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Abstract—The Purpose of homomorphic encryption is to 

ensure privacy of data in communication, storage or in use by 

processes with mechanisms similar to conventional 

cryptography, but with added capabilities of computing over 

encrypted data, searching an encrypted data, etc. 

Homomorphism is a property by which a problem in one 

algebraic system can be converted to a problem in another 

algebraic system, be solved and the solution later can also be 

translated back effectively. Thus, homomorphism makes secure 

delegation of computation to a third party possible. Many 

conventional encryption schemes possess either multiplicative or 

additive homomorphic property and are currently in use for 

respective applications. Yet, a Fully Homomorphic Encryption 

(FHE) scheme which could perform any arbitrary computation 

over encrypted data appeared in 2009 as Gentry’s work. In this 

paper, we propose a multi-cloud architecture of N distributed 

servers to repartition the data and to nearly allow achieving an 

FHE. 
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I. INTRODUCTION 

Cryptosystems supply mechanisms to ensure data 
confidentiality and integrity.  If the data is always encrypted in 
the cloud, then control is not lost, and the concerns are 
removed. When an encryption algorithm does not allow 
arbitrary computation over encrypted data, the encrypted data 
must be decrypted before the computation, and the decrypted 
data is no longer under control. 

Cloud computing is infeasible for many business 
organizations if they need to download sensitive data from the 
cloud to a trusted computer in order to perform operations, and 
then send the encrypted results backed to the cloud. Encrypted 
data has historically been impossible to operate on without first 
decrypting them. There are some encryption algorithms that 
allow arbitrary computation on encrypted data. For instance, 
RSA is a multiplicatively homomorphic encryption algorithm 
where the decryption of the product of two encrypted data will 
be the product of the two plain data. However, RSA doesn’t 
allow addition operation nor the combination of multiplications 
and additions. Later, FHE has appeared [1] to perform 
unlimited chaining of algebraic operations in the cipherspace, 
which means that an arbitrary number of additions and 

multiplications can be applied to encrypted operands. 
Unfortunately, all implementations of FHE schemes showed 
that this technique is still much too slow for practical 
applications. 

In this work, we will be focusing on the application of N 
distributed servers and N cloud systems to homomorphic 
encryption in order to perform a nearly FHE scheme for the 
security of data and applications, particularly the possibility to 
execute the calculations of encrypted confidential data without 
decrypting them. 

The remainder of the paper is organized as follows. 
Homomorphic encryption and related definitions are 
introduced in section II. In section III, we discuss the 
Somewhat Homomorphic Scheme. In section IV, we present 
some examples of partially homomorphic cryptosystems.  
Finally in the section V, we propose a secure multi-cloud 
architecture for processing encrypted data. The perspectives are 
mentioned in section VI with the conclusion. 

II. TOWARD HOMOMORPHIC ENCRYPTION 

The security requirements for data and algorithms have 
become very strong in the last few years. Due to the vast 
growth of technology, a great variety of attacks on digital 
goods and technical devices are enabled. For storing and 
reading data securely, there exist several possibilities like 
secure data encryption. The problem becomes more complex 
when asking for the possibility to compute (publicly) with 
encrypted data or to modify functions in such a way that they  
are still executable while the privacy is ensured. That is where 
homomorphic cryptosystems can be used. 

The notion and idea of fully homomorphic schemes was 
introduced by Rivest, Adle-man and Dertouzos in [2] shortly 
after the invention of RSA [3]. They asked for an encryption 
function that permits encrypted data to be operated on without 
preliminary decryption of the operands, and they called those 
schemes privacy homomorphisms. Even in 1978 this was a 
highly important matter, it is even more important nowadays. 
While the partially homomorphic properties of schemes like 
RSA, Paillier, ElGamal, etc. have been acknowledged ever 
since, it was not before 2009 when a young IBM researcher 
published the first working fully homomorphic cryptosystem 
based on lattices. 
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Among the homomorphic encryption we distinguished 
according to their operation to assess on raw data. The additive 
homomorphic encryption  (addition of the raw data) is the 
Pailler [4] and Goldwasser-Micalli[5] cryptosystems and the 
multiplicative homomorphic encryption (only products on raw 
data) is the RSA [6] and El Gamal [7] cryptosystems. 

A. Definition of a Homomorphic Encryption Scheme 

A public-key encryption scheme E=(KeyGen, Enc, Dec) is 
homomorphic if for all k and all (pk,sk) output from 
KeyGen(k), it is possible to define groups M, C so that: 

 The plaintext space M, and all ciphertexts output by 
Encpk     are elements of C. 

 For any m1 , m2 ∈ M and c1 , c2 ∈ C with m1 = Decsk 

(c1 )  and m2 = Decsk (c2 ) it holds that: 

Decsk (c1 ∗ c2 ) = m1 ∗ m2 

Where the group operations ∗ are carried out in C and M, 
respectively. 

In other words, a homomorphic cryptosystem is a PKS with 
the additional property that there exists an efficient algorithm 
(Eval) to compute an encryption of the sum or/and the product 
of two messages given the public key and the encryptions of 
the messages, but not the messages themselves. 

Moreover, a fully homomorphic scheme is able to output a 
ciphertext that encrypts f (m1,...,mt), where f is any desired 
function, which of course must be efficiently computable.   No 
information about m1,..., mt or f (m1,...,mt), or any intermediate 
plaintext values should leak. The inputs, outputs and 
intermediate values are always encrypted, and therefore useless 
for an adversary. Before we take a closer look on fully 
homomorphic encryption schemes, we will need another 
important notion from information theory. 

B. Circuits 

Informally speaking, circuits are directed, acyclic graphs 
where nodes are called gates and edges are called wires. 
Depending on the nature of the circuit the input values are 
integers, boolean values, etc. and the corresponding gates are 
set operations and arithmetic operations or logic gates  (AND, 
OR, NOR, NAND, ...). In order to evaluate a function f, we 
express f as a circuit and topologically arrange its gates into 
levels which will be executed sequentially. 

Example. Assume the function f outputs the expression: 

 

Fig. 1. Example for circuit representation 

A·B+B·C·(B+C) on input (A,B,C). Then the following 
circuit represents the function f, with the logic gates AND and 
OR. 

Two important complexity measures for circuits are size 
and depth. 

The size of a circuit C is the number of its non-input gates. 
The depth of a circuit C is the length of its longest path, from 
an input gate to the output gate, of its underlying directed 
graph. 

This yields to another definition of fully homomorphic 
encryption [8]: 

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi ), outputs 

     c← Evalpk (C, Ψ) 

under pk. 

There is another way to construct fully homomorphic 
encryption schemes. To understand how this transformation 
works, we need the following definitions and corollaries. 

Definition : A homomorphic encryption scheme E is said to 
be correct for a family CE of circuits if for any pair (sk, pk) 
output by KeyGenE (λ) any circuit C ∈ CE , any plaintext 
m1,...,mt , and any ciphertexts Ψ = c1, ...,ct 

with ci ← Encpk (mi), it is the case that: 

If    c ← EvalE (pk, C, Ψ),  then   DecE (sk, c) → C(m1, ...,mt) 

Except with negligible probability over the random coins in 
EvalE . 

Definition:  A homomorphic encryption scheme E is 
compact, if there is a polynomial f so that, for every value of 
the security parameter λ, E’s decryption algorithm can be 
expressed as a circuit DE of size at most f (λ). 

A homomorphic encryption scheme E compactly evaluates 
circuits in CE if E is compact and also correct for circuits in 
CE. 

Corollary: A homomorphic encryption scheme E is fully 
homomorphic if it compactly evaluates all circuits. 

This demand is considered to be almost too strong for 
practical purposes, hence it uses a certain relaxation to include 
leveled schemes, which only evaluate circuits of depth up to 
some d, and whose public key length may be poly(d). 

Definition: (leveled fully homomorphic). A family of 
homomorphic encryption schemes {E(d) : d ∈ Z+ } is said 
leveled fully homomorphic if, for all d ∈ Z+ , it all uses the 
same decryption circuit, E (d) compactly evaluates all circuits 
of depth at most d (that use some specified set of gates), and 
the computational complexity of E (d) ’s algorithms is 
polynomial in λ, d, and (in the case of EvalE ) the size of the 
circuit C. 

An encryption scheme which supports both addition and 
multiplication (a fully homomorphic scheme) thereby 
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preserves the ring structure of the plaintext space and is 
therefore far more powerful. Using such a scheme makes it 
possible to let an untrusted party do the computations without 
ever decrypting the data, and therefore preserving their 
privacy. 

A widely esteemed application of homomorphic encryption 
schemes is cloud computing. Presently, the need for cloud 
computing is increasing fast, as the data we are processing and 
computing on is getting bigger and bigger every day, with the  
effect that a single person’s computation power does not suffice 
anymore. Hence, it is favorable to use someone else’s power 
without losing the privacy we seek. 

Say, Alice wants to store a sensitive file m ∈ {0, 1}n on 
Bob’s server. So she sends Bob Enc(m1), ..., Enc(mn). Assume 
that the file is a database (a list of people with specific 
information about them) and Alice wants to find out how many 
of them are 25 years old.  Instead of retrieving the data from 
Bob, decrypting it and searching for the wanted information, 
she will ask Bob to do the computations, without him knowing 
what or who he is computing on. 

The answer from Bob comes in form of a ciphertext which 
only she can decrypt with her secret key. 

 
Fig. 2. Diagram of a homomorphic encryption  scheme 

The benefit of fully homomorphic encryption has long been 
recognized. The question for constructing such a scheme arose 
within a year of the development of RSA [2]. 

For more than 30 years, it was unclear whether fully 
homomorphic encryption was even achievable. During this 
period, the best encryption system was the Boneh-Goh-Nissim 
cryptosystem [9] which supports evaluation of an unlimited 
number of addition operations but one multiplication at the 
most. 

A common reason why a scheme cannot compute circuits 
of a certain depth is that after a certain amount of computations 
too much error accumulates, which causes the decryption to 
obtain a wrong value. The decryption usually is able to handle 
small amounts of error within a certain range and 
bootstrappable encryption enables "refreshing" after some 
time. The basic idea of "refreshing" is to encrypt under a first 
key. Compute until right before the error grows too large. 
Encrypt under a second key. Compute the decryption circuit, 
which since it stopped before the error grew too large, gives the 
correct value encrypted under the second key. The first key is 
no longer required. Continue computation under the second 
key, and repeat with a new key as often as needed. When the 
computation has finished, decrypting with the last used key 
gives the original plaintext. 

Gentry's method can be broken down into three major 
steps: 

Step 1: Constructing an encryption scheme using ideal 
lattices that is somewhat homomorphic, which means it is 
limited to evaluating low-degree polynomials over encrypted 
data. This scheme is very similar to the Goldreich-Goldwasser-
Halevi scheme published in 1997 [10] which is based on lattice 
problems as well. 

Step 2: "Squashing" the decryption circuit of the original 
somewhat homomorphic scheme to make it bootstrappable. 

Step 3: Bootstrapping the slightly augmented original 
scheme of step 2 to yield the fully homomorphic encryption 
scheme. This will be done with a "refreshing" procedure. 

The innovative idea of Gentry's method of creating a fully 
homomorphic scheme out of a somewhat homomorphic 
scheme is the method of squashing and boot-strapping. 
Mathematically the most appealing step is the first step. 

III. THE SOMEWHAT HOMOMORPHIC SCHEME 

The aim of this somewhat homomorphic scheme (SHS) is 
to construct an encryption scheme that is "almost" 
bootstrappable with respect to a universal set of gates. The first 
step is to design a SHE scheme which is a scheme that supports 
some computations over encrypted data. Gentry then showed 
that if you can manage to design a SHE scheme that supports 
the evaluation of its own decryption algorithm (and a little 
more), then there is a general technique to transform the SHE 
scheme into a FHE scheme. A SHE that can evaluate its own 
decryption algorithm homomorphically is called 
bootstrappable and the technique that transforms a 
bootstrappable SHE scheme into a FHE scheme is called 
bootstrapping. 

Bootstrapping. So how does bootstrapping work and why 
is bootstrappability such a useful property? To understand this, 
you first have to know how the currently-known SHE schemes 
work. Roughly speaking, the ciphertexts of all these schemes 
have noise inside of them and unfortunately this noise gets 
larger as more and more homomorphic operations are 
performed. At some point, there is so much noise that the 
encryptions become useless (i.e., they do not decrypt 
correctly). This is the main limitation of SHE schemes and this 
is the reason that they can only perform a restricted set of 
computations. Bootstrapping allows us to control this noise. 

The idea is to take a ciphertext with a lot of noise in it and 
an encryption of the secret key and to homomorphically 
decrypt the ciphertext. Note that this can only work if the SHE 
scheme has enough homomorphic capacity to evaluate its own 
decryption algorithm which is why we need the SHE scheme to 
be bootstrappable. This homomorphically computed decryption 
will result in a new encryption of the message but without the 
noise (or at least with less noise than before). More concretely, 
say we have two ciphertexts: 

c1=Epk (m1) and c2=Epk (m2) 

with noise n1 and n2, respectively. We can multiply these 
encryptions using the homomorphic property of the SHE 
scheme to get an encryption: 
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c3= Epk (m1 x m2) 

of m1 x m2 under key pk ,but C3 will now have noise n1xn2.  
The idea behind bootstrapping is to get rid of this noise as 
follows. First, we encrypt C3 and sk under pk .This results in 
two new ciphertexts  

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk) 

Given C4 and C5, we now homomorphically decrypt C4 

using C5. In other words, we compute the following operation 
over C4 and C5: “decrypt c3= Epk (m1 x m2) using sk“. This is 
allowed since the scheme has enough homomorphic capacity to 
evaluate its own decryption algorithm. 

By using this technique throughout a computation 
whenever the ciphertexts get too noisy, we can remove the 
main limitation of the SHE scheme and turn it into a FHE 
scheme. 

It turns out that constructing a bootstrappable SHE scheme 
is difficult. To do this, Gentry had to build his scheme using 
sophisticated techniques [1] so a lot of the recent work in FHE 
has tried to figure out how to design simpler bootstrappable 
SHE schemes. 

IV. PARTIALLY HOMOMORPHIC CRYPTOSYSTEMS 

A. RSA-A Multiplicatively Homomorphic Scheme 

In 1978, Rivest, Shamir, and Adleman published their 
public-key cryptosystem which only uses elementary ideas 
from number theory, in their paper "A Method for Obtaining 
Digital signatures and Public-Key Cryptosystems" [3]. It was 
one of the first homomorphic cryptosystem. The RSA 
cryptosystem is the most widely used public-key cryptosystem. 
It may be used to provide both secrecy and digital signatures 
and its security is based on the intractability of the integer 
factorization problem. 

 

Fig. 3. RSA Algorithm 

The encryption algorithm takes as input a message m from 
the plaintext space Zn and computes the according ciphertext            

c = me mod n. This integer c ∈ Zn cannot be traced back to the 
original message without the knowledge of p and q, which will 
be proved later in this section. 

Decryption takes as input the ciphertext c and the secret 
key     (d, n) and computes m = cd mod n. Since d is the inverse 
of e in Zn this is indeed the original message. 

The three steps (key generation, encryption and decryption) 
can be found in the following table. 

B. Paillier - An Additively Homomorphic Scheme 

Pascal Paillier introduced his cryptosystem in 1999 
published paper "Public-Key Cryptosystems Based on 
Composite Degree Residuosity Classes" [11]. The proposed 
technique is based on composite residuosity classes, whose 
computation is believed to be computationally difficult. It      is 
a probabilistic asymmetric algorithm for public key 
cryptography and inherits additive homomorphic properties. 

The encryption procedure takes as input a message m ∈ Zn 

and randomly chooses an integer r in Z∗ , this random number is 
used to fulfill the probabilistic algorithm’s n property, that one 
plaintext can have many ciphertexts. It is later shown that this 
random variable does not impede the correct decryption, but 
has the effect of changing the corresponding ciphertext. 

The three steps (key generation, encryption and decryption) 
can be found in the following table: 

 
Fig. 4. Paillier Algorithm 

V. OUR ARCHITECTURE 

The fully homomorphic encryption schemes [1] are very 
time consuming. Considering the evaluation of one gate 
demanding a refresh, the run-time will be significant as well as 
the processing of security parameters. 

A suggestion of a nearlly FHE scheme based architecture 
for enabling the evaluation of any function and processing 
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encrypted data is illustrated in Figure 6. In our proposed 
architecture, the service provider repartitions the processing 
among the servers to fasten the evaluation process of any 
function. 

 
Fig. 5. An architecture of distributed servers for processing encrypted data 

In this system, we provide a high leveled architectural 
scheme through the usage of multiple servers in the 
computation. This computational system will nearly allow 
achieving a FHE, and thus a large number of operations 
including multiplications and additions can be performed. For 
instance, in Fig. 5, Client 1 requests the results of a given 
function, let’s say f(x)=ax²+bx+c. In this case the function 
elements are encrypted and divided into several chunks 
depending on the number of operations (Multiplication and 
addition), and will be processed separately on N different 
servers, equivalent to the number of addition operations Finally 
the  result  is  sent  back  to  a  Central  Server  in  order  to  be 
forwarded to Client 1 and then decrypted. 

The benefit is that no longer chipertext after encryption 
unlike the classical method. The keys are easily handled and 
more security is maintained since is it impossible to read 
relevant information in distributed systems. In the cloud the N 
servers consists of hypervisors hosting multiple virtual 
machines which help improving the response time and 
augment the number of the involved computational entities in 
the distributed system. 

In this suggestion, we analyze the added value of the 
distributed systems in processing operations requested by 
clients. The scheme of homomorphic encryption is dispatched 
within the servers and this can be practical and help improving 
the security of the cloud in terms of confidentiality of data and 
performance. 

Fig. 6. The proposed  architecture to secure data using  homomorphic encryption 
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Another concern that should be considered in our 
architecture is the confidentiality of the processed data over the 
distributed systems, which is the main concern of most 
organization when using third-party hosting. Our approach 
regarding this matter is the split the stored data among multiple 
Cloud service providers to decrease the risk of data breaches 
and increase the parallel processing as well as the number of 
the servers involved in performing homomorphic encryption. 
Partitioning and outsourcing the data, applications onto 
different cloud infrastructures has the advantage of making 
them ambiguous for third-parties and adversaries, and thus this 
helps enhancing the confidentiality as well as the privacy. 

As the stored encrypted data is repartitioned among a 
Multi-Cloud Architecture belonging to different Cloud Service 
Providers (See Fig. 6), Client 1 can perform operations on 
them and transparently retrieve the intended results. The data is 
segmented through a Data Partitioning Algorithm (DPA) 
which allows partitioning, collecting and reconstructing the 
data. The main operations are chunked into subsets to be 
handled by the N Clouds/N Servers. The combination of N 
Clouds and homomorphic encryption using N servers provides 
an enhanced security strategy which is a safe approach to 
prevent any potential data breaches even if the data have been 
already encrypted. 

Choosing a trusted CSP requires a Service Level 
Agreement (SLA), contract negotiation and risk assessments. 
In most cases it may be logical to believe that a CSP to be 
trustworthy and handling the clients’ sensitive data and 
applications in a responsible manner. 

VI. CONLUSION 

As Gentry proposed his construction and blueprint in 2009, 
there has been a huge effort to make FHE more practical. 
While a lot of progress has been made, unfortunately, we are 
still some way from truly practical FHE. 

Most FHE schemes are based on Gentry’s blueprint which 
consists of first constructing a SHE and then using Gentry’s 
bootstrapping technique to turn it into a FHE scheme. It turns 
out that bootstrapping is a major bottleneck and that SHE is 
actually reasonably efficient. So, if we care about practical 

applications, then it may be worthwhile to explore what exactly 
we can do with SHE instead. 

Distributed systems and multi-could architectures could 
bring lots of benefits to the application of homomorphic 
encryption and making it more practical in the case of the 
security of data and applications. 

In a future work, we will focus on the implementation of 
our proposal and conduct security and performance tests in 
order to show its practicability. 
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