
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

239 | P a g e

www.ijacsa.thesai.org

Preliminary Study of Software Performance Models

Issamjebreen

Faculty of Information Technology

Zarqa University, Zarqa, Jordan

Mohammed Awad

Faculty of Applied Engineering

University of Palestine

Abstract—Context: Software performance models can be

obtained by applying for specific roles, skills and techniques in

software life cycle, and it depends on formulating the software

problem as well as gathering the performance requirements. This

paper presents a preliminary review of the software performance

models. This constitutes a reference for the IT companies and

personnel that help them select the suitable model for their

projects. Also, the study helps researchers find out further

research areas in this field. A preliminary review according to a

predefined strategy is used to conduct previous approaches of

software performance models integrated with software

development cycle in early software cycle. A review has been

done for exploring and comparing the software performance

models that are published previously. This study results in a

comprehensive review for the existing software performance

models. This review composes a clear reference for highlighting

the weak and strength points of these models.

Keywords—Performance Models; Measurement Model;

Performance Prediction; Performance evaluation

I. INTRODUCTION

Developing software requires ensuring that software
performance requirements are considered and achieved.
Software performance is a process to predict and evaluate if the
system meets business goals. Performance Predictive models
(Model-Based) require detail descriptions at run-time behavior
of a system, in order to estimate the execution time and other
performance issues i.e. cache misses. It is used by architects to
avoid the performance problems at system implementation
time, and to estimate designs, and to explore a new
optimization by compiler writers. In addition, developers can
adjust their programs. Conversely, Evaluation models
(measurement models) attempts to measure the system
performance activities when the system has been implemented.
In order to defined performance problems and bottlenecks.

This paper presents a preliminary review of the software
performance models. The main goal is to presents explorations
of research of performance models as well as clarifying the
variance of elements used for each model. In order to help
researchers to find out further research areas and to constitute a
reference for the IT companies and personnel that helps them
select the suitable model for their projects.

The rest of this paper is organized as follows: Sec2:
Research Description and Presentation; Sec3: Literature
Review, Sec4: Preliminary Results and Discussion; Sec5:
Conclusion and Future Work.

II. THE REVIEW PROCESS

This section declares the review process, research
framework and the objectives of the preliminary review. This
paper aims to present a preliminary review between
―Performance models‖, in order to clarify the elements used to
generate these models. The framework of this review considers
studies of software performance based on simulation,
Analytical methods, and component based approach in order to
explore the elements used to generate the performance models.

A. Research Planning

The research Strings was established by academic as
following: (―Software Performance Engineering, Modeling
Techniques, UML, Performance Models.‖), the Research
question (RQ) is: RQ. What are the elements used to generate
the performance models? Our research resources namely: IEEE
and ACM Digital Library.

B. Conducting the Research

The criteria for determining whether a study should be
included as a related study (named ―Primary Study‖) or not,
was by first analyzing research titles, abstracts, keywords and
introductions from the studies retrieved through search.

C. Selection of the Primary Studies

The inclusion criteria for the selection of primary studies
are listed below:

 Studies that proposed Performance models‖.

 Studies that describe their methods in details.

The exclusion criteria for the selection of primary studies
are listed below:

 Studies that don’t answer the research question.

 Studies that don’t present Models OR Meta-Models of
software performance.

III. PRIMARY STUDIES

Smith & Williams [1], who have defined SPE (Software
Performance Engineering) information requirements, have
proposed integrated software development cycle with
performance models; They defined information requirements
for Early Life-Cycle performance analysis, the performance
analysis according to authors were: performance objective,
performance scenario that includes software plans + workload,
execution environment, resource requirement and processing
overhead.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

240 | P a g e

www.ijacsa.thesai.org

They starting building the Meta model SPE from the
performance scenario, using the workload to describe the ratio
of different types of requests; SW plans defined the execution
path for each workload, also used class diagrams to define the
objects and the relationships between them, and thus modeling
the performance scenarios using a form Execution Graph EG.
That enables transferring information between CASE Tools
and performance model. Also Smith et al, [2] updated the SPE
meta-model that is proposed by Smith & Williams by adding
subclass to processing node and adding project, facility node;
then applying XML formats to Software Performance Model
Interchange Format (S-PMIF meta-model) and export UML
Diagrams when they are ready into the S-PMIF.

Additionally, Henia, Rafik, et al. [3] proposed an approach
named SymTA/S, which is considered as system-level
performance as well as timing analysis, and based on formal
scheduling analysis techniques, in order to support diverse
Architectures & task dependencies & collect optimization
algorithms with analysis of rapid design. Support performance
issues such as bus, processor utilization, and worst case
scheduling scenarios. Moreover, D'Ambrogio, Andrea [4]
presented a framework that aims to transfer source UML of
software models into performance prediction models layered
queuing networks LQNs, which required understanding the
syntax & semantics for the source and P models. That enhances
software designer’s productivity as well as software quality.

Smith, Connie U., & Lloyd G. Williams [5] said that most
performance anti pattern problems result through the
architecture/design stages, unfortunately these problems don’t
appear during the implementation stage. The solutions need
software changes opposed to system tuning changes. Smith,
Connie U., & Lloyd G. Williams [5] presented three new
performance anti patterns and gave examples to illustrate them.
These anti patterns help developers and performance engineers
avoid common performance problems.

Woodside, Murray, et al. [6] analyzed the exchange
information provided from a performance model and the
process of creating a performance model. They proposed
PUMA transformations that define Performance evolutions
from annotated UML Profile for Modeling and Analysis of
Real-Time Embedded System MARTE. This approach enables
to obtain performance measures such as throughout and
response time throughout software life-cycle. Moreover, Sim,
Jaewoong, et al. [7] proposed a framework in order to analyze
the performance, which supports shed light of bottlenecks of
GPGPU applications. In addition, this framework helps
GPGPU Profile tools and supports programmers in
measurements as well as metrics during run time.

Bammi, Jwahar R., et al. [8] proposed two approaches for
handling issues of performance evaluation as well as SW cost
for embedded system design. The first approach is called
Source-Based approach which employs the integration of a
virtual instruction set in order to evaluate the performance. The
second approach called object-based approach which translates
the assembler created by the target compiler (named
assembler-level).

Lindemann, Christoph, et al. [9] proposed a framework for
performance estimation which enables designers to predict

performance during variance stages at design phase. They
presented an algorithm that supports the state space creation
resulted from State & Activity diagrams. In order to enable a
quantitative analysis for Stochastic Process and Generalized
Semi-Markov Process GSMP is used. Additionally, Denaro,
Giovanni, Andrea Polini, and Wolfgang Emmerich [10]
proposed an approach for performance testing in particular for
distributed systems during early life cycle phases. They created
test cases to examine these systems starting from architectural
designs. They observed that middleware functionality e.g.
transactions & remote communication primitives control these
systems.

Bertolino, Antonia, and Raffaela [11] presented an
approach named CB-SPE for component-based SW
performance, which adopted CB (Component-Based)
framework to model the standard RT-UML Profile restructure
depending on CB Role. CB-SPE approach applied on both
component layer (parametric performance estimation) and
application layer (predictive performance for assembled
components).

Tribastone, Mirco, and Stephen Gilmore [12] proposed a
procedure to systematically map activity diagrams into
stochastic process algebra model referred as PEPA Models.
PEPA performance model clarifies a Markov [9] in semantics
to enable the computation of performance issues i.e. workload,
response time and the throughput. They are concerned about
tools produced in Eclipse platform; to enable transfer from
MARTE annotated UML activity diagrams into PEPA Models

Gu, Gordon P., and Dorina C. Petriu [13] present a method
that enables transfer between the results annotated from UML
with performance models, which is generated at a higher level
of abstraction. They use a lower level XML trees
manipulations i.e. XML algebra. They use also LQN to apply
their method, which can be designed to other performance
model formalisms. Moreover, Zheng, Gengbin, et al, [14]
proposed a performance predictive model for big weigh
computers (i.e. blue gene machine), that include a parallel
simulator, bigsim, bignetsim. The simulator can deal with
advanced features of modeling, also supports performance
predictions for huge machines. In addition, Kähkipuro, Pekka
[15] proposed a framework, in order to introduce performance
modeling; at first they have explained an overview of the
proposed framework and clarified the major components for
this framework. After that they have clarified relationships
between these components.

Finally, Zolfaghari, Rahmat [16] presented a method for
transforming UML of SW architecture to QNM (Queuing
Networks Model). In order to support performance as well as
quality of the models that employ UML in designing software.
They have used the deployment diagram in SW components
with hardware resources. The activity diagrams extract the
system behaviors and the use case diagrams extract workloads.

IV. RESULTS AND DISCUSSION

Table 1 shows the Advantages & Limitations of
Performance Models. Regarding Data Extraction, this research
has predefined Database that contains Authors, Titles,
Published Years, descriptions and summaries of this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

241 | P a g e

www.ijacsa.thesai.org

comprehensive review. For the Evidence Synthesis, most
approaches employ the results annotated from UML, SPT
profiles to integrate software models with performance models
through high abstract level information. The Use Case
diagrams are used to describe workload density, and behaviors,
while the Activity and Sequence diagrams are used to extract

computations of a system performs service requests to the
devices resources (the dynamic behavior). Deployment
Diagram provides hardware recourses such as passive and
active resource modeling. Processing resources extract from
Active resources (devices), while operating system processes
extract from Passive resources.

TABLE I. ADVANTAGES & LIMITATIONS OF PERFORMANCE MODELS

Ref. Advantages Limitations

[1]
Provides an interchange format that enables CASE & Performance

Tools to exchange information
Considers Class & ER Diagrams only.

[2]
Provides interchange formats that support flexibility in when &

who performance specifications are provided

Needs SPT Profile to export the resource requirements

Considers Class Diagrams only

[3]

Supports diverse Architectures & task dependencies

Supports performance issues such as bus, processor utilization, and
worst case scheduling scenarios.

Provides only a system-level performance

[4]

Transfers source UML of software models into performance

prediction models layered queuing networks LQNs

Enhances software designer’s productivity as well as software

quality

which required understanding the syntax & semantics for the source

and Pmodels

[5]

Provides three new performance anti patterns. These anti patterns

help developers and performance engineers avoid common
performance problems

The solution need software changes opposed to system tuning changes

[6]

Provides PUMA transformations that define performance

evolutions from annotated UML Profile for Modeling and Analysis
of Real-Time Embedded System MARTE.

Enables to obtain performance measures such as throughout and

response time throughout software life-cycle

Focuses only on Real-Time Embedded System MARTE

[7]

Supports shed light of bottlenecks of GPGPU applications.

Supports programmers in measurements as well as metrics during
run time

it assumes that a memory instruction is always followed by consecutive

dependent instructions; hence, MLP is always one.

it assumes that there is enough instruction-level parallelism. Thus, it is
difficult to predict the effect of prefetching or other optimizations that

increase instruction/memory-level parallelism.

[8]

Employs the integration of a virtual instruction set in order to

evaluate the performance.

Translates the assembler created by the target compiler (named

assembler-level).

it is quite difficult to account for potential compiler optimizations that

do not fall into any of the Virtual Instruction categories

[9]

Enables designers to predict performance during variance stages at
design phase.

Supports the state space creation resulted from State & Activity

diagrams.

Limited to Time-enhanced UML Diagrams

[10]
Enables test cases to examine systems starting from architectural

designs

Cannot identify performance problems that are due to the specific
implementation of late-available components. For example, if the final

application is going to have a bottleneck in a business component that

is under development, the approach has no chance to discover the
bottleneck that would not be exhibited by a stub of the component.

Performance analysis models remain the primary reference to pursue

evaluation of performance.

[11]

Applied on both component layer (parametric performance

estimation) and application layer (predictive performance for

assembled components)

it leads to sound results only for a specific platform

[12]
Enable the computation of performance issues such as workload,
response time and the throughput

Restricted to final node activities

[13]

Enables transfer between the results annotated from UML with

performance models, which is generated at a higher level of
abstraction.

Uses a lower level XML trees manipulations such as XML algebra.

Uses also LQN to apply their method, which can be designed to
other performance model formalisms

Cannot build the complete behavior for every component

[14]

Provides a performance predictive model for big weigh computers

(i.e. blue gene machine), that includes a parallel simulator, bigsim,
bignetsim.

Large meshes must be generated, which is difficult with today’s tools.

The meshes must be partitioned for parallel execution

[15]

Introduces performance modeling

Clarifies the major components and relationships between these

components

the approach limits the available scheduling disciplines, service time
distributions, and arrival rate distributions

[16]

Supports performance as well as quality of the models that employ

UML in designing software.

Uses the deployment diagram in SW components with hardware

resources.

Must have both software and hardware components to follow it. It is

not perfect for pure software solutions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

242 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE WORK

The results of this review show that most approaches
widely used UML Diagrams and SPT Profiles to support
generation of Performance Models. There are several
performance models introduced to provide analytical
assessment. These models aim to help designers and architects
to predict performance measurements at different steps.

This review has revealed that data pre-processing has
received considerable attention in the Software Engineering
research community. The same cannot be said regarding data
collection procedures and the identification of data quality
issues, which can compose future research topics.

ACKNOWLEDGMENT

This research is funded by the Deanship of Research and
Graduate Studies in Zarqa University /Jordan

REFERENCES

[1] Williams, L., Smith, C., ―Information Requirements for Software
Performance Engineering‖, the National Science Foundation, 1995

[2] Smith, C., Lladó. C., Cortellessa, V., Marco, A., Williams, L., ― From
UML models to software performance results: An SPE process based on
XML interchange formats‖, WOSP, 2005

[3] Henia, Rafik, et al. "System level performance analysis–the SymTA/S
approach." IEE Proceedings-Computers and Digital Techniques 152.2
(2005): 148-166.

[4] D'Ambrogio, Andrea. "A model transformation framework for the
automated building of performance models from UML
models." Proceedings of the 5th international workshop on Software and
performance. ACM, 2005.‏‏

[5] Smith, Connie U., and Lloyd G. Williams. "More new software
performance antipatterns: Even more ways to shoot yourself in the
foot." Computer Measurement Group Conference. 2003.‏

[6] Woodside, Murray, et al. "Transformation challenges: from software
models to performance models." Software & Systems Modeling 13.4
 ‏.1529-1552 :(2014)

[7] Sim, Jaewoong, et al. "A performance analysis framework for
identifying potential benefits in GPGPU applications." ACM SIGPLAN
Notices. Vol. 47. No. 8. ACM, 2012.‏

[8] Bammi, Jwahar R., et al. "Software performance estimation strategies in
a system-level design tool." Proceedings of the eighth international
workshop on Hardware/software codesign. ACM, 2000.‏

[9] Lindemann, Christoph, et al. "Performance analysis of time-enhanced
UML diagrams based on stochastic processes." Proceedings of the 3rd
international workshop on Software and performance. ACM, 2002.‏

[10] Denaro, Giovanni, Andrea Polini, and Wolfgang Emmerich. "Early
performance testing of distributed software applications." ACM
SIGSOFT Software Engineering Notes. Vol. 29. No. 1. ACM, 2004.‏

[11] Bertolino, Antonia, and Raffaela Mirandola. "Towards component-based
software performance engineering." Proceedings of the 6th ICSE
Workshop on Component-Based Software Engineering. 2003.‏

[12] Tribastone, Mirco, and Stephen Gilmore. "Automatic extraction of
PEPA performance models from UML activity diagrams annotated with
the MARTE profile." Proceedings of the 7th international workshop on
Software and performance. ACM, 2008.‏

[13] Gu, Gordon P., and Dorina C. Petriu. "From UML to LQN by XML
algebra-based model transformations." Proceedings of the 5th
international workshop on Software and performance. ACM, 2005.‏

[14] Zheng, Gengbin, et al. "Simulation-based performance prediction for
large parallel machines." International Journal of Parallel
Programming 33.2-3 (2005): 183-207.‏

[15] Kähkipuro, Pekka. "UML based performance modeling framework for
object-oriented distributed systems." «UML»’99—The Unified
Modeling Language. Springer Berlin Heidelberg, 1999. 356-371.‏

[16] Zolfaghari, Rahmat. "Software Performance Evaluation with Converting
UML Description of Software Architecture to QNM." Int. J. Emerg.
Sci 3.3 (2013): 268-27

