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Abstract—This paper deals with the analysis and design of the 

state feedback fuzzy controller for a class of discrete time Takagi 

-Sugeno (T-S) fuzzy uncertain systems. The adopted framework 

is based on the Lyapunov theory and uses the linear matrix 

inequality (LMI) formalism. The main goal is to reduce the 

conservatism of the stabilization conditions using some particular 

Lyapunov functions. Four nonquadratic Lyapunov Functions are 

used in this paper. These Lyapunov functions represent an 

extention from two Lyapunov functions existing in the literature. 

Their influence in the stabilization region (feasible area of 

stabilization) is shown through examples, the stabilization 

conditions of controller for discrete time T-S parametric 

uncertain systems is demonstrated with the variation of the 

lyapunov functions between  (k, k+1) and (k, k+t)  sample times. 

The controller gain can be obtained via solving several linear 

matrix inequalities (LMIs). Through the examples and 

simulations, we demonstrate their uses and their robustness. 

Comparative study verifies the effectiveness of the proposed 

methods. 

Keywords—Nonquadratic Lyapunov functions; Non-PDC; 

Linear Matrix Inequality; Parametric Uncertain Systems; Takagi-

Sugeno 

I. INTRODUCTION 

Fuzzy control systems have experienced a big growth of 
industrial applications in the recent decades, because of their 
reliability and effectiveness. 

In recent years, there has been growing interest in the 
study of stability and stabilization of Takagi–Sugeno (T–S) 
fuzzy system[1, 2, 3,4, 5] due to the fact that it provides a 
general framework to represent a nonlinear plant by using a 
set of local linear models which are smoothly connected 
through nonlinear fuzzy membership functions. 

Nonlinear systems are difficult to describe. Takagi-Sugeno 
fuzzy model is a multimodel approach much used to modelise 
non linear sytems by construction with identification of input-
output data [6,7]. The merit of such fuzzy model-based control 
methodology is that it offers an effective and exact 
representation of complex nonlinear systems in a compact set 
of state variables.With the powerful T–S fuzzy model, a 

natural, simple, and systematic design control approach can be 
provided to complement other nonlinear control techniques 
that require special and rather involved knowledge. 
Nowadays, T–S fuzzy model-based control approaches have 
been applied successfully in a wide range of applications. 

One of the most important issues in the study of T–S fuzzy 
systems is the stability and stabilization analysis problems [8]. 
Via various approachs, a great number of stability and 
stabilization results for T–S fuzzy systems in both the 
continuous and discrete time have been reported in the 
literature [9,10]. 

Two classes of Lyapunov functions are used to analyze 
these systems: quadratic Lyapunov and nonquadratic 
Lyapunov functions. The second class of function is less 
conservative than the first. Many researches have investigated 
nonquadratic Lyapunov functions [11, 12, 13, 14, 15, 16]. 

Many works try to reduce the conservatism of quadratic 
form. Several approaches have been developed to overcome 
the above mentioned limitations. Piecewise quadratic 
Lyapunov functions were employed to enrich the set of 
possible Lyapunov functions used to prove stability [11]. 
Multiple Lyapunov functions have been paid a lot of attention 
due to avoiding conservatism of stability and stabilization. 
Some works try to enrich some properties of the membership 
functions [17, 18], others introduce decisions variables (slack 
variables) in order to provide additional degrees of freedom to 
the LMI problem [19, 20].  

For every case, The Lyapunov function used to prove the 
stability has the most important effect to the results. To leave 
the quadratic framework, some works have dealt with 
nonquadratic Lyapunov functions. In this case, some results 
are available in the continuous and the discrete cases 
[21],[22],[23]. In the discrete case, new improvements has 
been developed in [24], by replacing the classical one sample 
time variation of the Lyapunov function by its variation over 
several samples (k samples times variations). This condition 
reduces the conservatism of quadratic form and give a large 
sets of solutions in terms of linear matrix inequality LMI. The 
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relaxed conditions admitted more freedom in guaranteeing the 
stability and stabilization of the fuzzy control systems and 
were found to be very valuable in designing the fuzzy 
controller, especially when the design problem involves not 
only stability, but also the other performance requirements 
such as the speed of response, constraints on control input and 
output . 

In this paper, a new stabilization conditions for discrete 
time Takagi Sugeno parametric uncertain fuzzy systems with 
the use of [25,26, 27] new nonquadratic Lyapunov functions 
are discussed. This condition was reformulated into LMI. 
[28,29,30,31,32,33,34,35], which can be efficiently solved by 
using various convex optimization algorithms. 

The organization of the paper is as follows. First, T-S 
fuzzy modeling is discussed. Second, we discuss the proposed 
approachs to stabilize a T-S fuzzy system in closed loop with 
the new lyapunov functions. Third, simulation results show 
the robustness of this approachs and their influence in the 
stabilization region (feasible area of stabilization). We finish 
by a conclusion. 

II. SYSTEM DESCRIPTION AND PRELIMINAIRIES 

In this section, we describe the concept of the Takagi-
Sugeno parametric uncertain system. It’s based on the state 
space representation. 

Consider the discrete time fuzzy model T-S parametric 
uncertain systems for nonlinear systems given as follows. 

 1 1
If ( ) is  and    then 

( 1) ( ) ( ) ( ) ( )
 

( 1) ( ) ( )

1......

i p ip

i i i i

i i

z t M and z t is M

x k A A x k B B u k

y k C C x k

i r

      


   



             (1) 

Where ( 1,2.... , 1,2..... )
ij

M i r j p  is the fuzzy set and r 

is the number of model rules,   nx k   is the states vector 

;   mu k   is the input vector; 
n n

iA   ,the states 

matrix, 
n m

iB  
 
the control matrix and 

   1 ,......, pz k z k are known premise variables. 

The T-S fuzzy model is written under the following form: 
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            (2) 

r : is the number of model rules. 

With 

     
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  
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(3) 

The term   ij jM z k is the membership degree of 
 jz k

in ijM
. 

Since 

  

  
1

0

0 1......
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(4) 

we have   
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i

r
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                                                                  (5) 

The final output can be written under the following form

  

  
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i
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


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(6) 

,i iA B  represents parametric uncertainties matrices in 

the state space representation. These uncertainties matrices are 
written under the following form. 

, ,
1 1 1

         
  

      

a a b b c c

T T T

A H FE B H FE C H FE

FF FF FF
                     (7) 

With , , , , ,a b c a b cH H H E E E  are constants matrices. 

Lemma 1, 2 and 3 present the techniques and powerful 
tools used through the development of the next theorems. 

Lemma 1 (Schur Complement) [36,37] 

Consider A,G,L,P and Q matrices with appropriates 
dimensions. The next properties are equivalent: 

1. 0 , 0TA PA Q P  
                       (8) 

2. 0
TQ A P

PA P

 
 

 
                           (9) 

3. 0, 0
T

T T

Q A G
G P

G A G G P

 
   

   
          (10) 
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4. , 0, 0
T T T

T T T

Q A L LA L A G
G L P

L G A G G P

     
   

                

(11) 

Lemma 2 [38] 

Relaxaion : Whatever the choise of the Lyapunov function, 
the analysis of the stabilization leads us to the  inequality (12) 
with multiple sum 

        

  

0 1 0

0 1 0 1
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.... 2 1 ......

.... 2 1 0
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j i i j j
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

 
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 
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                (12) 

Consider    

0 1 0 1 0 0 1 1

0 1

,... , ,... , ,....
k k k k

k

i i j j i j i j   


    matrices 

and 
ih  functions having the convex sum properties. 

The inequality (12) is verified if the next   0.5 1
k

r r   

conditions are verified 

     

0 1 1 0 1 1 0 1 1 0 1 1

0 0 1 1

,... , ,... ,... , ,...

, ,....., , 1,2,...,

0
k k k k

k k

i i i j j j j j j i i i

i j i j r
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  

   
                               

(13) 

where 

0 0 1 1,....., k ki j i j  
 

Lemma 3 [39] 

Consider X and , 0TY Q Q   matrices of appropriate 

dimensions, the following inequality is verified
 

1T T T TXY YX XQX YQ Y                                                  (14) 

The use of these lemmas will be shown in the next section. 

III. STABILIZATION ANALYSIS 

This section recalls the technique of the stabilization 
analysis of discrete T-S model based on a nonquadratic 
Lyapunov function. In the discrete case, we consider the 
variation of the Lyapunov function between two sample time. 
If the final equation of this variation is negative, we obtain a 
sufficient condition of the T-S stabilization with the state 
feedback controller. 

Consider the discrete time fuzzy Takagi-Sugeno system 
under the following form. 

   

 

  

1

( ) ( )

( )

1

( 1) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

r
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i

z k z k

r
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i
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




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


 

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





  (15) 

The non-PDC control law is described by the following 
equation: 

 1

1

( )
r

i

i

u k FG x k



                                                           (16)  

The Lyapunov function used in [40] expressed in equation 
(17) 

  

      

1

1

1 1

1

( ) ( ) ( )

( ( )) ( )

( )

( ) ( ) ( )

T
r

T

i i

i

r r

i i i i

i i

T T

z k z k z k

V x k x k h z k G

h z k P R h z k G x k

x k G P G x k









 

 

 
  

 

   
     
   





   (17) 

The final equation of the Lyapunov function variation 
obtained by [40] which represent the stabilization condition of 
discrete time T-S systems is written under the following form. 

 

 

0 1 1 0 1 1

0 0 0

1 1 1

,... , ,...

* 0

0
*

0

k k

k j k

i i i j j j

T

i i j

T

i i j

P

A G B F G G

A G B F G G P

 

  

 

  
 

   
 

 
     

   (18) 

So [40] propose the following theorem: 

Theorem [40] 

Consider the discrete Takagi-Sugeno (15), the control law 

(16) and the 
0 1 1 0 1 1,... , ,...k ki i i j j j 

  defined in (18). If it exist a 

definite positive matrix P and matrices , , {1..... }iG F i r  such 

that the conditions (12) and (13) of lemma 2 are verified the 
system is globally asymptotic stable in closed loop. 

We propose a new Lyapunov function based on the 
Lyapunov function in equation (17), by multiplying the 

Lyapunov matrices 
( )z kP  by a scalar 0  . So the new form 

of the Lyapunov function is written under the following form 
in equation (19). 

1

( ) ( ) ( )( ( )) ( ) ( ) ( )T T

z k z k z kV x k x k G P G x k                                (19) 

and the non-PDC control law is written under the 
following form in equation (20). 

 1

1

( )
r

i i

i

u k FG x k



                                                          (20) 

The variation of the Lyapunov function between k and k+t 
sample times is given by the next equation (21) 

      
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1
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1
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

            (21) 

The final output  1x k   is written between k and (k+t) 

samples under the next form. 

     
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1 1
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r
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i
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   1 1
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.

.

.

( ) ....... ( )z k t z k t z k t z k z k z k z k z kx k t A B F G A B F G x k 
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The variation of the Lyapunov function for discrete system 

should be negative    0kV x k  . This equation is 

equivalent to 

 
 

 
1 1

( ) ( ) ( ) ( 1) ( 1) ( 1) ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
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                                          (22) 
The equation (22) is equivalent to equation (23) 

  1 1

( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1)

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

* ( ) ( ) ....
0

... ( ) ( )

T

z k z k z k z k t z k t z k t z k

T

z k z k z k z k z k z k z k

G P G A B F G

A B F G G P G





  

      

  

  
 

    

                                                                                                                                                          

                                                                                             (23)    
Consider the next modification 
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                                                                                  

                                                                                             (24)                  
Using the congruence with the full rank matrix G, we 

obtain 

  1

( ) ( 1) ( 1) ( 1) ( 1)

1
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

   

     

 

(25)  

So the variation of the lyapunov function    0kV x k 

holds if the equation (25) is negative. The use of the Schur 
Complement (Lemma 1) with the equation (25) give the next 
equation 

 
 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( 1) ( 1)

*

(*) ... 0
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





   

 
 

      
           

      (26) 

For each iteration i={1….r} 

Let’s consider the following inequality: 

 
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( ) ( ) ( ) ( ) ( )

*
0

z k

T T

z k z k z k z k z k i

P

G A G B F





 
 
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                                                                                             (27)  

with 

 

 
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.....

T

i z k z k z k z k t z k t z k t z k t

z k i z k z k i

G P G A G B F

A G B F



       

  

  

  
                                                             

The application of the lemma 1 with equation (27) with 
G  give the next inequality 

 

 
0

0 0 0 0 0 0

1 1 1 2

* 0

* 0

0
k k k

i

T

i j i j i i

T

i i j

P

A G B F G G

A G B F G G
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                                                                                             (28)      
Recursively by the use of Schur Complement we obtain 

the inequality (29). 
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(29) 

The use of the lemma 2 with the equation (29), give the 
final condition of discrete time T-S systems stabilization. This 
condition should be negative. 
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                                                                                             (30) 
Therefore we state the following theorem for the discrete 

time Takagi-Sugeno fuzzy systems. 

Theorem 1 

Consider the discrete time Takagi-Sugeno (15), the control 

law (20) and the 
0 1 1 0 1 1,... , ,...k ki i i j j j 

  defined in (30). If exist a 

definite positive matrices 
iP and matrices , , {1..... }i iG F i r  

and 0  such that the conditions (12) and (13) of lemma 2 

are verified the discrete time T-S system is globally 
asymptotic stable in closed loop. 

These two theorems represent sufficient conditions of the 
discrete time T-S stabilization with state feedback with  k 
sample times variation of the Lyapunov function. In the next 
section, we present the analysis of the stabilization of the 
discrete time T-S parametric uncertain systems. 

IV. PARAMETRIC UNCERTAIN SYSTEMS STABILIZATION  

ANALYSIS 

A. New Lyapunov Function: First approach 

In the next, we treat the case of the discrete time Takagi-
Sugeno parametric uncertain systems. 

Consider the uncertain system described in equation (6) 

In that case, the equation (30) becomes. 
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 
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                                                                                             (31) 

For the uncertainties
( ) ( ),z k z kA B  , the term 

( ) ( ) ( )z k z k z kA G B F  is transformed in the following form by 

introducing two scalars 
0 00, 0   . The use of lemma 3 

on uncertainties 
( ) ( ),z k z kA B  gives the next two inequalities: 
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                                          (32)                                                                                                                                                                          
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                                                                                             (33) 

Taking in consideration the two inequality (32) and (33), 
the equation (31) become equation (34) 
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                                                                                             (34) 
With 
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
    

The use of Schur Complement (lemma1) give the next 
equation (35) which represents the final condition of 
stabilization of T-S parametric uncertain systems with the use 
of the Lyapunov function (19) and the control law (20). 
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                                                                                             (35) 
with  

2 T T

i i a a i b bH H H H   
                      (36) 

After using lemma 2 the equation (35) become (37) 
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                                                                                             (37) 
So we state the next theorem for the stabilization of the 

discrete time T-S parametric uncertain systems. 

Theorem 2 

Consider the discrete time uncertain Takagi-Sugeno 

system (6), the control law (20) and the 
0 1 1 0 1 1,... , ,...k ki i i j j j 



defined in (37). If exist a definite positive matrices
iP , 

matrices , , {1..... }i iG F i r and positives scalars ,i i   and 

0  such that the conditions of lemma 2 are verified the 

system is globally asymptotic stable in closed loop. 

The next work deals with the addition of more variables in 

the equation 
0 1 1 0 1 1,... , ,...k ki i i j j j 

  to give a large field of solutions. 
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In this case a condition of stabilization is developed based on 
new Lyapunov functions and a new non-PDC control law 
(20). 

B. New Lyapunov Function : Second approach 

Consider the new non quadratic lyapunov function in 
equation (38) and the non-PDC control law in equation (20). 
In this new function, we associate for each Lyapunov matrices 

( )z kP a 

scalar  .                                                                                                                                         
1

( ) ( ) ( )( ( )) ( ) ( ) ( )T T

z k i z k z kV x k x k G P G x k                     (38)                                                                                                              

where 0i  with  1,..i r  

Consider the same transformations and lemmas used to 
obtain equations (30), (37), theorems 1 and 2.  The new form 
of equation for the stabilization of discrete time T-S fuzzy 
parametric uncertain systems with the use of the Lyapunov 
function (38) is under the following form in equation (39). 
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                                                                                         (39) 
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
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(40) 

Using the equation (39) and the Lyapunov function (38) 
and the non-PDC controller (20), we propose the next theorem 
for the stabilization of the T-S parametric uncertain systems. 

Theorem 3 

Consider the discrete uncertain Takagi-Sugeno system (6), 

the control law (20) and the 
0 1 1 0 1 1,... , ,...k ki i i j j j 

  defined in (39). 

If it exists a definite positive matrices 
iP , matrices 

, , {1..... }i iG F i r and positives scalars ,i i  and positives 

scalars 0i  such that conditions of lemma 2 are verified, 

the system is globally asymptotic stable  in the closed loop. 

C. New Lyapunov Function : Third approach 

The third Lyapunov function proposed in this paper 
represents an extention from the first Lyapunov function and 
the next Lyapunov function described bellow 

The following Lyapunov function is used by [16,17].
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                                                                                             (41) 

Which zP  is symmetric and definite positive matrix, and

zG is full rank matrix.
 
The nonlinearities are expressed by the 

terms    0ih z k  with the convex sum property   
1

1
r

i

i

h z k




. 
 

The Lyapunov function used by [13, 24], is written under the 

following form. 

1

( ( )) ( ( )) ( ( ))
r

k k

k

V x t h z t V x t

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(42) 

( ( )) ( )( ) ( )T

k kV x t x t P R x t 
                                                  (43) 

So the third proposed Lyapunov function is written under 
the following form in equation (44) 

1( ( )) ( ) ( ) ( )T T

z z zV x k x k G P R G x k                                  (44) 

where 0   and 0 1   

The new form of equation for the stabilization of discrete 
time T-S fuzzy parametric uncertain systems with the use of 
the Lyapunov function (44) is under the following form in 
equation (45). 
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(45) 
With the equation (45) and the Lyapunov function (44) 

and the non-PDC controller (20), we propose the next theorem 
for the stabilization of the T-S parametric uncertain systems. 

Theorem 4 

Consider the discrete uncertain Takagi-Sugeno system (6), 

the control law (20) and the 
0 1 1 0 1 1,... , ,... ,k ki i i j j j R 

  defined in 

(45). If exist a definite positive matrices
iP , matrices

, , , {1..... }i iR G F i r and positives scalars ,i i  , positive 

scalar 0   and 0 1   such that the conditions of lemma 

2 are verified the system is globally asymptotic stable in 
closed loop. 

In the next section, we add more values to the LMI in 
order to demonstrate their influence in stabilization region by 

affecting to each lyapunov matrices iP  , a positive scalar
i . 

D. New Lyapunov Function : Fourth approach 

The fourth Lyapunov function used in this paper is written 
under the following form in equation (46) 

1( ( )) ( ) ( ) ( )T T

z i z zV x k x k G P R G x k   
                            (46) 

Under this Lyapunov function, the new condition of 
stabilization obtained in the next equation. 
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                                                                                             (47) 
We state the following theorem for the stabilization of the 

discrete time T-S fuzzy parametric uncertain systems. 

Theorem 5 

Consider the discrete uncertain Takagi-Sugeno system (6), 

the control law (20) and the 
0 1 1 0 1 1,... , ,... ,k ki i i j j j R 

  defined in 

(47). If it exist a definite positive set of matrices
iP , matrices 

, , , {1..... }i iR G F i r and positives scalars ,i i  , 0i   and 

0 1   such that the conditions of lemma 2 are verified, 

then the system is globally asymptotic stable in closed loop. 

Four Lyapunov functions were proposed in this paper. 
They represent a direct extension from two other function in 
the literature. In the next section, we present their robustness 
by showing their influence on the stabilization region. 

V. SIMULATION AND VALIDATION OF RESULTS 

Consider TS discrete uncertain system with unstable open 
loop models. This system is modeled with two subsystems, so 
we have 2r  .  
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   
   

     
     
     
     
     

  
 
 
 
 


 
 
 
 

 

For the simulation the membership functions are choosen 
as follows: 

  
 

     1 2 1

1

1
, 1

1 0.9 ( )
h z k h z k h z k

x k
  


 

With the application of theorem 2, with =0.6 the results 

of LMI gives definite positive matrices 
1 2P , P and matrices 

1 2 1 2G ,G ,F andF : 
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1 2

1

5.4174 0.0220 -0.0128 5.5756 0.0131 -0.0251

P  = 0.0220 5.6812 0.0189 , P  = 0.0131 5.8226 -0.0135

-0.0128 0.0189 5.5808 -0.0251 -0.0135 5.7746

0.6985   -0.0527    0.1130

G = -0.0160    0.3234    0.0015

   
   
   
   
   

2

0.7715   -0.0602    0.0654

G = -0.0224    0.3343    0.0332

0.0384    0.0242    0.5142 0.0342    0.0193    0.3660

F1 =(0.0997   -0.1065   -0.1300) F2 =(0.0777   -0.0842   -0.0964)

   
   
   
   
   

 

With the application of theorem 4, with =0.6 ,  the results 

of LMI gives other definite positive matrices 
1 2P , P and 

matrices 
1 2 1 2G ,G , R, F andF .

 

1 2

1

2.6444    0.0149   -0.0295 2.6291   -0.0149    0.0295

P  = 0.0149    2.6722   -0.0537 , P  = -0.0149    2.6012    0.0537 ,

-0.0295   -0.0537    2.6953 0.0295    0.0537    2.5782

0.3327  

G  =

   
   
   
   
   

2

  0.0229   -0.0870 0.3117    0.0126   -0.0188

0.0811    0.2159   -0.1457 G  = 0.0093    0.1183    0.0265

-0.0823   -0.1033    0.2099 0.0119    0.0194    0.0491

-4.7998   -0.0984    0.2

R =

   
   
   
   
   

 1 2

377

0.1461   -4.8765    0.4018

-0.2455   -0.4761   -4.9245

F  = 0.0399   -0.0191   -0.0272 , F (0.0248   -0.0103   -0.0176)

    

 
 
 
 
 



 
The figures 1, 2 and 3 show the convergence of state 

variables and the control signal to the equilibrium point zero 
with the application of the theorem 2. 

 
Fig. 1. Evolution of the state variables of sub-system 1 

 
Fig. 2. Evolution of the state variables of sub-system 2 

 
Fig. 3. Evolution of the non PDC controller signal 

The next figure 4, show the feasible areas of stabilization 
for proposed theorems 2 and 3 and the effect of the choice of 

the parameters   and 
i to this areas. For the theorem 2 we 

choose ( =0.6 ) and for theorem 3 we choose 

( 1 21, 1.6  
) 

 

Fig. 4. Comparison between theorem 2 and 3 

Theorem 3 gives a larger stabilization region than theorem 
2. So by affecting for each Lyapunov matrices P  a scalar 

we obtain a large stabilization region than a single scalar   

common to all Lyapunov matrices. 

The next figures present the effect of increasing of number 

of parameters with i 0  in the stabilization region. 

The figure 5 present the feasible area corresponding to 

theorem 3 with ( 1 20.01, 0.06   ) presented by the mark 

(o) and ( 1 21, 1.6   ) presented by the mark (+). So even 

we choose i near to zero, we obtain a larger stabilization 

region (feasible area of stabilization). 
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Fig. 5. Stabilization region of theorem 3 

Figure 6 presents a comparison between theorem 4 and 5, 
it show the effect of  the choice of parameters   and

i   

For the simulation, consider  =0.6 for theorem 4 and 

 1 21, 1.6    for theorem 5. The use of theorem 5 give a 

large stabilization region then theorem 4. 

The figure with the mark (+) represent the stabilization 
region of theorem 5 and the figure with the mark (o) represent 
the stabilization region of theorem 4. 

 
Fig. 6. Comparison between theorem 4 and 5 

Figure 7 presents the effect of choice of parameter i near 

to zero with the use of theorem 5. 

The figure (+) present the feasible area of stabilization for 

the values of ( 1 20.01, 0.06   ) and (o) present the 

feasible area for the values ( 1 21, 1.6   ). So to obtain a 

large stabilization region, i should be near to zero. 

Figures 4,5,6 and 7 represent a comparison between the 
proposed  theorems. 

 
Fig. 7. Stabilization region of theorem 5 

The conclusion obtained throught these figures 
demonstrates that the choice of a large number of parameters 

i affected to each Lyapunov matrices give a best stabilization 

region then one parameter  and a smaller (near to zero) 
number also have a great effect to the stabilization region. 

VI. 
CONCLUSION

 
This paper has developed a new fuzzy controller with state 

feedback for discrete time T-S parametric uncertain systems. 
The analysis of the stabilization problem is  established by the 
use of Lyapunov function technique. In this case,  four new 
Lyapunov functions are proposed. In This Lyapunov functions 
more parameters and slack matrix variables are introduced in 
order to facilitate and enrich the stabilization analysis. In the 
first Lyapunov function, a multiplication with a common 
scalar to each Lyapunov matrices is considered, In the second 
each Lyapunov  matrices is multiplied with their own scalars. 
The use of the second function has a great influence to the 
stabilization region than the first. In the third and fourth 
functions, more parameters and slack matrix variables are 
introduced with common and single scalars for each Lyapunov 
matrices. Through the simulation results a single scalar for 
each Lyapunov matrices give a better stabilization region. The 
proposed theorems of stabilization was generalized between k 
and k+t samples time variation. Future research includes the 
development of design methods using these Lyapunov 
functions with fuzzy controller and observer in discrete time 
non parametric and mixed T-S uncertain systems. 
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