
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

293 | P a g e

www.ijacsa.thesai.org

A Secure Cloud Computing Architecture Using

Homomorphic Encryption

Kamal Benzekki

Laboratory of Computer Networks

and Systems

Department of Mathematics and

Computer Science

Moulay Ismail University, Faculty of

Sciences, Meknes, Morocco

Abdeslam El Fergougui

Laboratory of Computer Networks

and Systems

Department of Mathematics and

Computer Science

Moulay Ismail University, Faculty of

Sciences, Meknes, Morocco

Abdelbaki El Belrhiti El Alaoui
Laboratory of Computer Networks

and Systems

Department of Mathematics and

Computer Science

Moulay Ismail University, Faculty of

Sciences, Meknes, Morocco

Abstract—The Purpose of homomorphic encryption is to

ensure privacy of data in communication, storage or in use by

processes with mechanisms similar to conventional

cryptography, but with added capabilities of computing over

encrypted data, searching an encrypted data, etc.

Homomorphism is a property by which a problem in one

algebraic system can be converted to a problem in another

algebraic system, be solved and the solution later can also be

translated back effectively. Thus, homomorphism makes secure

delegation of computation to a third party possible. Many

conventional encryption schemes possess either multiplicative or

additive homomorphic property and are currently in use for

respective applications. Yet, a Fully Homomorphic Encryption

(FHE) scheme which could perform any arbitrary computation

over encrypted data appeared in 2009 as Gentry’s work. In this

paper, we propose a multi-cloud architecture of N distributed

servers to repartition the data and to nearly allow achieving an

FHE.

Keywords—multi-cloud; privacy; fully homomorphic

encryption; distributed System; confidentiality

I. INTRODUCTION

Cryptosystems supply mechanisms to ensure data
confidentiality and integrity. If the data is always encrypted in
the cloud, then control is not lost, and the concerns are
removed. When an encryption algorithm does not allow
arbitrary computation over encrypted data, the encrypted data
must be decrypted before the computation, and the decrypted
data is no longer under control.

Cloud computing is infeasible for many business
organizations if they need to download sensitive data from the
cloud to a trusted computer in order to perform operations, and
then send the encrypted results backed to the cloud. Encrypted
data has historically been impossible to operate on without first
decrypting them. There are some encryption algorithms that
allow arbitrary computation on encrypted data. For instance,
RSA is a multiplicatively homomorphic encryption algorithm
where the decryption of the product of two encrypted data will
be the product of the two plain data. However, RSA doesn’t
allow addition operation nor the combination of multiplications
and additions. Later, FHE has appeared [1] to perform
unlimited chaining of algebraic operations in the cipherspace,
which means that an arbitrary number of additions and

multiplications can be applied to encrypted operands.
Unfortunately, all implementations of FHE schemes showed
that this technique is still much too slow for practical
applications.

In this work, we will be focusing on the application of N
distributed servers and N cloud systems to homomorphic
encryption in order to perform a nearly FHE scheme for the
security of data and applications, particularly the possibility to
execute the calculations of encrypted confidential data without
decrypting them.

The remainder of the paper is organized as follows.
Homomorphic encryption and related definitions are
introduced in section II. In section III, we discuss the
Somewhat Homomorphic Scheme. In section IV, we present
some examples of partially homomorphic cryptosystems.
Finally in the section V, we propose a secure multi-cloud
architecture for processing encrypted data. The perspectives are
mentioned in section VI with the conclusion.

II. TOWARD HOMOMORPHIC ENCRYPTION

The security requirements for data and algorithms have
become very strong in the last few years. Due to the vast
growth of technology, a great variety of attacks on digital
goods and technical devices are enabled. For storing and
reading data securely, there exist several possibilities like
secure data encryption. The problem becomes more complex
when asking for the possibility to compute (publicly) with
encrypted data or to modify functions in such a way that they
are still executable while the privacy is ensured. That is where
homomorphic cryptosystems can be used.

The notion and idea of fully homomorphic schemes was
introduced by Rivest, Adle-man and Dertouzos in [2] shortly
after the invention of RSA [3]. They asked for an encryption
function that permits encrypted data to be operated on without
preliminary decryption of the operands, and they called those
schemes privacy homomorphisms. Even in 1978 this was a
highly important matter, it is even more important nowadays.
While the partially homomorphic properties of schemes like
RSA, Paillier, ElGamal, etc. have been acknowledged ever
since, it was not before 2009 when a young IBM researcher
published the first working fully homomorphic cryptosystem
based on lattices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

294 | P a g e

www.ijacsa.thesai.org

Among the homomorphic encryption we distinguished
according to their operation to assess on raw data. The additive
homomorphic encryption (addition of the raw data) is the
Pailler [4] and Goldwasser-Micalli[5] cryptosystems and the
multiplicative homomorphic encryption (only products on raw
data) is the RSA [6] and El Gamal [7] cryptosystems.

A. Definition of a Homomorphic Encryption Scheme

A public-key encryption scheme E=(KeyGen, Enc, Dec) is
homomorphic if for all k and all (pk,sk) output from
KeyGen(k), it is possible to define groups M, C so that:

 The plaintext space M, and all ciphertexts output by
Encpk are elements of C.

 For any m1 , m2 ∈ M and c1 , c2 ∈ C with m1 = Decsk

(c1) and m2 = Decsk (c2) it holds that:

Decsk (c1 ∗ c2) = m1 ∗ m2

Where the group operations ∗ are carried out in C and M,
respectively.

In other words, a homomorphic cryptosystem is a PKS with
the additional property that there exists an efficient algorithm
(Eval) to compute an encryption of the sum or/and the product
of two messages given the public key and the encryptions of
the messages, but not the messages themselves.

Moreover, a fully homomorphic scheme is able to output a
ciphertext that encrypts f (m1,...,mt), where f is any desired
function, which of course must be efficiently computable. No
information about m1,..., mt or f (m1,...,mt), or any intermediate
plaintext values should leak. The inputs, outputs and
intermediate values are always encrypted, and therefore useless
for an adversary. Before we take a closer look on fully
homomorphic encryption schemes, we will need another
important notion from information theory.

B. Circuits

Informally speaking, circuits are directed, acyclic graphs
where nodes are called gates and edges are called wires.
Depending on the nature of the circuit the input values are
integers, boolean values, etc. and the corresponding gates are
set operations and arithmetic operations or logic gates (AND,
OR, NOR, NAND, ...). In order to evaluate a function f, we
express f as a circuit and topologically arrange its gates into
levels which will be executed sequentially.

Example. Assume the function f outputs the expression:

Fig. 1. Example for circuit representation

A·B+B·C·(B+C) on input (A,B,C). Then the following
circuit represents the function f, with the logic gates AND and
OR.

Two important complexity measures for circuits are size
and depth.

The size of a circuit C is the number of its non-input gates.
The depth of a circuit C is the length of its longest path, from
an input gate to the output gate, of its underlying directed
graph.

This yields to another definition of fully homomorphic
encryption [8]:

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi), outputs

 c← Evalpk (C, Ψ)

under pk.

There is another way to construct fully homomorphic
encryption schemes. To understand how this transformation
works, we need the following definitions and corollaries.

Definition : A homomorphic encryption scheme E is said to
be correct for a family CE of circuits if for any pair (sk, pk)
output by KeyGenE (λ) any circuit C ∈ CE , any plaintext
m1,...,mt , and any ciphertexts Ψ = c1, ...,ct

with ci ← Encpk (mi), it is the case that:

If c ← EvalE (pk, C, Ψ), then DecE (sk, c) → C(m1, ...,mt)

Except with negligible probability over the random coins in
EvalE .

Definition: A homomorphic encryption scheme E is
compact, if there is a polynomial f so that, for every value of
the security parameter λ, E’s decryption algorithm can be
expressed as a circuit DE of size at most f (λ).

A homomorphic encryption scheme E compactly evaluates
circuits in CE if E is compact and also correct for circuits in
CE.

Corollary: A homomorphic encryption scheme E is fully
homomorphic if it compactly evaluates all circuits.

This demand is considered to be almost too strong for
practical purposes, hence it uses a certain relaxation to include
leveled schemes, which only evaluate circuits of depth up to
some d, and whose public key length may be poly(d).

Definition: (leveled fully homomorphic). A family of
homomorphic encryption schemes {E(d) : d ∈ Z+ } is said
leveled fully homomorphic if, for all d ∈ Z+ , it all uses the
same decryption circuit, E (d) compactly evaluates all circuits
of depth at most d (that use some specified set of gates), and
the computational complexity of E (d) ’s algorithms is
polynomial in λ, d, and (in the case of EvalE) the size of the
circuit C.

An encryption scheme which supports both addition and
multiplication (a fully homomorphic scheme) thereby

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

295 | P a g e

www.ijacsa.thesai.org

preserves the ring structure of the plaintext space and is
therefore far more powerful. Using such a scheme makes it
possible to let an untrusted party do the computations without
ever decrypting the data, and therefore preserving their
privacy.

A widely esteemed application of homomorphic encryption
schemes is cloud computing. Presently, the need for cloud
computing is increasing fast, as the data we are processing and
computing on is getting bigger and bigger every day, with the
effect that a single person’s computation power does not suffice
anymore. Hence, it is favorable to use someone else’s power
without losing the privacy we seek.

Say, Alice wants to store a sensitive file m ∈ {0, 1}n on
Bob’s server. So she sends Bob Enc(m1), ..., Enc(mn). Assume
that the file is a database (a list of people with specific
information about them) and Alice wants to find out how many
of them are 25 years old. Instead of retrieving the data from
Bob, decrypting it and searching for the wanted information,
she will ask Bob to do the computations, without him knowing
what or who he is computing on.

The answer from Bob comes in form of a ciphertext which
only she can decrypt with her secret key.

Fig. 2. Diagram of a homomorphic encryption scheme

The benefit of fully homomorphic encryption has long been
recognized. The question for constructing such a scheme arose
within a year of the development of RSA [2].

For more than 30 years, it was unclear whether fully
homomorphic encryption was even achievable. During this
period, the best encryption system was the Boneh-Goh-Nissim
cryptosystem [9] which supports evaluation of an unlimited
number of addition operations but one multiplication at the
most.

A common reason why a scheme cannot compute circuits
of a certain depth is that after a certain amount of computations
too much error accumulates, which causes the decryption to
obtain a wrong value. The decryption usually is able to handle
small amounts of error within a certain range and
bootstrappable encryption enables "refreshing" after some
time. The basic idea of "refreshing" is to encrypt under a first
key. Compute until right before the error grows too large.
Encrypt under a second key. Compute the decryption circuit,
which since it stopped before the error grew too large, gives the
correct value encrypted under the second key. The first key is
no longer required. Continue computation under the second
key, and repeat with a new key as often as needed. When the
computation has finished, decrypting with the last used key
gives the original plaintext.

Gentry's method can be broken down into three major
steps:

Step 1: Constructing an encryption scheme using ideal
lattices that is somewhat homomorphic, which means it is
limited to evaluating low-degree polynomials over encrypted
data. This scheme is very similar to the Goldreich-Goldwasser-
Halevi scheme published in 1997 [10] which is based on lattice
problems as well.

Step 2: "Squashing" the decryption circuit of the original
somewhat homomorphic scheme to make it bootstrappable.

Step 3: Bootstrapping the slightly augmented original
scheme of step 2 to yield the fully homomorphic encryption
scheme. This will be done with a "refreshing" procedure.

The innovative idea of Gentry's method of creating a fully
homomorphic scheme out of a somewhat homomorphic
scheme is the method of squashing and boot-strapping.
Mathematically the most appealing step is the first step.

III. THE SOMEWHAT HOMOMORPHIC SCHEME

The aim of this somewhat homomorphic scheme (SHS) is
to construct an encryption scheme that is "almost"
bootstrappable with respect to a universal set of gates. The first
step is to design a SHE scheme which is a scheme that supports
some computations over encrypted data. Gentry then showed
that if you can manage to design a SHE scheme that supports
the evaluation of its own decryption algorithm (and a little
more), then there is a general technique to transform the SHE
scheme into a FHE scheme. A SHE that can evaluate its own
decryption algorithm homomorphically is called
bootstrappable and the technique that transforms a
bootstrappable SHE scheme into a FHE scheme is called
bootstrapping.

Bootstrapping. So how does bootstrapping work and why
is bootstrappability such a useful property? To understand this,
you first have to know how the currently-known SHE schemes
work. Roughly speaking, the ciphertexts of all these schemes
have noise inside of them and unfortunately this noise gets
larger as more and more homomorphic operations are
performed. At some point, there is so much noise that the
encryptions become useless (i.e., they do not decrypt
correctly). This is the main limitation of SHE schemes and this
is the reason that they can only perform a restricted set of
computations. Bootstrapping allows us to control this noise.

The idea is to take a ciphertext with a lot of noise in it and
an encryption of the secret key and to homomorphically
decrypt the ciphertext. Note that this can only work if the SHE
scheme has enough homomorphic capacity to evaluate its own
decryption algorithm which is why we need the SHE scheme to
be bootstrappable. This homomorphically computed decryption
will result in a new encryption of the message but without the
noise (or at least with less noise than before). More concretely,
say we have two ciphertexts:

c1=Epk (m1) and c2=Epk (m2)

with noise n1 and n2, respectively. We can multiply these
encryptions using the homomorphic property of the SHE
scheme to get an encryption:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

296 | P a g e

www.ijacsa.thesai.org

c3= Epk (m1 x m2)

of m1 x m2 under key pk ,but C3 will now have noise n1xn2.
The idea behind bootstrapping is to get rid of this noise as
follows. First, we encrypt C3 and sk under pk .This results in
two new ciphertexts

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk)

Given C4 and C5, we now homomorphically decrypt C4

using C5. In other words, we compute the following operation
over C4 and C5: “decrypt c3= Epk (m1 x m2) using sk“. This is
allowed since the scheme has enough homomorphic capacity to
evaluate its own decryption algorithm.

By using this technique throughout a computation
whenever the ciphertexts get too noisy, we can remove the
main limitation of the SHE scheme and turn it into a FHE
scheme.

It turns out that constructing a bootstrappable SHE scheme
is difficult. To do this, Gentry had to build his scheme using
sophisticated techniques [1] so a lot of the recent work in FHE
has tried to figure out how to design simpler bootstrappable
SHE schemes.

IV. PARTIALLY HOMOMORPHIC CRYPTOSYSTEMS

A. RSA-A Multiplicatively Homomorphic Scheme

In 1978, Rivest, Shamir, and Adleman published their
public-key cryptosystem which only uses elementary ideas
from number theory, in their paper "A Method for Obtaining
Digital signatures and Public-Key Cryptosystems" [3]. It was
one of the first homomorphic cryptosystem. The RSA
cryptosystem is the most widely used public-key cryptosystem.
It may be used to provide both secrecy and digital signatures
and its security is based on the intractability of the integer
factorization problem.

Fig. 3. RSA Algorithm

The encryption algorithm takes as input a message m from
the plaintext space Zn and computes the according ciphertext

c = me mod n. This integer c ∈ Zn cannot be traced back to the
original message without the knowledge of p and q, which will
be proved later in this section.

Decryption takes as input the ciphertext c and the secret
key (d, n) and computes m = cd mod n. Since d is the inverse
of e in Zn this is indeed the original message.

The three steps (key generation, encryption and decryption)
can be found in the following table.

B. Paillier - An Additively Homomorphic Scheme

Pascal Paillier introduced his cryptosystem in 1999
published paper "Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes" [11]. The proposed
technique is based on composite residuosity classes, whose
computation is believed to be computationally difficult. It is
a probabilistic asymmetric algorithm for public key
cryptography and inherits additive homomorphic properties.

The encryption procedure takes as input a message m ∈ Zn

and randomly chooses an integer r in Z∗ , this random number is
used to fulfill the probabilistic algorithm’s n property, that one
plaintext can have many ciphertexts. It is later shown that this
random variable does not impede the correct decryption, but
has the effect of changing the corresponding ciphertext.

The three steps (key generation, encryption and decryption)
can be found in the following table:

Fig. 4. Paillier Algorithm

V. OUR ARCHITECTURE

The fully homomorphic encryption schemes [1] are very
time consuming. Considering the evaluation of one gate
demanding a refresh, the run-time will be significant as well as
the processing of security parameters.

A suggestion of a nearlly FHE scheme based architecture
for enabling the evaluation of any function and processing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

297 | P a g e

www.ijacsa.thesai.org

encrypted data is illustrated in Figure 6. In our proposed
architecture, the service provider repartitions the processing
among the servers to fasten the evaluation process of any
function.

Fig. 5. An architecture of distributed servers for processing encrypted data

In this system, we provide a high leveled architectural
scheme through the usage of multiple servers in the
computation. This computational system will nearly allow
achieving a FHE, and thus a large number of operations
including multiplications and additions can be performed. For
instance, in Fig. 5, Client 1 requests the results of a given
function, let’s say f(x)=ax²+bx+c. In this case the function
elements are encrypted and divided into several chunks
depending on the number of operations (Multiplication and
addition), and will be processed separately on N different
servers, equivalent to the number of addition operations Finally
the result is sent back to a Central Server in order to be
forwarded to Client 1 and then decrypted.

The benefit is that no longer chipertext after encryption
unlike the classical method. The keys are easily handled and
more security is maintained since is it impossible to read
relevant information in distributed systems. In the cloud the N
servers consists of hypervisors hosting multiple virtual
machines which help improving the response time and
augment the number of the involved computational entities in
the distributed system.

In this suggestion, we analyze the added value of the
distributed systems in processing operations requested by
clients. The scheme of homomorphic encryption is dispatched
within the servers and this can be practical and help improving
the security of the cloud in terms of confidentiality of data and
performance.

Fig. 6. The proposed architecture to secure data using homomorphic encryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

298 | P a g e

www.ijacsa.thesai.org

Another concern that should be considered in our
architecture is the confidentiality of the processed data over the
distributed systems, which is the main concern of most
organization when using third-party hosting. Our approach
regarding this matter is the split the stored data among multiple
Cloud service providers to decrease the risk of data breaches
and increase the parallel processing as well as the number of
the servers involved in performing homomorphic encryption.
Partitioning and outsourcing the data, applications onto
different cloud infrastructures has the advantage of making
them ambiguous for third-parties and adversaries, and thus this
helps enhancing the confidentiality as well as the privacy.

As the stored encrypted data is repartitioned among a
Multi-Cloud Architecture belonging to different Cloud Service
Providers (See Fig. 6), Client 1 can perform operations on
them and transparently retrieve the intended results. The data is
segmented through a Data Partitioning Algorithm (DPA)
which allows partitioning, collecting and reconstructing the
data. The main operations are chunked into subsets to be
handled by the N Clouds/N Servers. The combination of N
Clouds and homomorphic encryption using N servers provides
an enhanced security strategy which is a safe approach to
prevent any potential data breaches even if the data have been
already encrypted.

Choosing a trusted CSP requires a Service Level
Agreement (SLA), contract negotiation and risk assessments.
In most cases it may be logical to believe that a CSP to be
trustworthy and handling the clients’ sensitive data and
applications in a responsible manner.

VI. CONLUSION

As Gentry proposed his construction and blueprint in 2009,
there has been a huge effort to make FHE more practical.
While a lot of progress has been made, unfortunately, we are
still some way from truly practical FHE.

Most FHE schemes are based on Gentry’s blueprint which
consists of first constructing a SHE and then using Gentry’s
bootstrapping technique to turn it into a FHE scheme. It turns
out that bootstrapping is a major bottleneck and that SHE is
actually reasonably efficient. So, if we care about practical

applications, then it may be worthwhile to explore what exactly
we can do with SHE instead.

Distributed systems and multi-could architectures could
bring lots of benefits to the application of homomorphic
encryption and making it more practical in the case of the
security of data and applications.

In a future work, we will focus on the implementation of
our proposal and conduct security and performance tests in
order to show its practicability.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Doctoral
dissertation, Stanford University, 2009.

[2] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy
homomorphisms,” In Foundations of Secure Computation, pages 169-
180, 1978.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, 21(2):120-126, 1978.

[4] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” In 18th Annual Eurocrypt Conference
(EUROCRYPT'99) Prague, Czech Republic , volume 1592, 1999.

[5] J. Bringe and al., “An Application of the Goldwasser-Micali
Cryptosystem to Biometric Authentication”, Springer-Verlag, 2007.

[6] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public key cryptosystems,” Communications of the
ACM, 21(2):120-126, 1978. Computer Science, pages 223-238.
Springer, 1999.

[7] T. ElGamal, “A public key cryptosystem and a signature sche based on
discrete logarithms,” IEEE Transactions on Information Theory, 469-
472, 1985.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
InSTOC, Vol. 9, pp. 169-178, 2009.

[9] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” In Proceedings of Theory of Cryptography (TCC) '05,
LNCS 3378, pages 325-341, 2005.

[10] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems
from lattice reduction problems,” In Proceedings of the 17th Annual
International Cryptology Conference on Advances in Cryptology, pages
112-131. Springer-Verlag, 1997.

[11] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Advances in Cryptology Eurocrypt, 1592:223-238,
1999.

[12] S. Goluch, “The development of homomorphic cryptography: From
RSA to Gentry’s privacy homomorphism” Doctoral dissertation, Vienna
university of Technology, 2010.

