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Abstract—Scalability is an important characteristic of cloud 

computing. With scalability, cost is minimized by provisioning 

and releasing resources according to demand. Most of current 

Infrastructure as a Service (IaaS) providers deliver threshold-

based auto-scaling techniques. However, setting up thresholds 

with right values that minimize cost and achieve Service Level 

Agreement is not an easy task, especially with variant and 

sudden workload changes. This paper has proposed dynamic 

threshold based auto-scaling algorithms that predict required 

resources using Long Short-Term Memory Recurrent Neural 

Network and auto-scale virtual resources based on predicted 

values. The proposed algorithms have been evaluated and 

compared with some of existing algorithms. Experimental results 

show that the proposed algorithms outperform other algorithms. 
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I. INTRODUCTION 

One of the important features provided by cloud 
computing is Scalability, which is the ability to scale allocated 
computational resources on-demand [1]. Scalability feature 
allows users to run their applications in an elastic manner, use 
only computational resources they need, and pay only for what 
they use. However, the process of instantiating new virtual 
machines takes 5-15 minutes [2]. Therefore, predicting future 
demand might be required to deal with variable demands and 
being able to scale in advance. In the current literature, many 
diverse auto-scaling techniques have been proposed to scale 
computational resources according to predicted workload [3, 4, 
5, 6]. 

However, one of the most famous problems that face 
current auto-scaling techniques is Slashdot problem; where 
auto-scaling technique might not be able to scale in case of 
sudden influx of valid traffic. Slashdot is unpredictable flash-
crowd workload. Flash-crowd workload reduces cloud service 
providers’ revenue by violating Service Level Agreement. 

Slashdot effects can be reduced by detecting Slashdot 
situations at earlier stages and performing appropriate scaling 
actions. However, detecting Slashdot situations at earlier 

stages is not an easy task. Even if Slashdot is detected, finding 
suitable scaling action is a very hard task. Recently, several 
machine-learning techniques (e.g. Support Vector Machine, 
Neural Networks, and Linear Regression) have been used to 
predict cloud workload [7, 8, 9]. However, most of currently 
used techniques cannot remember events if there are very long 
and variant time lags between events, as in Slashdot. 

To improve memorization of standard feed forward neural 
network, Jeff Elman has proposed recurrent neural network 
(RNN), which extends standard feed forward neural network 
by adding internal memory [10]. RNNs can learn when the 
gap between relevant events is small (less than 10-step time 
lags). Unfortunately, conventional RNNs still unable to learn 
when gap between relevant events grows [1]. In 1997, 
Hochreiter & Schmidhuber have proposed a special type of 
RNN, called Long Short-Term Memory network (LSTM), 
with ability to recognize and learn long-term dependencies (up 
to 1000-step time lags between relevant events)[1]. 

This paper tries to answer the question: can we reduce 
Slashdot effects by using LSTM-RNN? To answer this 
question, this paper has proposed two auto-scaling algorithms. 
The first algorithm avoids long and variant time lags between 
Slashdot situations by using two different LSTM-RNNs. The 
first LSTM-RNN is employed to deal with normal workload 
while the second LSTM-RNN is exploited to deal with 
Slashdot workload. The second algorithm investigates 
applicability of using one LSTM-RNN to deal with both 
normal and Slashdot workloads. Performance of the proposed 
algorithms have been evaluated and compared with some of 
existing algorithms using CloudSim with real traces. 
Experimental results show that the first auto-scaling algorithm, 
which uses two LSTM-RNNs, outperforms other algorithms. 

The rest of this paper is structured as follows. Section 2 
gives a brief background on Long Short-Term Memory 
recurrent neural network (LSTM-RNN). Section 3 overviews 
related work in the area of automatic cloud resources scaling. 
Section 4 briefly describes the proposed algorithms. Following 
this, Section 5 evaluates performance of the proposed 
algorithms using CloudSim simulator with real workloads and 
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compares their performance with some of existing algorithms. 
Finally, Section 6 concludes. 

II. LSTM-RNN 

Feed forward neural network is a set of connected neurons 
that try to capture and represent underlying relationships in a 
set of data [10]. One of the major limitations of feed forward 
neural network is that it does not consider order in time and 
only remember few moments of training from their recent past. 
Therefore, feed forward neural network cannot recognize or 
learn sequential or time-varying patterns [10]. 

Alternatively, recurrent neural networks (RNN) determine 
new response by using feedback loops, which combine current 
inputs with outputs of the previous moment. Feedback loops 
allow sequential information to persist and allow recurrent 
networks to perform tasks that cannot be performed by feed 
forward neural networks [1]. 

Figure 1 shows simple recurrent neural network design, 
which was proposed by Elman. New layer (called context 
layer) has been added to standard feed forward neural network. 
Context units receive inputs from, and return their results to 
hidden units. Context units allow RNN to memorize its 
previous state [10]. 

Unfortunately, regular RNN still loses its memory very 
fast. In 1997, Hochreiter & Schmidhuber have proposed a 
special type of RNN, called Long Short-Term Memory 
network (LSTM), with ability to recognize and learn long-
term dependencies. Long Short-Term Memory blocks have 
been added to the hidden layers of RNN [11]. As shown in Fig. 
2, each memory block contains memory cell to store internal 
state and contains three different types of gates (input, output 
and forget gates) to manage cell state and output using 
activation function (usually sigmoid). The input gate decides 
what information to store in the memory cell. The output gate 
decides when to read information from the memory cell. The 
forget gate decides how long to store information in the 
memory cell. In 2002, Schmidhuber et al. have enhanced 
memory block by adding peephole connections from its 
internal cell to its gates. Peephole connections allow LSTM to 
learn precise timing between relevant events [1]. 

III. RELATED WORK 

Recently, several auto-scaling techniques have been 
proposed. In [12], Gandhi et al. have proposed auto-scaling 
approach, called Dependable Compute Cloud, to scale 
infrastructure automatically without accessing application-
level and without offline application profiling. The proposed 
approach proactively scales application deployment based on 
monitoring information from resource-level and based on 
performance requirements that are specified by users. Multi-
tier cloud application is approximated using product-form 
queueing-network model. Kalman filtering technique is 
employed to predict required parameters without accessing 
user’s application. However, the proposed approach has not 
considered Slashdot and has assumed that incoming requests 
have Poisson arrivals. 

 
Fig. 1. Simple Recurrent Neural Network Design 

 

Fig. 2. Long Short-Term Memory block [11] 

In [13], Moore et al. proposed a hybrid elasticity controller 
that coordinates between reactive and predictive scalability 
controllers to enhance cloud applications scalability. Both 
controllers act concurrently. Cloud applications’ 
administrators configure scaling rules, which are monitored by 
reactive controller. After some condition has already been met, 
reactive controller submits scaling requests to centralized 
decision manager. If the predictive controller is certain of 
what action to take then it submits scaling requests to 
centralized decision manager. Otherwise, the predictive 
controller continues to learn. Decision manager receives, 
validates, and executes all triggered scaling requests. 
Although, performance of the proposed elasticity controller 
has been evaluated using two real traces (ClarkNet web server 
trace logs and  FIFA 1998 World Cup Access logs), none of 
these traces has  Slashdot. Therefore, performance of the 
proposed elasticity controller has not been evaluated with 
Slashdot. 

Lin et al. [3, 6] proposed auto-scaling system, which 
monitors incoming requests and HTTP response time to 
recognize cloud applications’ performance. Auto-scaling 
algorithm was proposed based on recognized performance. 
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Furthermore, Lin et al. proposed an algorithm to analyze the 
workload trend to reduce the number of peaks in response 
time caused by the variability of workload. Although, the 
authors have mentioned that the proposed scaling strategy can 
respond to variant and sudden workload changes in short time, 
the proposed strategy has not been evaluated using sudden 
workload changes and only evaluated using short workload 
(200 minutes) with predictable seasonality. 

Kanagala and Sekaran [14] have proposed Threshold-
based auto-scaling approach, which minimizes violation of 
service level agreement by considering virtual machine 
turnaround time and virtual machine stabilization time during 
adapting thresholds. Thresholds are dynamically specified by 
using double exponential smoothing. To set upper threshold, 
double exponential smoothing is used to predict at which time 
the system will reach max load and specify point before this 
time to be used as upper threshold. To scale down, double 
exponential smoothing is used to predict point before reaching 
the minimum system load and use it as lower threshold. 
However, weights that are assigned to observations by double 
exponential smoothing method are decreased exponentially 
while observations get older. Therefore, double exponential 
smoothing method does not able to remember Slashdot when 
there are long time lags. 

Mao et al. [4, 5, 15] proposed auto-scaling mechanism, 
which considers both user performance requirements and cost 
concerns. Performance requirements are specified by 
assigning soft deadline for each job. The proposed auto-
scaling mechanism allocates/deallocates virtual machines and 
schedules tasks on virtual machines to finish each job within 
its deadline with minimum cost. However, instantiating new 
VMs requires at least 10 minutes. Thus, probability of 
violating Service Level Agreement is increased. 

Nikravesh et al. [16] proposed a proactive auto-scaling 
system based on Hidden Markov Model. Their experiments 
shown that scaling decisions that are generated using Hidden 
Markov Model are more accurate than scaling decisions that 
are generated using support vector machine, neural networks, 
and linear regression. In [7, 8, 9], Bankole and Ajila have 
applied three machine-learning techniques: Support Vector 
Machine, Neural Networks, and Linear Regression to 
proactively scale provisioned cloud resources for multitier 
web applications. Their results show that Support Vector 
Machine outperforms other techniques in predicting future 
resource demands. Although, several auto-scaling techniques 
have been proposed during the last few years, most of them do 
not consider Slashdot. 

IV. PROPOSED ALGORITHMS 

As shown in Algorithm 1, inputs are as following. The first 
input,     , is the history of total required CPU. Total 
required CPU at time  ,        , is calculated as sum of all 

required CPU for coming requests at time  . 

To enhance prediction accuracy of the proposed 
algorithms, sliding window technique is utilized. Sliding 
window has been used in many areas to improve prediction 
accuracy [2]. The input         specifies size of sliding 

window that will be used during prediction. 

The input         represents delay of starting up new VM. 

       and        are history of previously predicted CPU 
by using first and second LSTM-RNN respectively. 
            and               represent prediction 
accuracy of first and second LSTM-RNN respectively. 
Prediction accuracy is calculated as Mean Absolute 
Percentage Error (MAPE). 

The first auto-scaling algorithm uses two different LSTM-
RNNs for forecasting future demand. The first LSTM-RNN is 
trained by normal workload without Slashdot and the second 
LSTM-RNN is trained with Slashdot workload only. 
           and               are continuously updated 
using predicted and observed CPU. Required CPU after 
        step-ahead is forecasted by using LSTM-RNN with 

lowest MAPE. Predicted CPU is sent to Scaling Decision 
Maker algorithm to decide appropriate scaling action. Number 
of VMs to scale up or down is specified according to the 
difference between predicted and provisioned resources after 
        step-ahead. 

Algorithm 2 shows steps of the second auto-scaling 
algorithm, which uses only one LSTM-RNN to predict 
required CPU with normal and Slashdot workloads. 

 

ALGORITHM 1: Auto-scaling with two LSTM-RNN 

INPUTS: 

𝐶𝑃𝑈𝐻: history of total required CPU 

       : sliding window length 

       : VM startup delay 

𝐶𝑃𝑈𝑃𝐻 : history of predicted CPU using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙 

𝐶𝑃𝑈𝑃𝐻 : history of predicted CPU using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡 
     𝑁𝑜𝑟𝑚𝑎𝑙: prediction accuracy of 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙 

     𝑆𝑙𝑎𝑠 𝑑𝑜𝑡: prediction accuracy of 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡 
OUTPUTS: 

Scaling decision 

Begin 

1: 𝑤𝑡 = Get sliding window from 𝐶𝑃𝑈𝐻 with length         

2: 𝐶𝑃𝑈𝑃𝐻  𝑡 =  Predict required CPU after         step-

ahead using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑁𝑜𝑟𝑚𝑎𝑙 𝑤𝑡) 

3: 𝐶𝑃𝑈𝑃𝐻  𝑡 =  Predict required CPU after         step-

ahead using 𝐿𝑆𝑇𝑀_𝑅𝑁𝑁𝑆𝑙𝑎𝑠 𝑑𝑜𝑡 𝑤𝑡) 

4: Update      𝑁𝑜𝑟𝑚𝑎𝑙 and      𝑆𝑙𝑎𝑠 𝑑𝑜𝑡 
5: if      𝑁𝑜𝑟𝑚𝑎𝑙 <      𝑆𝑙𝑎𝑠 𝑑𝑜𝑡  
6:       Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻  𝑡  
7:  else  

8:       Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻  𝑡  
9: endif 

10: return scaling decision 

End 
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Scaling decision maker algorithm is shown in Algorithm 3. 

Scaling decision maker algorithm uses three thresholds: upper 
threshold ThrU, lower threshold ThrL, and ThrbU, which is 
slightly below the upper threshold ThrU. If required CPU 
crosses above ThrU, virtual resources are considered over 
utilized and have to be scaled up. If required CPU crosses 
above ThrbU and does not cross above ThrU for a pre-
specified number of times, virtual resources are considered 
over utilized and virtual resources have to be scaled up. In 
another hand, if required CPU crosses below ThrL for a pre-
specified number of times, virtual resources are considered 
underutilized and some virtual resources have to be released. 

Thresholds are initialized by the same values for all 
applications. However, due to variation nature of workloads, 
setting the same values for all applications increases the 
probability of violating service level agreements. Therefore, 
all thresholds are periodically and automatically adapted using 
Median Absolute Deviation of required CPU history for each 
application. 

     =   –              

     =   –              

     =                  

wher                              <   <       and 
    is median of absolute deviations from median of 
required CPU. Using             , we can adapt the safety of 
the proposed algorithm. For example, lower values for 
          decrease the cost, but increase the probability of 
violating service level agreements. 

V. PERFORMANCE EVALUATION 

Proposed algorithms have been implemented using 
Cloudsim simulator with deep-learning library called 
Deeplearning4j [20]. Performances of the proposed algorithms 
have been compared with two auto-scaling approaches, which 
are proposed by Kanagala et al. [14], and Hasan et al. [17]. 
The following subsections describe evaluation environment 
settings and discuss simulations’ results. 

A. Evaluation environment settings 

The proposed algorithms have been evaluated using 
CloudSim simulator with real trace called NASA Log [18]. 

NASA Log contains two month's HTTP requests to the NASA 
Kennedy Space Center WWW server, which is located in 
Florida. This log was collected from 00:00:00 July 1, 1995 to 
23:59:59 July 31, 1995 and from 00:00:00 August 1, 1995 to 
23:59:59 August 31, 1995. Fig. 3 shows number of requests 
that are generated according to NASA Log from August 1 to 
August 31. 

Slashdot has been added to NASA Log from [19], which 
contains number of hits for July 26 2000; the day the 
AUUG/LinuxSA InstallFest story hit Slashdot (Fig. 4 shows 
number of requests versus time). Fig. 5 shows NASA Log 
after adding Slashdot. 

 

 
Fig. 3. Generated requests according NASA Log from August 1 to August 

31 

ALGORITHM 2: Auto-scaling with one LSTM-RNN 

INPUTS: 

𝐶𝑃𝑈𝐻: history of total required CPU 

       : sliding window length 

       : VM startup delay 

𝐶𝑃𝑈𝑃𝐻: history of predicted CPU   
OUTPUTS: 

Scaling decision 

Begin 

1: 𝑤𝑡 = Get sliding window from 𝐶𝑃𝑈𝐻 with length         

2: 𝐶𝑃𝑈𝑃𝐻 𝑡 =  Predict required CPU after         step-ahead  

3: Call Scaling Decision Maker using 𝐶𝑃𝑈𝑃𝐻 𝑡  
4: return scaling decision 

End 

ALGORITHM 3: Scaling Decision Maker 

INPUTS: 

𝐶𝑃𝑈𝐻: history of total required CPU 

𝐶𝑃𝑈𝑃 𝑡 : predicted CPU at time 𝑡 
𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦: duration before scaling 

OUTPUTS: 
Scaling Action 

Begin 

1: 𝑀𝐴𝐷 = Get Median Absolute Deviation of 𝐶𝑃𝑈𝐻 

2: 𝑇 𝑟𝑈 =    𝑐   ∗ 𝑀𝐴𝐷 

3: 𝑇 𝑟𝑏𝑈 =    𝑐   ∗ 𝑀𝐴𝐷 
4: 𝑇 𝑟𝐿 =    𝑐   ∗ 𝑀𝐴𝐷 
5: 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0 

6: 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0 

7: if  𝐶𝑃𝑈𝑃 𝑡 > 𝑇 𝑟𝑈  
8:     𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛 =  𝑠𝑐𝑎𝑙𝑒_𝑈𝑝 

9:     𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0 
10:     𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0 
11: else 

12:     if 𝐶𝑃𝑈𝑃 𝑡 > 𝑇 𝑟𝑏𝑈  
13:          𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0 
14:          𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 + + 

15:          if 𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 > 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦  

16:              𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛  =  𝑠𝑐𝑎𝑙𝑒_𝑈𝑝 

17:           endif 
18:     else 

19:          if  𝐶𝑃𝑈𝑃 𝑡 < 𝑇 𝑟𝐿  
20:              𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0 

21:              𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 + + 
22:              if 𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 > 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦  

23:                   𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝐴𝑐𝑡𝑖𝑜𝑛  =  𝑠𝑐𝑎𝑙𝑒_𝐷𝑜𝑤𝑛 
24:              endif 
25:          else 

26:              𝑇𝑖𝑐𝑘_𝐷𝑜𝑤𝑛_𝑇𝑖𝑚𝑒𝑟 = 0 

27:               𝑇𝑖𝑐𝑘_𝑈𝑝_𝑇𝑖𝑚𝑒𝑟 = 0 
28:          endif 
29:     endif 
30: endif 

31: return Scaling_Action 
End 
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Fig. 4. Number of requests versus time for Slashdot 

 

Fig. 5. NASA Log with Slashdot 

To implement LSTM-RNN, Deeplearning4j library has 
been used. Deeplearning4j is an open-source deep-learning 
library in Java. Deeplearning4j is developed by San 
Francisco-based business intelligence and enterprise software 
firm [20]. 

B. Evaluation results 

Fig. 6 and Table 1 show number of running VMs during 
period from hour 221 to hour 248, which contains the second 
Slashdot (as shown in Fig. 5). The proposed algorithms 
increase number of running VMs (between 221 and 230) 
among other approaches to deal with Slashdot and rapidly 
decrease number of running VMs (between 230 and 250) to 
minimize cost. 

Fig. 6 and Table 1 show that number of provisioned VMs 
by the proposed algorithms is higher than provisioned VMs by 
the related approaches. These VMs are incorporated to 
achieve large number of requests in short response time as 
shown in Fig. 7, Table 2, Fig. 8, and Table 3. 

In [17], fixed number of VMs is defined to be allocated or 
de-allocated during scaling up or down. This fixed number 
limits scaling speed through Slashdot. In the proposed 
algorithms, number of VMs is variant and depends on growth 
or decrease of the workload. 

In [14] and [17], if workload goes across the upper 
threshold for a pre-specified duration, they start to scale up. 
During this period, Service Level Agreement (SLA) will be 
violated and some penalty has to be incurred by providers. 
Moreover, duration of SLA violation will be extended to 
include startup delay of new VMs, which sometimes takes 
around 10 minutes. In the proposed algorithms, VMs will be 
scaled up directly if predicted workload goes across the upper 
threshold. Therefore, the proposed algorithms act faster to 
provide enough resources to achieve coming requests. 

 
Fig. 6. Number of running VMs versus time 

TABLE I. NUMBER OF RUNNING VMS VERSUS TIME 

 Time 

(hour) 

First 

Algorithm 

Second 

Algorithm 

Kanagala 

et al. [14] 

Hasan et 

al. [17] 

221 79 100 43 11 

222 36 55 43 19 

223 125 488 44 28 

224 352 510 119 40 

225 352 466 173 51 

226 352 376 203 62 

227 353 472 219 72 

228 396 520 272 83 

229 397 633 274 94 

230 519 680 344 106 

231 519 680 357 117 

232 339 424 357 128 

233 435 466 357 139 

234 435 416 356 151 

235 435 435 356 161 

236 435 435 356 169 

237 279 378 355 178 

238 280 378 353 187 

239 281 378 353 193 

240 305 376 352 201 

241 281 376 352 205 

242 303 416 352 211 

243 303 415 352 215 

244 303 305 351 220 

245 199 209 350 220 

246 202 262 349 220 

247 188 261 349 220 

248 150 200 349 220 

249 200 254 349 219 

250 120 207 346 218 

In [17], they scale down if the trend is down even if the 
load does not cross the lower threshold, which means that 
VMs will be shrunken even if we do not need that. Moreover, 
in [17], it terminates VM after marking it to be terminated 
after 5 minutes even if it is already finished, which sometimes 
increases the cost if these few minutes add more hour cost. In 
addition, it can increase SLA violation if there are running 
requests need more time. 
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Fig. 7. Average response time 

TABLE II. AVERAGE RESPONSE TIME (MILLISECOND) 

 Time 

(hour) 

First 

Algorithm 

Second 

Algorithm 

Kanagala 

et al. [14] 

Hasan et 

al. [17] 

221 1003 1071 1125 1121 

222 1042 1117 1116 1139 

223 1036 1076 1159 1181 

224 967 993 1080 1089 

225 958 988 1068 1077 

226 956 993 1064 1084 

227 952 995 1061 1098 

228 949 996 1057 1106 

229 950 996 1055 1111 

230 946 988 1044 1108 

231 947 988 1042 1110 

232 953 990 1050 1123 

233 958 990 1065 1143 

234 964 992 1078 1159 

235 969 993 1090 1175 

236 974 996 1100 1189 

237 978 998 1116 1209 

238 982 1000 1130 1226 

239 986 1003 1143 1241 

240 990 1005 1155 1256 

241 994 1007 1169 1269 

242 996 1008 1184 1282 

243 999 1010 1197 1293 

244 1001 1012 1208 1304 

245 1004 1014 1218 1310 

246 1006 1016 1228 1316 

247 1009 1017 1236 1321 

248 1011 1018 1245 1327 

249 1013 1019 1256 1335 

250 1015 1021 1263 1341 

 

Fig. 8. Number of completed requests 

VI. CONCLUSION 

Although, elasticity is one of cloud computing 
cornerstones that attract many companies to host their 
applications in the cloud, most of current dynamic resource 
scaling systems do not have ability to deal with Slashdot. 
Slashdot prevents companies from gaining benefits of cloud 
computing elasticity and increases the probability of losing 
customers. Motivated by this problem, this paper has proposed 
two auto-scaling algorithms based on Long Short-Term 
Memory Recurrent Neural Network to minimize Slashdot 
effects. 

TABLE III. NUMBER OF COMPLETED REQUESTS 

 Time 

(hour) 

First 

Algorithm 

Second 

Algorithm 

Kanagala 

et al. [14] 

Hasan et 

al. [17] 

221 30 530 412 323 

222 155 92 91 153 

223 1908 1646 649 585 

224 13456 10992 4658 3513 

225 12597 10142 4305 3266 

226 11049 8884 3776 2881 

227 11543 9471 3995 3008 

228 15729 12508 5393 4039 

229 15151 12154 5159 3891 

230 25011 20060 8517 6335 

231 20104 16158 6759 5145 

232 14872 12034 5060 3754 

233 17741 14364 6115 4503 

234 12797 10316 4369 3377 

235 15011 12175 5119 3838 

236 13742 11056 4759 3521 

237 11873 9612 4159 3108 

238 9758 7937 3290 2500 

239 9832 8067 3406 2570 

240 9833 7887 3386 2566 

241 9187 7582 3147 2355 

242 12763 10144 4353 3281 

243 12247 9877 4097 3174 

244 10265 8252 3607 2649 

245 6397 5350 2278 1742 

246 4072 3374 1452 1115 

247 3535 2948 1347 1047 

248 2903 2356 1040 766 

249 4429 3634 1591 1224 

250 2340 2052 874 735 

The proposed algorithms have been empirically evaluated 
against some of existing approaches. Experiment results have 
showed that the proposed algorithms outperform others on 
both cost and service level agreement. Based on these results, 
this paper concludes that using Long Short-Term Memory 
Recurrent Neural Network to recognize and deal with Slashdot 
can minimizes it effects. 

In the future, deep Long Short-Term Memory Recurrent 
Neural Network will be exploited to recognize Slashdot 
behavior. Deep LSTM-RNN has been effectively applied in 
many areas and has proved its efficiency throughout the years. 
Deep LSTM-RNN offers more benefits over standard LSTM 
RNNs by having several hidden layers. Each layer processes 
some part of the task before sending it to the next layer. 
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