
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

265 | P a g e  

www.ijacsa.thesai.org 

N-ary Relations of Association in Class Diagrams: 

Design Patterns 

Sergievskiy Maxim 

National Research Nuclear University MEPhI 

Moscow Technological Institute 

Moscow, Russia 

 

 
Abstract—Most of the technology of object-oriented 

development relies on the use of UML diagrams, in particular, 

class diagrams. CASE tools, used for automation of object-

oriented development, often do not support n-ary associations in 

the class diagrams, and their implementation in the form of 

program code in contrast to binary rather time-consuming. The 

article will show how in some cases it is possible to move from the 

n-ary association between classes to binary and how can reduce 

the number of objects. The rules to transform models, that 

contain n-ary association, will be presented in the form of design 

patterns. Proposed three new design patterns can be used in the 

process of developing software systems. These patterns describe 

transformations of n-ary (often ternary) associations occur 

between classes in binary and the introduction of additional 

classes and binary association with the aim of optimizing the 

model. 

Keywords—UML; class diagram; multiplicity; ternary 

association; n-ary association; class-association; design pattern; 

object 

I. INTRODUCTION 

As it is known, UML is the standard tool for modeling 
software systems [1], [2], [3], [4]. Most of the object-oriented 
technology developments use general capabilities of this 
language. The design stage primarily uses class diagrams from 
the UML. They describe the model of a software system 
reflecting the main parameters of the subject area. In class 
diagrams, the base relationship is an association relationship. 
This is complex structural relation, which describes links 
between the objects of different classes of software system. At 
the later stage software system model in the form of a class 
diagrams will be transformed into a logical database model 
and object-oriented application code. It is important that a 
substantial part of the code can be generated automatically 
with the help of CASE tools. The majority of CASE tools do 
not support n-ary (in particular, ternary) association 
relationships in the class diagrams [2], [5]. Also, n-ary 
association, unlike binary, is a time consuming (this does not 
apply to databases). The article will demonstrate how in some 
cases it is possible to move from the n-ary association between 
classes (often ternary) to binary, and how you can reduce the 
number of potential objects of class-associations. Guidelines 
for the conversion of models containing n-ary association will 
be shown in the form of design patterns [6]. 

II. REPLACING TERNARY ASSOCIATION ON BINARY AND 

CLASS-ASSOCIATION 

Let assume that in the class diagram there is a ternary 
association, i.e. the association, which involves three objects. 
For example, take certain objects belonging to three different 
classes: STUDENT, SUBJECT and LECTURER (see Fig. 1). 
We define multiplicities for the classes from this association: 
STUDENT (1..*) SUBJECT (1..*), LECTURER (1). 

 

Fig. 1. The ternary association between the classes STUDENT, SUBJECT 

and LECTURER 

The multiplicity of the association in relation to the class 
LECTURER is (1) because any fixed pair of objects the 
STUDENT and the SUBJECT corresponds to only one object 
class LECTURER. Each LECTURER may teach one subject 
with multiple students, so the multiplicity of the association in 
relation to the class of the STUDENT is equal to (1..*); the 
same lecturer can read several courses to any single student, 
so the multiplicity of the association in relation to the class 
SUBJECT equals (1..*). 

Pattern_1. Assume that in the n-ary association there is 
a class with multiplicity (1). Then n-ary association can be 
replaced with a combination of (n-1)-ary association and 
class-association. 

Proving the above is quite simple: show how it would 
work for a ternary association. Let’s combine two classes with 
multiplicities, different from (1), with normal binary 
association. Then any two connected objects of these classes 
will correspond to exactly one object of the third class, which 
we can without loss of generality refer to the class-association. 
Thus, the class-association will replace the third class of 
ternary association. Moreover, in this class we can include 
attributes originally related to the ternary association. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

266 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Replacing ternary association on binary and class-association 

Applying Pattern_1 will give us a new class diagram not 
containing ternary association (see Fig. 2). Such cases are 
fairly common. Here is another example of ternary 
association, which multiplicity to one of the classes (1): 
PLAYER (11..*), SEASON (*), CLUB (1). 

The multiplicity associated with the class CLUB is equal 
to (1), because any player may change club only in the 
offseason. 

The third example describes the case when all objects of 
the ternary associations belong to the same class - PEOPLE: 
this refers to the relation Father – Mother –  

 
Fig. 3. Ternary association Engender (Father, Mother, Child) 

Child (see Fig. 3). Here the multiplicities are as follows: 
PERSON (Father) - (1), PERSON (Mother) - (1), PERSON 
(Child) - (*). 

III. USING OF ADDITIONAL CLASSES 

Let’s come back to the first example. For a ternary 
association, as for any other, there may be relevant attributes. 
In this case it can be starting and finishing time of the class 
session and the classroom number. Let’s try to strip out a 
subclass from a defined class of objects, which has 
commonalities in relation to these attributes. For example, all 
students are divided into different groups, for which similar 
classes are taking place at the same time. In this case there is a 
class - GROUP. 

The ternary association between the classes STUDENT – 
SUBJECT – LECTURER is transformed into a ternary 
association GROUP – SUBJECT – LECTURER and the 
binary association STUDENT – GROUP. We define 
multiplicities for the classes involved in the new ternary 

association:  GROUP (1..*),  SUBJECT (1..*), LECTURER 
(1). 

In this case, using Pattern_1, we can get the combination 
of simple binary association and class-association, then a class 
diagram will have a different appearance (see Fig. 4). The 
advantage of this chart is that a number of objects – instances 
of class-association LECTURER - will be reduced. 

 
Fig. 4. The introduction of additional (to the class STUDENT) class 

GROUP 

Based on the above, you have the following options to 
describe appropriate design pattern: 

Pattern_2. Assume that for two or more classes there is 
a class-association with one or more attributes. If it is 
possible to split the objects of one of the classes into a 
subsets for which the attribute values of the class-
association will be the same, then another class should be 
created with the association with multiplicities (1) and (*) 
to the first class. 

But still redundancy in the form of repeated instances of a 
class-association LECTURER remains (in case the lecturer 
will teach the same subject to multiple streams). Let’s 
introduce another class-association – TIMETABLE. This is a 
class, not an attribute, because it can include already specified 
attributes: the lecture starting time, finishing time, classroom 
number. This new class will be connected to a normal class-
association LECTURER. New association will have the 
following multiplicities: (1) – for class LECTURER and (*) – 
for the class TIMETABLE (see Fig. 5). This solution will help 
to reduce the number of instances of a class-association 
LECTURER. Here we use an operation, similar to the 
operation of standard normalization from the database theory 
[7]. 

 
Fig. 5. Introduction of the class-association TIMETABLE 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

267 | P a g e  

www.ijacsa.thesai.org 

IV. REPLACEMENT OF THE N-ARY ASSOCIATION WITH 

BINARY ONES 

Let’s describe another commonly occurring type of n-ary 
association that can exist between classes, or rather between 
objects of classes. Assume that on one side there is a single 
object of one class against involved in the association and on 
the other side there is a random number of objects of the 
second class. That means that the relation is defined as a set of 
tuples of variable length. 

Let’s give examples of such relations from the real subject 
domains [8], [9]. There are two classes: the DISEASE and 
GENOTYPIC_TRAIT. Relations between objects of these 
classes can be described as follows: object class DISEASE 
may be associated with any number of objects 
GENOTYPIC_TRAIT, and tuples of different lengths from 1 
to N 

(D1, GT1, ... , GTN ), 

characterized by an additional attribute - the probability of 
disease given the presence of these genotypic traits. It turns 
out that the tuples of the relations are of the form of: 

(D1, GT1), (D1, GT1, GT2), (D2, GT2), (D2, GT3), (D2, 
GT1, GT2, GT3) 

In case we are to show relationship between objects 
graphically, the result is that one object class the DISEASE 
may be associated with one object 

GENOTYPIC_TRAIT more than once. That means the 
object diagram for the described relationship may be the 
following (see Fig. 6). 

Let us go through another example. When a number of 
participants in a certain project are defined, the following 
problem often arises. The project may involve staff in 
different combinations. For example, performing Project_1 
can attract Smit and Jones, participation could be limited to 
Smit only, or you can even add Clark. Resources spent in each 
of the above cases (time, finances, etc.) will vary, and can be 
added as additional attributes. Then between classes 
PROJECT and EMPLOYEE also encounter the recently 
described type associative relationship. 

 
Fig. 6. Object diagram 

It is obvious that means to describe and specify this 
relationship in UML is not. But we can solve this problem by 
entering additional class GROUP_GENES. In this case 

 

Fig. 7. Class diagram for the model genetic diseases 

there is a class diagram that includes classes in addition to 
DISEASE and  GENOTYPIC_TRAIT: the class 

GROUP_GENES (see Fig. 7) and, if need, class-
association between DISEASE and GROUP_GENES classes 
to store additional attributes. 

Pattern_3. Assume that the n-ary association involves 
one object of the first class and random number of objects 
of the second class. In this case a third class should be 
entered to group the objects of the second class and 
associate it semantically different binary relations of the 
association with the first and second classes. 

V. N-ARY ASSOCIATIONS (N>3) 

Since substantial part of this article is devoted to the n-ary 
association relationships, let’s give examples of n-ary 
associations with n>3. Obviously, in real domain areas such 
associations are often met. 

Take the domain area associated with the deliveries to the 
warehouses of different goods produced by different 
companies. We can distinguish four classes: 

 

Fig. 8. Tetrary association 

MANUFACTURER, WAREHOUSE, GOOD, CARRIER. 
Objects of these classes will be linked by relationship of 
association, which may have additional attributes such as 
delivery time, quantity, invoice number, etc. All the 
multiplicities in this case will be equal to (*) (see Fig. 8). 

VI. CONCLUSION 

The article describes three new design patterns which 
could be applied in developing software systems. These 
templates show transformations of n-ary (often ternary) 
associations, which occur between classes, into binary, as well 
as the introduction of additional classes and binary relations 
with the aim of optimizing the model. This task is very 
relevant given that in real domains n-ary associations are very 
common, and system analysts often confront with these facts 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

268 | P a g e  

www.ijacsa.thesai.org 

[10]. Thus, applying new templates already at the design stage 
make it possible: firstly to get rid of the complexity associated 
with modeling and realization of n-ary associations, and 
secondly to minimize the number objects, arising in the 
software system operating process. 

REFERENCES 

[1] G.Booch, J.Rumbaugh, I. Jacobson,   ”Unified Modeling Language”, 
Addison-Wesley, 2004 

[2] L.Maciaszek, ”Requirements Analysis and System Design”, Addison-
Wesley, 2004   

[3] C.Larman, ”Applying UML and patterns”, Prentice Hall, 2005 G. 
Booch,”Object-Oriented Analysis and Design with Applications”, 
Addison-Wesley, 2007 

[4] Methodical Materials IBM,  https://www14.software.ibm.com 

[5] E.Gamma, R.Johnson, Helm R., J.Vlissides, ”Design Patterns. Elements 
of Reusable Object-Oriented Software”, Addison-Wesley, 2001 

[6] C.J. Date, ”An Introduction to Database Systems”, Addison-Wesley, 
2004 

[7] A. Konkin, M. Sergievskiy,”Integrating Bayesian Networks and 
Decision Trees for Calculating Probabilistic Rate of Complex Diseases”, 
Biology and Medicine 7(3): BM-119-15-4 pages, 2015 

[8] O. Lukyanchikov, E. Pluzhnik,  D. Biryukov, E. Nikulchev, ” Features 
Management and Middleware of Hybrid Cloud Infrastructures”, 
International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 1, pp. 30-36, 2016  

[9] G. Gґenova, J. Llorens, P. Martґınez, ”The meaning of multiplicity of n-
ary associations in UML”, Software System Modeling, No 1, pp. 86-97, 
2002 

https://www14.software.ibm.com/

