 4. Number of requests versus time for Slashdot

Fig. 5. NASA Log with Slashdot

To implement LSTM-RNN, Deeplearning4j library has
been used. Deeplearning4j is an open-source deep-learning
library in Java. Deeplearning4j is developed by San
Francisco-based business intelligence and enterprise software
firm [20].

B. Evaluation results

Fig. 6 and Table 1 show number of running VMs during
period from hour 221 to hour 248, which contains the second
Slashdot (as shown in Fig. 5). The proposed algorithms
increase number of running VMs (between 221 and 230)
among other approaches to deal with Slashdot and rapidly
decrease number of running VMs (between 230 and 250) to
minimize cost.

Fig. 6 and Table 1 show that number of provisioned VMs
by the proposed algorithms is higher than provisioned VMs by
the related approaches. These VMs are incorporated to
achieve large number of requests in short response time as
shown in Fig. 7, Table 2, Fig. 8, and Table 3.

In [17], fixed number of VMs is defined to be allocated or
de-allocated during scaling up or down. This fixed number
limits scaling speed through Slashdot. In the proposed
algorithms, number of VMs is variant and depends on growth
or decrease of the workload.

In [14] and [17], if workload goes across the upper
threshold for a pre-specified duration, they start to scale up.
During this period, Service Level Agreement (SLA) will be
violated and some penalty has to be incurred by providers.
Moreover, duration of SLA violation will be extended to
include startup delay of new VMs, which sometimes takes
around 10 minutes. In the proposed algorithms, VMs will be
scaled up directly if predicted workload goes across the upper
threshold. Therefore, the proposed algorithms act faster to
provide enough resources to achieve coming requests.

Fig. 6. Number of running VMs versus time

TABLE I. NUMBER OF RUNNING VMS VERSUS TIME

 Time

(hour)

First

Algorithm

Second

Algorithm

Kanagala

et al. [14]

Hasan et

al. [17]

221 79 100 43 11

222 36 55 43 19

223 125 488 44 28

224 352 510 119 40

225 352 466 173 51

226 352 376 203 62

227 353 472 219 72

228 396 520 272 83

229 397 633 274 94

230 519 680 344 106

231 519 680 357 117

232 339 424 357 128

233 435 466 357 139

234 435 416 356 151

235 435 435 356 161

236 435 435 356 169

237 279 378 355 178

238 280 378 353 187

239 281 378 353 193

240 305 376 352 201

241 281 376 352 205

242 303 416 352 211

243 303 415 352 215

244 303 305 351 220

245 199 209 350 220

246 202 262 349 220

247 188 261 349 220

248 150 200 349 220

249 200 254 349 219

250 120 207 346 218

In [17], they scale down if the trend is down even if the
load does not cross the lower threshold, which means that
VMs will be shrunken even if we do not need that. Moreover,
in [17], it terminates VM after marking it to be terminated
after 5 minutes even if it is already finished, which sometimes
increases the cost if these few minutes add more hour cost. In
addition, it can increase SLA violation if there are running
requests need more time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

284 | P a g e

www.ijacsa.thesai.org

Fig. 7. Average response time

TABLE II. AVERAGE RESPONSE TIME (MILLISECOND)

 Time

(hour)

First

Algorithm

Second

Algorithm

Kanagala

et al. [14]

Hasan et

al. [17]

221 1003 1071 1125 1121

222 1042 1117 1116 1139

223 1036 1076 1159 1181

224 967 993 1080 1089

225 958 988 1068 1077

226 956 993 1064 1084

227 952 995 1061 1098

228 949 996 1057 1106

229 950 996 1055 1111

230 946 988 1044 1108

231 947 988 1042 1110

232 953 990 1050 1123

233 958 990 1065 1143

234 964 992 1078 1159

235 969 993 1090 1175

236 974 996 1100 1189

237 978 998 1116 1209

238 982 1000 1130 1226

239 986 1003 1143 1241

240 990 1005 1155 1256

241 994 1007 1169 1269

242 996 1008 1184 1282

243 999 1010 1197 1293

244 1001 1012 1208 1304

245 1004 1014 1218 1310

246 1006 1016 1228 1316

247 1009 1017 1236 1321

248 1011 1018 1245 1327

249 1013 1019 1256 1335

250 1015 1021 1263 1341

Fig. 8. Number of completed requests

VI. CONCLUSION

Although, elasticity is one of cloud computing
cornerstones that attract many companies to host their
applications in the cloud, most of current dynamic resource
scaling systems do not have ability to deal with Slashdot.
Slashdot prevents companies from gaining benefits of cloud
computing elasticity and increases the probability of losing
customers. Motivated by this problem, this paper has proposed
two auto-scaling algorithms based on Long Short-Term
Memory Recurrent Neural Network to minimize Slashdot
effects.

TABLE III. NUMBER OF COMPLETED REQUESTS

 Time

(hour)

First

Algorithm

Second

Algorithm

Kanagala

et al. [14]

Hasan et

al. [17]

221 30 530 412 323

222 155 92 91 153

223 1908 1646 649 585

224 13456 10992 4658 3513

225 12597 10142 4305 3266

226 11049 8884 3776 2881

227 11543 9471 3995 3008

228 15729 12508 5393 4039

229 15151 12154 5159 3891

230 25011 20060 8517 6335

231 20104 16158 6759 5145

232 14872 12034 5060 3754

233 17741 14364 6115 4503

234 12797 10316 4369 3377

235 15011 12175 5119 3838

236 13742 11056 4759 3521

237 11873 9612 4159 3108

238 9758 7937 3290 2500

239 9832 8067 3406 2570

240 9833 7887 3386 2566

241 9187 7582 3147 2355

242 12763 10144 4353 3281

243 12247 9877 4097 3174

244 10265 8252 3607 2649

245 6397 5350 2278 1742

246 4072 3374 1452 1115

247 3535 2948 1347 1047

248 2903 2356 1040 766

249 4429 3634 1591 1224

250 2340 2052 874 735

The proposed algorithms have been empirically evaluated
against some of existing approaches. Experiment results have
showed that the proposed algorithms outperform others on
both cost and service level agreement. Based on these results,
this paper concludes that using Long Short-Term Memory
Recurrent Neural Network to recognize and deal with Slashdot
can minimizes it effects.

In the future, deep Long Short-Term Memory Recurrent
Neural Network will be exploited to recognize Slashdot
behavior. Deep LSTM-RNN has been effectively applied in
many areas and has proved its efficiency throughout the years.
Deep LSTM-RNN offers more benefits over standard LSTM
RNNs by having several hidden layers. Each layer processes
some part of the task before sending it to the next layer.

REFERENCES

[1] J. S. Felix A. Gers, Nicol N. Schraudolph, “Learning precise timing with
lstm recurrent networks,” Journal of Machine Learning Research,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

285 | P a g e

www.ijacsa.thesai.org

vol. 3, pp. 115–143, 2002. [Online]. Available: http://www.jmlr.org/-
papers/volume3/gers02a/gers02a.pdf

[2] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Gener. Comput.
Syst., vol. 28, no. 1, pp. 155–162, Jan. 2012. [Online]. Available: http://-
dx.doi.org/10.1016/j.future.2011.05.027

[3] C.-C. Lin, J.-J. Wu, P. Liu, J.-A. Lin, and L.-C. Song,
“EnglishAutomatic resource scaling for web applications in the cloud,”
in EnglishGrid and Pervasive Computing, ser. Lecture Notes in
Computer Science, J. Park, H. Arabnia, C. Kim, W. Shi, and J.-M. Gil,
Eds. Springer Berlin Heidelberg, vol. 7861, pp. 81–90, 2013. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-38027-3_9

[4] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12, Nov 2011.

[5] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in 2010 11th IEEE/ACM International
Conference on Grid Computing (GRID), pp. 41–48, Oct 2010.

[6] C.-C. Lin, J.-J. Wu, J.-A. Lin, L.-C. Song, and P. Liu, “Automatic
resource scaling based on application service requirements,” in 2012
IEEE 5th International Conference on Cloud Computing (CLOUD), pp.
941–942, June 2012.

[7] A. Bankole and S. Ajila, “Cloud client prediction models for cloud
resource provisioning in a multitier web application environment,” in
2013 IEEE 7th International Symposium on Service Oriented System
Engineering (SOSE), pp. 156–161, March 2013.

[8] S. Ajila and A. Bankole, “Cloud client prediction models using machine
learning techniques,” in 2013 IEEE 37th Annual Computer Software and
Applications Conference (COMPSAC), pp. 134–142, July 2013.

[9] A. Bankole and S. Ajila, “Predicting cloud resource provisioning using
machine learning techniques,” in 2013 26th Annual IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–4,
May 2013.

[10] J. S. Sepp Hochreiter, “Long short-term memory,” Neural Computation,
vol. 9(8), pp. 1735–1780, 1997. [Online]. Available: http://-
deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

[11] F. B. Hasim Sak, Andrew Senior, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
INTERSPEECH 2014, 15th Annual Conference of the International
Speech Communication Association, Singapore, September 14-18, pp.
338–342, 2014. [Online]. Available: http://

static.googleusercontent.com/media/research.google.com/en//pubs/-
archive/43905.pdf

[12] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Adaptive,
model-driven autoscaling for cloud applications,” in 11th International
Conference on Autonomic Computing (ICAC 14). Philadelphia, PA:
USENIX Association, pp. 57–64, Jun. 2014. [Online]. Available:
https://www.usenix.org/conference/icac14/technical-sessions/-
presentation/gandhi

[13] K. B. Laura R. Moore and T. Ellahi, “A coordinated reactive and
predictive approach to cloud elasticity,” in CLOUD COMPUTING 2013
: The Fourth International Conference on Cloud Computing, GRIDs,
and Virtualization, 2013.

[14] K. Kanagala and K. Sekaran, “An approach for dynamic scaling of
resources in enterprise cloud,” in 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science (CloudCom),
vol. 2, pp. 345–348, Dec 2013.

[15] Y. Wadia, R. Gaonkar, and J. Namjoshi, “Portable autoscaler for
managing multi-cloud elasticity,” in 2013 International Conference on
Cloud Ubiquitous Computing Emerging Technologies (CUBE), pp. 48–
51, Nov 2013.

[16] A. Nikravesh, S. Ajila, and C.-H. Lung, “Cloud resource auto-scaling
system based on hidden markov model (hmm),” in 2014 IEEE
International Conference on Semantic Computing (ICSC), pp. 124–127,
June 2014.

[17] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi,
“Integrated and autonomic cloud resource scaling,” in 2012 IEEE
Network Operations and Management Symposium, pp. 1327–1334,
April 2012. DOI:10.1109/NOMS.2012.6212070

[18] Nasa-http, two months of http logs from NASA Kennedy Space Center
WWW server in Florida, USA. [online]
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html (Accessed on
October 1, 2016)

[19] The Slashdot Effect, hits-vs-time for the AUUG/LinuxSA InstallFest
Slashdot, July 26 2000. [online]
http://slash.dotat.org/~newton/installpics/slashdot-effect.html (Accessed
on October 1, 2016)

[20] Deeplearning4j, open-source deep-learning library in Java, San
Francisco-based business intelligence and enterprise software firm.
[online] https://deeplearning4j.org (Accessed on October 1, 2016)

